
Find Me If You Can: Improving Geographical Prediction
with Social and Spatial Proximity

Lars Backstrom
lars@facebook.com

Eric Sun
esun@facebook.com

Cameron Marlow
cameron@facebook.com

1601 S. California Ave.
Palo Alto, CA 94304

ABSTRACT
Geography and social relationships are inextricably inter-
twined; the people we interact with on a daily basis almost
always live near us. As people spend more time online,
data regarding these two dimensions – geography and so-
cial relationships – are becoming increasingly precise, allow-
ing us to build reliable models to describe their interaction.
These models have important implications in the design of
location-based services, security intrusion detection, and so-
cial media supporting local communities.

Using user-supplied address data and the network of asso-
ciations between members of the Facebook social network,
we can directly observe and measure the relationship be-
tween geography and friendship. Using these measurements,
we introduce an algorithm that predicts the location of an
individual from a sparse set of located users with perfor-
mance that exceeds IP-based geolocation. This algorithm
is efficient and scalable, and could be run on hundreds of
millions of users.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; D.2.8 [Software
Engineering]: Metrics—complexity measures, performance
measures

General Terms
Measurement, Theory

Keywords
social networks, geolocation, propagation

1. INTRODUCTION
While we would like to believe that our social options are

endless, human relationships are constrained in many way.
They take time, energy, and often money to maintain. Even
after accounting for these human constraints, social norms
dictate whom we approach and how we become acquainted.
All of these constraints create a predictable structure where
geography, transportation, employment, and existing rela-
tionships predict the set of people with whom we will asso-
ciate and communicate.
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We have long observed that the likelihood of friendship
with a person is decreasing with distance. This should not
be surprising given that we are less likely to meet people
who live further away. A less obvious relationship [18] is
that the total number of friends also tends to decrease as
distance increases. This means that the probability of know-
ing someone d miles away is decreasing faster than the total
number of people d miles away is increasing.

The Internet and other communication technologies play
a potentially disruptive role on the constraints imposed on
social networks. These technologies reduce the overhead and
cost for being introduced to new people regardless of geog-
raphy, and help us stay in touch with those we know. Some
have even gone so far as to call this ”the end of geogra-
phy,” where the process of relationship formation becomes
disentangled from distance altogether [9]. As people conduct
more and more of their lives online, data about location and
social relationships become increasingly precise. While ge-
ography is certainly playing a smaller role in our lives than
it once did, we see in this work that geography is far from
over.

Geography has a number of compelling applications within
Internet technology, and accurately predicting a user’s loca-
tion can significantly improve a user’s experience. First, as
malicious entities create increasingly compelling “phishing”
sites that deceive users into providing their account creden-
tials [6], it becomes difficult to identify when an account has
been compromised. Having a good baseline understanding
of a user’s geography along with IP geolocation allows for
the detection of masquerading accounts. Second, knowing
a user’s general location can allow for personalization based
on location. Instead of requiring a user to specify informa-
tion about themselves, a news site can immediately provide
local stories or an international service can set the default
language of the interface automatically.

The current industry standard for geolocation depends on
mapping a user’s IP address to a known or predicted loca-
tion, and these services typically provide accuracy at the
city level. However, results are inconsistent – for example,
customers of large or mobile Internet service providers are
generally assigned IP addresses from large pools, render-
ing accurate geolocation difficult. These inconsistencies spill
over into the user experience; nothing is more jarring than
having your default language switched to French because a
service has incorrectly determined that your IP address is in
France. While we do not have the capability to evaluate the
performance of the many IP location services available, a
leading service reports their accuracy as locating 85% of US



Figure 1: US population density of geolocated Face-
book users.

IPs within 25 miles, with performance of only 59% in the
UK [16]. Furthermore, maintainance of this performance
requires constant updating as IPs are reassigned and perfor-
mance drops about 1.5% per month without this effort.

In this paper we present the findings of a large-scale study
on social and spatial proximity using relationships expressed
on the Facebook social network between users in the United
States. First, we examine the relationship between prox-
imity and friendship, observing that, as expected, the like-
lihood of friendship drops monotonically as a function of
distance. This effect can also be seen as a function of rank,
where friendships are assumed to be independent of their
explicit distance. Second, we use this distribution to de-
rive the maximum-likelihood location of individuals with
unknown location and show that this model outperforms
data provided by geolocation services based on a person’s
IP-address. Finally, we introduce an iterative algorithm to
refine our predictions based on the propagation of predic-
tions across the network holding out a large percentage of
known locations for evaluation purposes. In all of our anal-
yses, data were anonymized and analyzed in aggregate so as
to ensure the privacy of our users.

While other geolocation strategies depend on opaque map-
pings between proprietary databases and geography, the tech-
niques provided in this paper use entirely transparent meth-
ods which are easily understood by users. By deriving a
user’s location through friends’ geography, we can take ad-
vantage of all of the affordances of location-enabled services
without the obscurity and data errors in existing systems.

Our contributions are thus twofold. First, the number of
individuals and the precision to which we can locate them
allows us to study the interplay between geographic distance
and social relationship with greater accuracy and in greater
depth than has previously been possible. Second, using some
of our observations concerning this interplay, we are able to
develop algorithms which locate users with greater accuracy
than existing IP-based methods. Not only does this improve
our accuracy when it comes to various locality related tasks,
but it also mitigates the need for constant maintainance of
geo-IP databases.

2. BACKGROUND
In this section we review the empirical and theoretical

Figure 2: NY population density of geolocated Face-
book users.

work that informs the central questions of this paper: how
does geography bound social structure, and in what ways
can this relationship inform location prediction?

Sociologists and social psychologists have long studied the
relationship between propinquity and friendship. The geog-
raphy and social environment that one experiences largely
dictates the people and information that one has access to.
Over the years, many researchers have noted an inverse re-
lationship between distance and the likelihood of friendship.
This has been expressed simply as a decrease in the proba-
bility of coming into contact with one another, and has been
observed within colleges [20], new housing developments [7],
and projects for the elderly [19]. In addition to affecting the
likelihood of friendship, density and spatial arrangement of
people is expected to have an impact on the size and fre-
quency of interaction among social ties [17]. These observa-
tions seem to hold across time, technological innovation, and
culture, although recent changes in technology are changing
the way that relationships persist over time [18].

The Internet brings both a potential to disrupt the rela-
tionship between distance and friendship as well as to in-
troduce unprecedented data validating these theories at the
level of an entire human population. From the analysis of
early social networking technology [1] to the whole-network
analyses performed on entire communities of users, such as
LiveJournal, LinkedIn, and Flickr [14, 13, 2], social media
and social networking communities are nearing the scale of
entire countries. The level of transactional detail afforded by
these services allows for analysis and modeling that bridges
micro-level processes and population-level effects.

Recently, the question of propinquity and social struc-
ture has been at the center of research around routing in
small-world networks [11, 12]. Using the networks and cities
of US LiveJournal members, Liben-Nowell et al. observe
a number of properties of geographic and social proximity
[15]. Most notably, they find that the likelihood of friend-
ship is inversely proportional to distance, but at extremely
long distances, there is a baseline probability of geographic-
independent relationships which takes over. To account for
the confounding effects of population density, they introduce
the notion of rank-based distance, measuring the probability
that v will be u’s friend given the number of people w such
that distu,w < distu,v.

In another recent analysis of a large sample of MySpace



Figure 3: Facebook penetration using user-provided
addresses. As a proportion of population, users
in the midwest share more addresses on Facebook.
However, this corresponds closely to overall Face-
book penetration, shown in the next figure.

users in the United States, Gilbert et al. studied differences
in behavior between urban and rural users [8]. Dividing rela-
tionships into strong and weak ties based on communication
frequency, they found that urban users’ ties and strong ties
tended to be more geographically distributed than rural and
weak ties. While the distances and lack of scale-invariance
disagree with Liben-Nowell et al., these results show con-
tinued evidence for an inverse relationship between distance
and acquaintanceship within the US population.

On the non-social front, there has been an increasing inter-
est in geographic properties. In [3], Yahoo! search queries
were used in the development of an algorithm that accu-
rately located the geographic center and rate of diffusion for
various query terms. Despite the sparsity of some queries,
such as ”Grand Canyon National Park”, this algorithm was
able to correctly position the center of the query to only
about 50 miles from the actual park. In a study of the
Flickr photo-sharing website [5], Crandall et al. were able
to automatically locate landmarks based on geotagged pho-
tos. Furthermore, once the location was identified they pre-
sented an algorithm which extracted representative images
of the landmark at that location using photographic content.
These studies illustrate the practicality of meaningful geo-
graphic work on these sorts of large, noisy, user-generated
datasets.

Although propinquity and friendship has been a topic of
study across many decades and disciplines, the observations
of the earliest studies have not changed: the further you
get from a person, the lower the likelihood you’ll find her
friends there. Most of the literature has focused on using
geography to explain and model relationships [4], and in
this paper we would like to propose the reverse: given a set
of relationships and some knowledge of geography, how well
can we predict the location of others in the network? The
remainder of this paper is divided into three sections: first,
we discuss descriptive properties of the Facebook network
and geographic data, paying specific attention to density
and friendship as a function of distance; second, we describe
the use of these observations in a predictive model, along
with a number of optimizations; finally, we conclude with
applications and future work.

Figure 4: Facebook penetration using IP geolocation.
Facebook penetration by state, normalized by each
state’s population.

3. DATA
Of the roughly 100 million Facebook users in the United

States, a small but significant fraction (about 6%) have
elected to enter their home address. Of those who have
entered their addresses, roughly 60% of the addresses can
be easily parsed and converted to latitude and longitude us-
ing the publicly available TIGER/Line data set from the
United States Census Bureau [22]. This gives us a set of
approximately 3.5 million users with precisely known home
addresses.

Naturally, some of these addresses are incorrect or out of
date, but there is little incentive to enter false information,
as leaving the field blank is an easier option. Furthermore,
addresses that are ambiguous or do not include precise street
numbers are ignored.

Of the 3.5 million users with addresses, 2.9 million also
have at least one friend with a valid address, and on average
they have 10 friends with addresses, giving us 30.6 million
edges between individuals with known locations. Having so
many edges between individuals whose addresses are known
so precisely allows us to study the relationship between dis-
tance and friendship on a scale not previously possible, and
with greater precision than in previous studies, which tended
to garner location from IP address, an imprecise translation.

In order to uncover potential sources of bias in our meth-
ods and learn more about the users that choose to supply
addresses on Facebook, we compare the demographic at-
tributes of users who disclose their location to those who
do not. Table 1 shows demographic statistics for the geolo-
cated users compared to the overall Facebook population in
the United States.

Users of different ages are roughly equally likely to share
their address information. However, males are significantly
more likely to share their address information than females.
This agrees with many studies that show that males tend
to share more personal data online [10]. Furthermore, users
that share their addresses tend to have many more friends.
This could be because these users also tend to be longer-
tenured users of Facebook.

Since the the number of geolocated addresses in our data
is a relatively small fraction of the overall US population,
bias may also result if people in some parts of the country
are more likely to share address information than others. To
investigate this potential concern, Figure 3 shows a heatmap



Table 1: Demographic Statistics of Geolocated
Users

Located All US Users

% Male 57.51% 44.81%
% Female 42.49% 55.19%
Age, Median 30 30
Age, Mean 33.89 33.44
Account Age (days), Median 413 325
Account Age (days), Mean 558.9 453
Friend Count, Median 105 47
Friend Count, Mean 189.4 129.5

of the number of geolocated addresses divided by US Cen-
sus population (from the 2000 US census) for each 3-digit
ZIP code tabulation area (ZIP3) [21]. This does not cause
great concern because the heatmap corresponds closely to
Figure 4, which shows Facebook penetration by state using
IP-based geolocation. Differences in certain states may be
due to large pools of IP addresses owned by large Internet
service providers.

3.1 Population Density
In order to understand the dynamics between population

and geography, we first examine the distribution of density
in our sample. We divide the United States into a cells of
1/100 of a degree square, or roughly 0.4 square miles in the
continental US. Figure 5 shows the number of grid units in
our data as a function of the density (number of people).
Plotting on a log-log scale, we see that the curve has two re-
gions. In the low density area, the distribution is decreasing
roughly according to a power-law with exponent −1.37. At
some point there is a transition into higher density region
where the exponent decreases to −3.07. This transition oc-
curs at about 50 people per square mile, or 560,000 square
feet per person. Since this includes only Facebook members
who have provided an address, we would expect the actual
density at this transition point to be only about 5600 square
feet per person – about the density of a densely populated
suburban area. In fact, our data illustrates that 96% of peo-
ple live in areas less dense than this, suggesting that the
−1.37 exponent is the one which we should focus on, and
that the distribution takes an abrupt downward turn as we
transition into the density of large apartment complexes.

Figure 1 shows the distribution of the geolocated individ-
uals across the United States. To smooth these figures, a
Gaussian kernel has been applied to each individual, with
width 1 mile. Some artifacts of the geolocation appear in
the ocean, but are overrepresented by this visualization and
account for a negligible fraction of all users. Note that the
vast majority of the country is quite sparsely populated, and
in fact about half of the US population lives in regions with
less than 250 people per square mile (this is the scaled up
value which accounts for the fact that only 1% of the US
population has provided us with geolocatable addresses). It
is important to note, however, that this is somewhat biased
by the differences in Facebook demographics as compared
to the demographics of the US.

It has been observed in other contexts that the interplay
between distance and friendship is in some way connected
to population density. If you live in Manhattan and have
thousands of people living within a single block, you are not
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Figure 5: The density distribution of the US. The
country is divided into 0.01 x 0.01 degree regions
(about 0.4 square miles). We then count number
of Facebook members in each region, and plot the
distribution of counts. There seem to be two dis-
tinct regions of the distribution, a low-density re-
gion where the curve fits a straight line (in log-log
space) with slope −1.37 and a high-density region,
where the fall off is much sharper with slope −3.07.

particularly likely to know any one of them. For example, if
you knew five out of ten thousand people within 1 mile, then
your probability of knowing any one individual would only
be 0.0005. Contrast this with a small town setting where
everyone has a large yard and there are only a thousand
people within a mile. In this case you might still only know
five other people within a mile, but your probability for each
person would be 0.005, an order of magnitude higher.

The first part of this relationship is shown in Figure 6.
Here we divide the population of the United States into three
groups of roughly equal size (about 900K people per group)
according to the population density where they live. This
figure shows the average number of people living x miles
away, as a function of x. Note that this is not the number
living within x miles, but is the number living within the
annulus of width 0.1 miles.

By definition, there are more people living nearby in the
high density case. If the population were uniformly dis-
tributed, we would expect the curves to increase linearly,
since the area of an annulus with inner radius r and width
w is π((r+w)2−r2) = π(2rw+w2), roughly linear in r when
w is small (it is 0.1 here). Of course, the population is not
uniformly distributed, and as a result we see that the curves
increase linearly only for a small distance. Beyond that the
population density falls off and we see that the number of
people falls off as well.

This is caused by two competing forces: as we increase
the radius, the area of the annulus increases, increasing the
population we would expect to find. On the other hand, as
we move further away from urban centers, we are more likely
to find ourselves in the country, where population is sparse.
At some point (about 50 miles) the annulus becomes suffi-
ciently large such that it incorporates a wide swath where
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Figure 6: Number of individuals as a function of
distance. Here we show how many people there are
on average who live x miles away. We divide the
US into low, medium and high density areas, and
compute the curves independently for each.

the average population density is quite unrelated to the den-
sity at the center of the annulus, and becomes more closely
related to the average population density in the US. This
causes the three curves to meet and overlap from 50 miles
onward.

3.2 Friendship and Distance
We now turn to an investigation of the probability of

friendship as a function of distance. Naturally, we expect
the probability to go down with distance and this is what
we observe in Figure 7. To generate this curve, we aggre-
gate over all individuals, computing the distance between
all 8.1 ∗ 1012 pairs of individuals with known addresses. We
then bucket by intervals of 0.1 miles to compute the total
number of pairs and the number of pairs for which an edge
is present, plotting the ratio. It turns out that we can get
a good fit to a curve of the form a(b+ x)−c. The exponent
very close to c = −1 suggests that, at medium to long-range
distances, the probability of friendship is roughly inversely
proportional to distance. At shorter scales the curve is flat-
ter, suggesting that there is less sensitivity to short distances
than a power-law with exponent −1 would produce. The −1
exponent has been observed in other datasets as well [15],
suggesting that there is a more general principle at work
here.

However, this does not tell the full story, as it aggregates
people together from very different settings. When we break
it down by population density in Figure 8, a somewhat dif-
ferent account emerges; for short distances the probability
is higher in lower density areas as you are more likely to be
friends with a person a few miles away if you live in a less
dense area. Interestingly, as the distance increases, the three
curves converge. At about 50 miles, we see that the proba-
bility of knowing someone is no longer dependent on density.
In fact, as we go further away, the order inverts, with peo-
ple in high density areas being more likely to be friends with
people at greater distances. This supports the intuition that
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Figure 7: Probability of friendship as a function of
distance. By computing the number of pairs of indi-
viduals at varying distances, along with the number
of friends at those distances, we are able to compute
the probability of two people at distance d knowing
each other. We see here that it is a reasonably good
fit to a power-law with exponent near −1.

people living in metropolitan areas are more cosmopolitan;
their ties to distant places are more likely, probably arising
from increased movement between cities and greater capac-
ity to travel.

An alternative to observing friendship probability as a
function of distance is to look instead as a function of rank.
As described in Liben-Nowell et al., we define rank as the
number of people who live closer than a user. For user u,
we rank users by distance from u. For user v, the number
of people living in the area between u and v is defined by
ranku(v) := |{w : d(u,w) < d(u, v)}|. The hope here is that
despite the differences in population density, the probabil-
ity of being friends with someone at a given rank should be
independent of where you live.

Figure 9 shows friendship probability as a function of rank.
Here we do see a nice smooth curve, again with an exponent
of close to −1 (as previously observed). Even though using
rank should mitigate the effect of density on our probability
calculation, it does not control for the behaviors of users in
different areas. Figure 10 shows the probability of friendship
as a function of rank, this time broken down by our three
density groups. Though the curves do overlap somewhat
more when we calculate things this way (all with exponent
about −1), we still see similar effects. The probability is
higher at low ranks for people in less dense areas, and higher
at high ranks for people in more dense areas (cosmopolitan
effect). This reinforces the notion that people who live in
urban areas tend to have more dispersed friends.

4. PREDICTING LOCATION
A practical application of the observations made thus far is

that they allow us to predict the locations of people who have
not provided this information. If we can accurately predict
an individual’s location, we can improve services for them
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that if you live in a high density region (a city), you
are less likely to know a nearby individual, since
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likely to have contact with someone far away.

in a number of ways. The most obvious application is that
we can provide them with better local content. Providing a
more local, personalized experience is likely to make a site
more useful for users. We can also use a person’s location to
help prevent security breaches – if an individual accesses the
site from a location far from home (where the individual’s
current location is approximated via IP geolocation), and
they have never been there before, we might ask them an
additional security question to ensure that their account has
not been compromised. Thus, our goal here is, given the
locations of a user’s contacts, to compute that user’s home
location.

In the simplest case, all of one’s friends would live in a
small region, and then the prediction task would be very
simple, with any reasonable algorithm returning a good ap-
proximation. Things get more complicated and difficult as
one’s friends become more spread out. The distributions
from the previous sections tell us that one will typically not
have too many friends at great distances, but that there will
be too many for naive algorithms to work well.

For instance, a first attempt would be to take the mean
location of one’s friends. However, this will give laughably
bad results for people living on either coast. An individual
with 10 friends in San Francisco and one friend in New York
will be placed an eleventh of the way from San Francisco to
New York, somewhere in Nevada. Other simple statistics,
like median (whatever that would mean in two dimensions)
do better, but still fail, especially for people living on the
coasts.

To achieve better performance, we must develop a more
sophisticated model using the observations from the pro-
ceeding sections. Figure 7 shows the probability of an edge
being present as a function of distance, which suggests a
maximum likelihood approach. We consider an individual u
with k friends. Using the distribution from Figure 7, we can
computed the likelihood of a given location lu = (lat, long).
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Here we show the probability of friendship as a func-
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For each friend v of u whose location lv is known, we can
compute the probability of the edge being present given the
distance between u and v, p(|lu − lv|) = 0.0019(|lu − lv| +
0.196)−1.05, as empirically determined.

Multiplying these probabilities together for all such v, we
obtain a likelihood for all the edges. To complete the cal-
culation, we must also multiply the probabilities of all the
other edges not being present: 1− p(|lu − lv|) for all v such
that v /∈ E. Because all of the probabilities are very small for
any particular edge, this term serves mostly as a tiebreaker
and typically plays a small role. Thus, we can write down
the likelihood of a particular location lu as

Y
(u,v)∈E

p(|lu − lv|)
Y

(u,v)/∈E

1− p(|lu − lv|)

This model gives us a way to evaluate any point lu. From
a practical point of view, however, the algorithm as stated
is very expensive. In a naive implementation, to find the
best location for one individual, we would have to compute
the probability terms for every other user, at an expense
of O(N) per location evaluated. Finding the best location
would require an additional search, making this impractical
in a large graph.

With two optimizations, however, we can develop an ef-
ficient algorithm which computes the (near) optimal loca-
tions for all individuals in O(M logN) assuming that the
maximum degree in the graph is O(logN) (where M is the
number of edges and N is the number of users).

The first important observation is that, for any location,
the second part of the product, containing 1 − p(·), is very
nearly independent of u. Thus, we can precompute a con-
stant γl =

Q
v∈V 1− p(|lu − lv|) for each location l. We can

then rewrite the above formula as:

γlu =
Y

(u,v)∈E

p(|lu − lv|)
1− p(|lu − lv|)

The other important optimization comes from the form
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of the function p(·). This function is very sharply peaked
at p(0), and as a result the most likely location is typically
colocated with one of u’s friends.

In fact, if we ignore the γ term, we can prove that u would
be colocated with a friend v if people lived in one dimension
instead of two.

For a contradiction, imagine that lu 6= lv for any friend
of u. Then, the probability function in one dimension for
a location x is P (x) =

Q
(u,v)∈E(|x − xv| + b)−c, for some

positive constants b and c, where v is located at xv. This
function will have minima and maxima at the same locations
if we log-transform it to get the more manageable equationP

(u,v)∈E −c log(|x−xv|+ b). We can split this up in to two
terms, those where x > xv and those where x < xv, yieldingX
(u,v)∈E|xv<x

log(x− xv + b) +
X

(u,v)∈E|xv>x

log(xv − x+ b)

When we take the second derivative and collect terms,
we end up with

P
(u,v)∈E c(x − xv + b)−2, which is always

positive. Thus, there are can be no interior maxima, and
the likelihood function is thus maximized at some xv, where
the derivative is undefined.

While this is not the case in two dimensions, and cases
can be constructed where the maxima is not colocated with
a friend, the one-dimensional analysis suggests that in many
cases the maxima will be colocated with a friend. When we
perform an exhaustive search of the two dimensional space,
we find that in practice, the likelihood is almost always max-
imized at the location of a friend. It takes a contrived ex-
ample to force the maxima somewhere other than a location
very near some friend.

This allows us to greatly prune the geographic search
space. Thus, to compute the most likely locations for a large
group of users, our algorithm performs two steps. First, it
precomputes γ for all locations (where all locations is a fine
mesh of locations in the US). This is an expensive operation,
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figure compares external predictions from an IP
geolocation service, the same service constrained
to users who have recently updated their address,
a baseline of randomly choosing the location of a
friend, along with three predictions: our algorithm
with all links, for users with 16+ friends, and finally
for users with 16+ friends constraining to only those
with whom they have communicated recently.

but can be easily parallelized and must only be run once.
Next, to make a prediction for an individual u, we evaluate
the likelihood of all the locations of the friends of u, pick-
ing the best one. Thus, if u has k friends, the algorithm
takes O(k2) to compute p(·) for all k friends from k loca-
tions. Since k is typically small, on the order of dozens, this
is fast, and can also be easily parallelized. As a final note,
it is important to do all the calculations adding logarithms
instead of multiplying probabilities to avoid underflow.

4.1 Performance Methodology
To compute the performance of our algorithms, we take

the provided address of the 2.9 millions users for whom we
can obtain precise location as the ground truth. Naturally,
some of these addresses are incorrect or out of date, but
we believe that the vast majority of them are accurate. To
quantify this, we find that 57.2% of users have IP addresses
that geolocate to within 25 miles of their provided address.
We compare this to those users who have updated their lo-
cation within the last 90 days. If a significant fraction of
the users had moved since last updating their addresses, we
would expect IP geolocation to do significantly better on the
users who had updated their address in the last 90 days, as
the new addresses would be much more likely to be accurate.
However, we find that the fraction correctly placed within
25 miles only increases to 58.5%.

4.2 Leave-One-Out Evaluation
Figure 11 shows the performance of the maximum likeli-

hood algorithm. To evaluate the algorithm, we predict the
location of all 2.9 million users whose location is known,
and who have at least one friend whose location is also
known. For each user, we make our prediction based on the
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Figure 12: When we are predicting the locations
of many individuals at once, we can perform better
by using the information contained in the links be-
tween the individuals whose locations we are trying
to predict. On the first pass, we make our prediction
based only on the known addresses. On subsequent
passes, we use the predicted locations as part of the
input, improving performance.

user’s friends and then compare it to the location they pro-
vide. The figure shows, for instance, that we guess within 25
miles for 67.5% of the users with 16 or more located friends
(the value 16 was chosen arbitrarily to illustrate that we do
best with a moderate number of located friends). This com-
pares favorably to other methods; in particular it does better
than IP-based geolocation (57.2%), and performs much bet-
ter than a baseline algorithm that picks a friend at random
and colocates users to that location (46.3%). When com-
paring to the entire 2.9 million users, IP geolocation places
a higher percentage of people within intermediate distances.
For instance, IP geolocation is within 50 miles 68.4% of the
time, while our algorithm only places 67.6% correctly. Most
of this advantage comes from low-degree individuals, and
when we look only at those with 16 or more friends, we do
better than IP-based methods at all distances.

Overall, friend-based geolocation seems to be better than
IP-based geolocation, so long as an individual has a sufficient
number of friends. To improve performance further, we can
use additional sources of information. The yellow line in
Figure 11 creates a single extra edge between individuals
who have communicated or viewed each other’s profiles in
the last 90 days. This places extra weight on some edges
while creating a few others that are not explicitly present
in the friendship graph. This gives us a performance boost
from 67.5% to 69.1% (at 25 miles) on individuals with 16 or
more (explicit) friendships.

Another approach is to use the probability versus rank
function to make our predictions instead of the probability
versus distance function. This approach is more computa-
tionally expensive because computing rank requires knowing
how many people are closer and further than a given friend.
However, rank can be approximating by sampling. Unfor-
tunately, this approach seems to give no increase in perfor-
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Figure 13: Prediction performance as a function of
friend count. As friend count increases, more infor-
mation allows for better geolocation

mance when compared to the methods described above.

4.3 Leave-Many-Out Evaluation
Another evaluation method, and one which is more similar

to the envisioned use cases, is to attempt to recover the
locations of many individuals simultaneously. To do this,
we remove the addresses from 75% of the individuals who
have provided this information. We then attempt to recover
the locations of all users who still have at least one friend
remaining in the set with known addresses. In doing things
this way, we are attempting to predict the addresses of 1.6
million users based on the addresses of 700,000 other users.

A first attempt at this is to simply run the algorithm from
the proceeding section 700,000 times. However, this omits
all of the information in the edges between the 1.6 million
users for whom we are trying to locate. The performance
curve shown in Figure 12 is much worse, as users now have
only about one quarter as many geolocated friends for the
prediction to be based on. Predicting in this way correctly
places only 51.3% of users within 25 miles of their provided
locations.

Ideally, we would place all of the individuals in such a
way that we optimize the global likelihood, including the
edges between two users of unknown location, and the edges
between an unknown location and a known location. Un-
fortunately, we do not know how to do this in an efficient
way.

However, that does not mean that we should throw away
the information in the unknown to unknown edges. Instead,
we can run our prediction algorithm iteratively, using the
newly guessed locations as input as well as the locations
provided by users.

Figure 12 shows the performance of this iterative approach.
The second iteration is significantly better that the first
(56.5% vs. 51.3% at 25 miles), and the third is slightly bet-
ter than the second (57.4% vs. 56.5% at 25 miles). Beyond
that, there is little improvement.

4.4 Combining friend and IP predictions
As a final evaluation, we would like to integrate all of our

information sources to produce the best prediction possible
for a given user. Figure 13 shows the median prediction er-
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Figure 14: The accuracy of friend-based geolocation
depends somewhat on how many located friends an
individual has. By using IP-based geolocation for
those with few friends, and friend-based geoloca-
tion for those with many friends, we can do better
than either approach individually. Here we show
the curves for just friend-based, just IP-based, and
using friend-based for those with 2+, 5+, or 10+
friends while using IP for the rest.

ror as a function of the number of geolocated friends. As one
would expect, with more information from more friends, we
are better able to predict the correct location of an individ-
ual.

This also suggests a way to improve our prediction perfor-
mance. We expect that the quality of IP-based geolocation
is independent of the number of friends a person has. Also,
we know that friend-based geolocation works best on people
with more friends. Thus, a simple way to combine these
two predictions is to use IP-based geolocation on individu-
als with just a few friends, and use the friend-based geolo-
cation on individuals with more friends. Figure 14 shows
the performance as we vary the threshold. As the thresh-
old increases, and more people are predicted based on IP,
the fraction located within just a few miles drops, but the
fraction located correctly within 100 miles increases.

Based on these results, it seems that a good tradeoff is
to predict from friend locations when an individual has 5 or
more locatable friends, and from the user’s IP address if she
has fewer than 5 friends with known addresses. Doing this
causes the performance at 100 miles to slightly exceed the
IP performance, and it is almost as good as strictly friend-
based prediction at smaller distances.

5. CONCLUSIONS
Our examination of user-contributed address and associ-

ation data from Facebook shows that the addition of social
information to the task of predicting physical location pro-
duces measurable improvement in accuracy when compared
to standard IP-based methods.

In this paper, we first analyze friendship as a function
of distance and rank and generate several observations re-

garding the interplay of geography and friendship. We find
that at medium to long-range distances, the probability of
friendship is roughly proportional to the inverse of distance.
However, at shorter ranges, distance does not play as large
of a role in the likelihood of friendship. We also look at
friendship probability as a function of rank (where rank is
the number of people who live closer than a friend ranked by
distance), and note that in general, people who live in cities
tend to have friends that are more scattered throughout the
country.

We then present an algorithm to predict the physical lo-
cation of a user, given the known location of her friends.
We find that using a maximum likelihood approach with
the simplifying assumption that the user will be either colo-
cated or in close proximity to one of her friends, we are able
to guess the physical location of 69.1% of the users with
16 or more located friends to within 25 miles, compared to
only 57.2% using IP-based methods. We then investigate
how even more social data may further improve geolocation
results, using data on how often users interact with each
other and see each other’s content. Using this data gener-
ates slight improvement in geolocation, which implies that
users who are physically close to each other may tend to
interact more often on Facebook.

We also embark on a more ambitious effort to predict
the location of many individuals at once. Iterating our
maximum-likelihood algorithm provides significant improve-
ment in the accuracy of our predictions.

Having more accurate data of a user’s physical location
would improve efforts to predict new friendships and associ-
ations (which in turn improves the friend suggestion tool).
However, there are many other applications as well. For
example, algorithms to detect adversarial account takeovers
would be improved with better location data of a particular
user and her friends. Socially predicted locations could also
be used to calibrate and verify other geolocation data, such
as latitude/longitude information contained in EXIF meta-
data from photos. We could even use these methods in an
attempt to improve the IP to location conversion process.

Iteration of our algorithms would allow us to derive loca-
tion predictions for the majority of users who have not yet
provided address information. This has clear applications
for the provision of location-based services.

Future work may further improve precision in our quest to
obtain the best possible location prediction for a particular
user. In addition to using edge data from the social graph,
we may supplement our data using social events as a proxy
to coincident location. For example, we can infer closeness
between two individuals if we observe a photo tagged with
both users, colocating them at a point in time. Events at-
tended by two or more individuals may also provide useful
data, especially if an address is provided for the event. It
may also be beneficial to attach timestamps to all of our data
sources and weight these signals appropriately when predict-
ing a user’s current location. We expect, for instance, that
newly formed relationships should have more weight than
old ones, as new relationships are more likely to be formed
at one’s current address, whereas an older relationship could
be, for instance, an old friend from high school.

Finally, while location lookup based on IP-address is quite
well-developed in the US, the accuracy is much worse in
some countries. Though we only evaluated our methods on
US users, we expect that these results will be internation-



ally applicable and will allow us to improve our location
estimates in countries where IP-address often tells no more
than the name of the country.
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