
Development and Evaluation of Methods for Predicting

Protein Levels from Tandem Mass Spectrometry Data

by

Han Liu

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2005 by Han Liu



Abstract

Development and Evaluation of Methods for Predicting Protein Levels from Tandem

Mass Spectrometry Data

Han Liu

Master of Science

Graduate Department of Computer Science

University of Toronto

2005

This work addresses a central problem of Proteomics: estimating the amounts of

each of the thousands of proteins in a cell culture or tissue sample. Although laboratory

methods involving isotopes have been developed for this problem, we seek a simpler

approach, one that uses more-straightforward laboratory procedures. Specifically, our

aim is to use data-mining techniques to infer protein levels from the relatively cheap and

abundant data available from high-throughput tandem mass spectrometry (MS/MS).

In this thesis, we develop and evaluate several techniques for tackling this problem.

Specifically, we develop and evaluate different statistical models of MS/MS data. In

addition, to evaluate their biological relevance, we test each method on three real-world

datasets generated by MS/MS experiments performed on various tissue samples taken

from Mouse.

ii



Acknowledgements

I would like to express my sincere thanks to my supervisor, professor Anthony Bonner.

I feel so honor to have the chance to work with him, he brought me into the fantastic

fields of statistical data mining and computational biology. All the works appeared in

this thesis are the results from his insight about problems and the remarkable knowledge

in algebra and statistics. I also respect his insistence on the preciseness and the rigor

about research works as well as scientific writings. I believe that I will benefit from his

dedicated supervision greatly in the future academic career.

I should also thank professor Rafal Kustra, the second reader of this thesis, for his

time and effort on reviewing this thesis. I want to thank professor Andrew Emily at

Banting and Best department of medical research for collaboration with us.

Finally, I would like to dedicate this thesis to my parents, without their selfless sup-

port, it is impossible for me to finish this thesis.

iii



Contents

1 Introduction 1

2 Peptide Tandem Mass Spectrometry 5

2.1 Biological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Real-World Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Distribution of the MS/MS Data . . . . . . . . . . . . . . . . . . . . . . 9

3 Discriminant Analysis 12

3.1 Why Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Discrimination Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Quadratic Discriminant Analysis . . . . . . . . . . . . . . . . . . 18

3.2.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.5 K-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.6 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 ROC Curves and Evaluation . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Classification Error Rate . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Conclusions of Discriminant Analysis . . . . . . . . . . . . . . . . . . . . 31

iv



4 Regression Analysis 33

4.1 Modeling the MS/MS Data . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Modelling Ionization Efficiency . . . . . . . . . . . . . . . . . . . 35

4.1.2 Instantiating the Model . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Fitting the Models to Data . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Inverse Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Exponential Models . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Simulated Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Experiments on Simulated Data . . . . . . . . . . . . . . . . . . . 55

4.4.2 Experiments on Real-World Data . . . . . . . . . . . . . . . . . . 58

4.4.3 Visualization of the Goodness of Fit . . . . . . . . . . . . . . . . 66

4.5 Conclusions of Regression Analysis . . . . . . . . . . . . . . . . . . . . . 67

5 Canonical Correlation Analysis 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Canonical Correlation Analysis (CCA) . . . . . . . . . . . . . . . . . . . 78

5.2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 Applying CCA in Mining MS/MS data . . . . . . . . . . . . . . . 80

5.2.3 The Relationship between CCA and LIN3 . . . . . . . . . . . . . 83

5.3 Generalization and Regularization Issues . . . . . . . . . . . . . . . . . . 86

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Experimental Results on the simulated Data . . . . . . . . . . . . 88

5.4.2 Experimental Results on Real-world Datasets . . . . . . . . . . . 91

5.5 Conclusion of Canonical Correlation Analysis . . . . . . . . . . . . . . . 97

v



6 Conclusions 100

Appendix 100

Bibliography 101

vi



Chapter 1

Introduction

Proteomics is the large-scale study of the thousands of proteins in a cell [32]. In a typical

Proteomics experiment, the goal might be to compare the proteins present in a certain

tissue under different conditions. For instance, a biologist might want to study cancer

by comparing the proteins in a cancerous liver to the proteins in a healthy liver. Modern

mass spectrometry makes this possible by enabling the identification of thousands of

proteins in a complex mixture [46, 15]. However, identifying proteins is only part of

the story. It is also important to quantify them, that is, to estimate how much of each

protein is present in a cell [1, 22]. To this end, a number of laboratory methods have

been developed, notably those based on mass tagging with isotopes [23, 39]. However,

simpler, more-direct methods may be possible, methods that do not require additional

laboratory procedures, but which are simply based on the data provided by tandem mass

spectrometers [33]. This paper is an initial exploration of this possibility. In particular,

we investigate the use of data-mining techniques to infer protein quantity from tandem

mass spectrometry data.

Tandem mass spectrometry (MS/MS) of peptides is a central technology of Pro-

teomics, enabling the identification of thousands of peptides and proteins from a complex

mixture [41, 35, 1]. In a typical experiment, thousands of proteins from a tissue sample

1



Chapter 1. Introduction 2

are fragmented into tens of thousands of peptides, which are then fractionated, ionized

and passed through a tandem mass spectrometer. The result is a collection of spectra,

one for each protein, where each peak in a spectrum represents the spectral count of a

single peptide [30, 43]. With the increasing acquisition rate of tandem mass spectrome-

ters, there is an increasing potential to solve important biological problems by applying

data-mining and machine-learning techniques to MS/MS data [21, 15]. These problems

include (i) estimating the levels of the thousands of proteins in a tissue sample, (ii) pre-

dicting the spectral counts of the peptides in a mass spectrum [21], and (iii) explaining

why different peptides from the same protein have different spectral counts [15]. In this

work, we divide these problems into two categories, problems (i) and (ii) belong to the

first category, which is trying to quantitatively predicate the spectral counts and protein

levels; while problem (iii) belongs to the other category, which is trying to explain the

underlying principles of the mass spectrometry data.

In this work, for the second categorical problems, as a first step in explaining why

different peptides produce spectral counts of different levels, we reduce the problem to

its simplest terms: explaining why some peptides produce higher spectral counts, while

others produce lower spectral counts. Moreover, we treat this as a classification problem.

That is, given the amino-acid sequence of a peptide, we attempt to classify the peptide

as either high-spectral count or low-spectral count. If we can do this reliably, then we

have effectively discovered what it is about the amino-acid sequence of a peptide that

determines whether it produces high- or low-spectral counts. This is especially true if the

parameters of the classifier can be interpreted biologically. To tackle this classification

problem, we evaluates and compares a variety of classification methods on MS/MS data.

Conducting the evaluation involves three main steps: producing a set of labeled data,

training a number of different classifiers on a portion of the data (the “training data”),

and evaluating the effectiveness of the classifiers on the remaining data (the “testing

data”).



Chapter 1. Introduction 3

For the problems in the first category, we develop and test a number of regression

methods for tackling these problems, including methods based on linear and exponential

models with various optimization criterion. These models all focus on the problem of

modeling the spectral counts in the mass spectrum of a protein. One important factor

is clearly the amount of protein input to the mass spectrometer (since more input im-

plies more output). However, other factors are important as well, such as the efficiency

with which various peptides are produced, fractionated and ionized. Our goal is to de-

termine how all these other factors are influenced by a peptide’s amino-acid sequence.

Once this is understood, it may be possible to predict the exact MS/MS spectrum of a

protein. More importantly, it may also be possible to solve the inverse problem: given

the MS/MS spectrum of a protein, estimate the amount of protein that was input to the

mass spectrometer. This is a fundamental problem whose solution would enable biolo-

gists to determine the levels of the thousands of proteins in a tissue sample [47]. Besides

the regression methods we developed, we also overview a classical technique developed

in multivariate statistics called Canonical Correlation Analysis (CCA) that can be used

to fit linear models to data in a more natural way. By proving an important technical

result: theorem 1, we show that our linear model LIN3 is a more robust and efficient

approximation of CCA.

As a first step in addressing these problems, we obtained a set of several thousand

MS/MS spectra.1 This data is the result of MS/MS experiments conducted on protein

mixtures taken from various tissue samples of Mouse [47]. These high-throughput exper-

iments provide a large amount of data on which to train and test data-mining methods.

However, they also introduce a complication, since the amount of protein input to the

mass spectrometer is unknown. Thus, it is in general unclear whether a high spectral

count is due to the properties of the peptide or to a large amount of protein at the input.

1courtesy of the Emili Laboratory at the Banting and Best Department of Medical Research at the
University of Toronto.



Chapter 1. Introduction 4

One of our challenges is to untangle these two influences. This distinguishes our work

from other research in which the amount of protein is known a priori [21]. In effect, we

must solve these two problems at once: the forward problem of estimating the spectrum

of a protein, and the inverse problem of estimating the amount of protein given its spec-

trum. To deal with this complication, we treat the amount of protein as a latent, or

hidden variable, whose value must be estimated. The data-mining methods presented in

this work were developed and used, in part, because of the ease and simplicity with which

this can be done. In addition, they lead to efficient algorithms based on well-developed

operators of linear algebra (specifically, matrix inversion and eigenvector decomposition).

The thesis is organized as follows. Chapter 2 provides biological background. Chap-

ter 3 outlines the discriminant analysis to the datasets. Chapter 4 introduces and eval-

uates our three models of MS/MS data. Chapter 5 outlines our methods for fitting

Canonical Correlation Analysis models to data. Finally, Chapter 6 summarizes the re-

sults and suggests possible extensions for future work.



Chapter 2

Peptide Tandem Mass Spectrometry

2.1 Biological Background

1Tandem mass spectrometry involves several phases in which proteins are broken up and

the pieces separated by mass [32, 46]. First, a complex mixture of thousands of unknown

proteins is extracted from a cell culture or tissue sample. Since proteins themselves are

too large to deal with, they are fragmented, producing a mixture of tens of thousands

of unknown peptides. The peptides are then ionized and passed through a mass spec-

trometer. This produces a mass spectrum in which each spectral peak corresponds to a

peptide. From this spectrum, individual peptides are selected for further analysis. Each

such peptide is further fragmented and passed through a second mass spectrometer, to

produce a so-called tandem mass spectrum. The result is a collection of tandem mass

spectra, each corresponding to a peptide. Each tandem mass spectrum acts as a kind

of fingerprint, identifying the peptide from which it came. By searching a database of

proteins, it is possible to identify the protein that produced the peptide that produced

the tandem mass spectrum. In this way, the proteins in the original tissue sample are

identified. Often, the entire process is completely automatic.

1This chapter has been published on [5]

5



Chapter 2. Peptide Tandem Mass Spectrometry 6

A peptide mixture is not analyzed all at once. Instead, to increase sensitivity, the

peptides are “smeared out” over time (often using liquid chromatography), so that differ-

ent kinds of peptides enter the mass spectrometer at different times. A typical MS/MS

experiment may last many hours, with proteins and peptides being identified each second.

Copies of a particular peptide may continue to enter the mass spectrometer for several

seconds or minutes. As the copies enter, the peptide will be repeatedly identified, once a

second. In this way, a peptide may be identified and re-identified many times, increasing

the confidence that the identification is correct [20]. Each identification of a peptide is

called a spectral count , since it requires the generation of a tandem mass spectrum. A

large spectral count indicates that a peptide has been confidently identified [41, 35, 1].

However, identifying proteins is only part of the story. It is also important to quantify

them, that is, to estimate how much of each protein is present in a cell. For this, we

should develop mathematical models which can model the peak intensities accurately.

The spectral count is influenced by the amount of protein in the input mixture. However,

the exact mechanism determining the whole process is poorly understood [21]. In an ideal

experiment, there would be no loss during digestion, fractionation and ionization. So,

in the MS/MS spectrum for a given protein, one would expect that each peak would

contain one peptide molecule for each protein molecule in the input. Consequently, an

ideal spectrum for a given protein would consist of equal spectral counts. However, this

is not observed experimentally. Figure 2.1 illustrates the differences between an ideal

MS/MS spectrum and an experimental one.

Numerous reports in the literature address the question of what factors affect the

quality of a MS/MS experiment [30] [43]. An obvious factor influencing spectral counts

is the concentration of the peptides in the sample. However, it is not the sole factor.

Other factors include sample preparation methods, the pH and composition of the solu-

tion containing the protein mixture [12] [43] [18] [8], the characteristics of the MS/MS

apparatus [29] [38] [37], and the characteristics of the tissue sample being analyzed [21].



Chapter 2. Peptide Tandem Mass Spectrometry 7

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

m/z

Theoretical Results

0 10 20 30 40 50
0

20

40

60

80

100

120

m/z

Sp
ect

ral~
Co

unt

Experimental Results

Figure 2.1: The upper panel is the theoretical MS/MS spectrum for the 47 peptides

fragmented from protein MAP2-MOUSE digested with trypsin. The lower panel is an

experimentally derived spectrum of the same protein.

These factors and others all affect the intensities of peaks in a MS/MS spectrum. Recent

research has shown that the spectral counts of peptides are linearly related to protein

abundance. In particular, as the relative abundance of a given protein is increased,

the total spectral count of its peptides increases in direct proportion [33]. In effect,

more input leads to proportionately more output. However, the relationship is not at

all straightforward, since two proteins with the same spectral counts may have different

abundances. Thus, despite the linear relationship, different proteins have different pro-

portionality constants. Moreover, at present, there is no mathematical models to predict



Chapter 2. Peptide Tandem Mass Spectrometry 8

what these constants are. That is, there is no complete quantitative theory relating a

protein’s abundance to its spectral count. Explaining why some peptides produce high

spectral counts and some produce low spectral counts is a first step towards developing

such a model, and is the goal of this work.

2.2 Real-World Datasets

To solve such kind of problems, the Emili Laboratory at the Banting and Best Department

of Medical Research at the University of Toronto has provided us with several thousand

MS/MS spectra. Table 2.1 shows a tiny sample of this data. (Details on how this data

was generated can be found in [47].) The first column in the table is the Swissprot

accession number identifying a protein. The second column is the amino-acid sequence

of a peptide fragmented from the protein. The third column correlates well with the

spectral counts produced by the peptide. (Its values are integers because it represents a

count of peptide molecules.) The last column represents the charge of the peptide ion,

which is typically 1, 2 or 3. Notice that there may be many entries for the same protein,

since a single protein can produce many peptides.

Table 2.1: A fragment of the original data file

Protein ID Peptide Sequence Spectral Count Charge

...
...

...
...

Q91VA7 TAAARHCCNNLV IIR 4 2

Q91VA7 KLDCCCLFACAV HV K 3 2
...

...
...

...

In fragmenting the proteins to produce peptides, the proteins were digested by the

enzyme trypsin, which cuts c-terminal to lysine (K) or arginine (R). Trypsin may oc-



Chapter 2. Peptide Tandem Mass Spectrometry 9

casionally cut at other locations, and other enzymes may nick the protein; hence, we

sometimes see partial tryptic peptides (a K or R at the c-terminus, or flanking the pep-

tide at the N-terminus).

The experimental results in this work are based on tables of real-world data similar

to Table 2.1. They consist of three datasets derived from tissue samples taken from

Mouse and were provided by the Emili Laboratory at the Banting and Best Department

of Medical Research at the University of Toronto. We refer to these data sets as Mouse

Brain Data, Mouse Heart Data, and Mouse Kidney Data. The Brain data set

contains 10,786 peptides, with peak intensities ranging from 1 to 2,500; the Heart data

set contains 9,623 peptides, with peak intensities from 1 to 1,996; and the Kidney data

set contains 8,791 peptides, with peak intensities from 1 to 1,491.

2.3 Distribution of the MS/MS Data

Histograms of the spectral counts for the three data sets are shown in Figure 2.2. These

show that the peak intensities are far from being uniformly or normally distributed.

Instead, spectral counts are heavily concentrated near the minimum value of 1, and

their frequency rapidly falls off as spectral count increases. For example, although the

maximum spectral count in the Kidney dataset is 1,491, the median value is only 2! That

is, half the peptides have spectral counts of only 1 or 2, while the remaining peptides

have values with spectral counts from 2 to 1,491. Thus, the data values range over

several orders of magnitude, with the bulk of the data concentrated at lower values. This

distribution is likely due to a number of factors, including the distribution of protein

levels in the tissue samples, and the distribution of ionization efficiencies among peptides.

Untangling these factors is one of the goals of this work.

A more accurate description of the distribution of spectral counts is provided by the

probability plots in Figure 2.3, which display values in sorted order. The two panels in



Chapter 2. Peptide Tandem Mass Spectrometry 10

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Peptide Spectral Count

n
u

m
b

e
r

histogram for the brain data

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Peptide Spectral Count

n
u

m
b

e
r

histogram for the heart data

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

Peptide Spectral Count

n
u

m
b

e
r

histogram for the kidney data

Figure 2.2: Histograms of peptide spectral counts. The upper left histogram is for the

Brain dataset, the upper right is for Heart, and the lower one is for Kidney.

Figure 2.3 show probability plots for the reciprocal of spectral count; that is, they are

probability plots of 1/y, where y is spectral count. The vertical axis is the value of 1/y,

and the horizontal axis is the rank of this value. The plot in the left panel includes all

observed spectral counts, while the plot in the right panel excludes lower level spectral

counts, that is, with an intensity below 10. The horizontal line segments that make up

the plots, especially at the upper end, are due to the discrete nature of the data (i.e.,

y is an integer). However, the trend in the right hand plot is clearly a diagonal line,

from the lower left corner of the plot to the upper right corner. This indicates that



Chapter 2. Peptide Tandem Mass Spectrometry 11

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
plot of 1/y v.s. rank(1/y) for all y for kidney dataset

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
plot of 1/y v.s. rank(1/y) for y ≥10 for kidney dataset

Figure 2.3: Probability plots of 1/y for the Kidney dataset, where y is spectral count.

The left plot includes all observed values of y, while the right plot excludes values of y

less than 10.

the cumulative distribution function of 1/y is a diagonal line, which means that 1/y is

uniformly distributed, which in turn means that y has an O(1/y2) distribution [44]. The

left hand plot is the same except that it curves up for large values of 1/y, that is, for low

peak intensities. Thus, while the probability density of 1/y is flat for y ≥ 10, it decreases

for y < 10. This in turn means that, while the distribution of peak intensities is O(1/y2)

for y ≥ 10, it is less than this for y < 10. Similar results hold for all three data sets,

Kidney, Brain and Heart.



Chapter 3

Discriminant Analysis

3.1 Why Discriminant Analysis

1In this chapter, we focus on the problem of explaining why different peptides have dif-

ferent spectral counts. One important factor is clearly the amount of protein input to the

mass spectrometer (since more input implies more output). However, other factors are

important as well, such as the efficiency with which various peptides are produced, frac-

tionated and ionized. Our goal is to determine how all these other factors are influenced

by a peptide’s amino-acid sequence. Once these influences are understood, it may be

possible to predict the exact MS/MS spectrum of a protein, including the values of all its

spectral counts. More importantly, it may also be possible to solve the inverse problem:

given the MS/MS spectrum of a protein, estimate the amount of protein that was input

to the mass spectrometer. This is a fundamental problem whose solution would enable

biologists to determine the levels of the thousands of proteins in a tissue sample [7].

As a first step in explaining why different peptides produce spectral counts of different

values, we reduce the problem to its simplest terms: explaining why some peptides

produce peaks of higher spectral counts, while others produce lower spectral counts.

1This chapter has previously been published in [4]

12



Chapter 3. Discriminant Analysis 13

Moreover, we treat this as a classification problem. That is, given the amino-acid sequence

of a peptide, we attempt to classify the peptide as either high spectral counts or low

spectral counts. If we can do this reliably, then we have effectively figured out what it is

about the amino-acid sequence of a peptide that determines whether it produces high-

or low-spectral counts. This is especially true if the parameters of the classifier can be

interpreted biologically. To tackle this classification problem, this chapter evaluates and

compares a variety of classification methods on MS/MS data. Conducting the evaluation

involves three main steps: producing a set of labeled data, training a number of different

classifiers on a portion of the data (the “training data”), and evaluating the effectiveness

of the classifiers on the remaining data (the “testing data”).

To produce a labeled set of data, we first obtained a set of several thousand MS/MS

spectra.2 From these spectra, we produced two classes of peptides, those with high

spectral counts, and those with low spectral counts. One complication is that in the

high-throughput MS/MS experiments from which the data was derived, the amount of

protein input to the mass spectrometer is unknown. Thus, it is in general unclear whether

a high spectral count is due to the properties of the peptide (which we are interested in) or

simply due to a large amount of protein at the input (which we are not interested in). We

resolved this problem by focusing on the spectra one protein at a time. In the spectrum

of a single protein, all the spectral counts are derived from the same (unknown) amount

of protein, so differences in spectral counts are not due to differences in protein input.

In this way, by picking the highest and lowest peaks in each spectrum, we produced two

classes of peptides, one class labeled “high spectral counts” and the other labeled “low

spectral counts”.

Since this is an initial study, we chose a number of basic classification methods which

are extensively used in the data-mining literature: K-Nearest Neighbours (KNN), Lo-

2Courtesy of the Emili Laboratory at the Banting and Best Department of Medical Research at the
University of Toronto



Chapter 3. Discriminant Analysis 14

gistic Regression, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis

(QDA), Naive Bayes, and Hidden Markov Models (HMMs). Most of these methods have

also been used in the context of microarray data to distinguish various cancer types [14].

To evaluate the methods for our application, we first trained them on two thirds of the

labeled data, and then evaluated them on the remaining one third. To compare the

methods, we produced both ROC curves and a table of classification error rates. In

general, classification error rates depend on the size of the labeled classes, and can be

deceptively low when the classes have very different sizes (as ours do, since most peptide

peaks are low-intensity, not high-intensity). To compensate for this, we used the ROC

data to estimate classification error rates for classes of equal size. In addition, the ROC

curves themselves are insensitive to differences in class size. In this way, we can compare

the performance of the classifiers on various data sets without having to worry about

variations in class size. The ROC curves also allow us to conveniently compare classifiers

for many different values of a discriminant threshold parameter.

Finally, it is worth noting that of the six classification methods we chose to evaluate,

three are designed for classifying vectors (LDA, QDA and Logistic Regression), two are

most-easily applied to vectors (KNN and Naive Bayes), while only the last (HMM) is

specifically designed for classifying sequences. HMMs can therefore be applied directly

to the amino-acid sequences of peptides (which is why we chose them). To apply the

other five methods, we first converted the peptide sequences to feature vectors. Since

there is a certain loss of information in this conversion, one might expect HMMs to

perform the best, especially since they have achieved considerable success in other areas

of sequence classification, such as speech recognition [42] and DNA sequence analysis [40].

Surprisingly, we found that for our peptide-classification problem, HMMs performed the

worst. We discuss reasons for this in Section 3.4.

This chapter is organized as follows: Section 3.2 reviews the six classification methods

we evaluate; Section 3.3 describes our data and our experimental design; Section 3.4



Chapter 3. Discriminant Analysis 15

presents and discusses our experimental results; and Section 3.5 presents conclusions.

3.2 Discrimination Methods

Each spectral count in a mass spectrum is due to a particular peptide. The goal of

this chapter is to explain why some peptides produce high spectral counts, while others

produce low spectral counts. Specifically, we seek a method that, given the amino-acid

sequence of a peptide, can classify the peptide as low spectral count or high spectral

count. To this end, we trained and tested a variety of well-known classification methods

on MS/MS data. Each of the methods can be used to assign objects to one of several

classes, though we use them in a strictly binary mode, to assign peptides to one of two

classes, which we refer to simply as Class 1 and Class 2, respectively. In our application,

Class 1 is the set of peptides that produce high spectral counts, and Class 2 is the set

of peptides that produce low spectral counts. How the peptides are represented depends

on the classification method used. For one of the methods (Hidden Markov Models),

each peptide is represented by its amino-acid sequence. For the remaining methods, each

peptide is represented by a vector, x, of features extracted from the sequence. How these

features are extracted is described in Section 3.3. The rest of this section outlines all the

methods used in our study.

Although the methods differ greatly, they all produce classifiers that are discrimina-

tive [36, 34, 45]. That is, given an object, the classifier produces a score or likelihood,

p1, that the object belongs to Class 1, as well as a score, p2, that the object belongs

to Class 2. A natural decision rule is to assign an object to Class 1 if p1 > p2, and

to Class 2 otherwise. More generally, the error rates can be adjusted by introducing a

decision threshold, t, so that an object is assigned to Class 1 if and only if p1/p2 > t.

Of course, this decision rule is equivalent to f(p1/p2) > t, where f is any monoton-

ically increasing function. Often, f is the logarithmic function, in which case the rule



Chapter 3. Discriminant Analysis 16

becomes l1 − l2 > t, where lk = log pk.

3.2.1 Naive Bayes

At an abstract level, most of the methods considered in this chapter use the same method

to classify an object, x. First, Bayes Rule is used to compute pk(x), the posterior

probability that x belongs to class k:

pk(x) =
πkfk(x)∑
j πjfj(x)

Here, πk is the prior probability that x belongs to class k, and fk(x) is the conditional

probability of x assuming class k. Typically, πk is estimated as the proportion of data

points in class k. Once the posterior probabilities are estimated, they are used in a

likelihood ratio test to assign x to a class. In our application, for which K = 2, x is

assigned to Class 1 if and only if p1(x)/p2(x) > t, where t is a decision threshold.

The various classification methods differ primarily in their assumptions about the

prior probabilities, fk(x). In the Naive Bayes classifier, it is assumed (simplistically)

that the features of the vector x can be treated as independent random variables, so that

fk can be factored into a product of distributions, one for each component of x. Thus,

if x = (x1, ..., xn), then

fk(x) =
∏

i

fki(xi)

where fki(xi) is the (marginal) probability of xi for class k. Despite this simplistic

assumption, Naive Bayes classifiers often perform surprisingly well [24].

Originally, univariate Gaussians were used to estimate fki, though kernel density

estimates are now common [24]. In our application, the components of the feature vector,

x, are discrete (as we shall see), and the most common values are 0 and 1, so we use

binary distributions to estimate fki.



Chapter 3. Discriminant Analysis 17

3.2.2 Linear Discriminant Analysis

In Linear Discriminant Analysis (LDA), each class is modelled by a multivariate Gaussian

distribution, where each class is assumed to have the same covariance matrix. This

assumption reduces the number of parameters that need to be estimated and also leads

to a simple decision rule. In fitting the Gaussian distributions to the data, LDA produces

maximum likelihood estimates for several parameters: πk, the prior probability of class

k; µk, the mean of class k; and Σ, the common covariance matrix. These estimates are

given by the following formulas:

• π̂k = Nk/N

• µ̂k =
∑

i xik/Nk

• Σ̂ =
∑

k

∑
i(xik − µ̂k)(xik − µ̂k)

T /(N −K)

Here, K is the number of classes (K = 2 in our application), Nk is the number of

feature vectors in the training data for class k, N is the total amount of training data

(so N = N1 + · · ·+ NK), and xik is the ith feature vector in the training data for class

k. If the feature space has dimension n, then LDA must estimate n parameters for each

mean, and O(n2) parameters for the common covariance matrix, for a total of O(Kn+n2)

parameters.

To classify a new vector, x, LDA uses these parameter estimates and Bayes rule to

compute pk(x), the posterior probability that x belongs to class k. It then performs a

likelihood ratio test. In our application, for which K = 2, the test is p1(x)/p2(x) > t,

where t is a decision threshold. Because the class distributions are Gaussian and the

covariance matrices are equal, it is not hard to show that

log[p1(x)/p2(x)] = x •w + b

where • denotes the dot product (or inner product) of two vectors, w = Σ̂−1(µ̂1 − µ̂2),

and b is a constant, independent of x [24]. Thus, the likelihood ratio test reduces to a



Chapter 3. Discriminant Analysis 18

particularly simple form: x •w > t. The decision boundary between the two classes

is therefore linear, and more specifically, it is a hyperplane normal to w. It is interesting

to note that changing the decision threshold, t, is equivalent to moving the hyperplane.

Since w does not change, the orientation of the hyperplane remains constant while it

moves in the direction of w.

3.2.3 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is a generalization of LDA. Like LDA, QDA

models each class by a multivariate Gaussian distribution. However, it does not assume

that each class has the same covariance matrix. In fitting the Gaussian distributions

to the data, QDA produces the same maximum likelihood estimates for πk, the prior

probability of class k, and for µk, the mean of class k. However, it produces the following

estimate for Σk, the covariance matrix of class k:

• Σ̂k =
∑

i(xik − µ̂k)(xik − µ̂k)
T /(Nk − 1)

In this case, it is not hard to show that

log[p1(x)/p2(x)] = xTWx + x •w + b

where W = (Σ̂−1
2 − Σ̂−1

1 )/2, w = Σ̂−1
1 µ̂1 − Σ̂−1

2 µ̂2, and b is a constant, independent of

x [13]. The likelihood ratio test thus becomes xTWx + x •w > t, where t is a decision

threshold. The decision boundary between the two classes is therefore quadratic, and can

in general be a hypersphere, a hyperellipsoid, a hyperparaboloid, a hyperhyperboloid, or

any combination thereof [13]. Note that if Σ̂1 = Σ̂2, then W = 0, in which case the

decision boundary is a hyperplane and the decision rule reduces to LDA.

If the feature space has dimension n, then QDA must estimate O(n2) parameters for

each covariance matrix, for a total of O(Kn2) parameters, v.s. O(n2) for LDA. QDA thus

admits a much wider range of decision surfaces than LDA, but at the cost of estimating

K times as many parameters.



Chapter 3. Discriminant Analysis 19

3.2.4 Logistic Regression

Like QDA, Logistic Regression can be viewed as a generalization of LDA. However,

whereas QDA has more parameters than LDA, Logistic Regression has fewer. Like LDA,

Logistic Regression provides a linear decision boundary between classes. The main dif-

ference is that Logistic Regression is in a sense more direct. Instead of first fitting

multivariate Gaussians to each class (which requires estimating O(n2) parameters), Lo-

gistic Regression fits a linear decision directly to the data (which requires estimating

only n parameters). More specifically, it assumes that for each feature vector x, the log

likelihood ratio is given by the equation log[p1(x)/p2(x)] = x •w + b, for some vector

w and some constant b. This equation is known to hold for a wide range of class density

distributions. For instance, Section 3.2.2 showed that it holds for multivariate Gaussian

distributions with equal covariance matrices. It is also known to hold for gamma distribu-

tions, exponential distributions, binomial distributions, Poisson distributions, and more

generally, for any member of the general class of distributions known as the exponential

family [26]. In this sense, Logistic Regression is more general than LDA.

It also requires estimating fewer parameters than LDA, as noted above. However,

finding maximum likelihood estimates for the parameters of Logistic regression is more

complex, since there are no closed-form formulas for them. Instead a set of nonlinear

equations must be solved, using optimization techniques such as the Newton-Raphson

algorithm [24].

3.2.5 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is different from the other methods considered in this paper

in that it is non-parametric, so there are no parameters to estimate. Instead, the training

data itself is used as a sample estimate of the underlying distributions of the two classes.

The classification method is simple. Given an object, x, to be classified, find the K objects



Chapter 3. Discriminant Analysis 20

(or neighbors) in the training data that are closest to it. If most of these neighbors belong

to Class 1, then x is assigned to Class 1; otherwise, it is assigned to Class 2. When K = 1,

this method is called “Nearest Neighbor,” or 1NN. In this case, x is assigned to the same

class as the data point that is closest to it. One can view KNN as a voting system,

in which some neighbors vote for Class 1 and others vote for Class 2. In its simplest

incarnation, a simple majority vote is used, but this is not necessary. For example, one

might require a super-majority vote in which x is assigned to Class 1 if and only if 2/3 of

its neighbors are in Class 1. More generally, x can be assigned to Class 1 if K1/K2 > t,

for some t. Here, K1 is the number of K-nearest neighbors in Class 1, and K2 is the

number in Class 2 (so K1 + K2 = K). Note that this is a discriminative classifier, where

K1 is interpreted as the likelihood that x is in Class 1, K2 as the likelihood it is in Class

2, and t is the decision threshold.

In using KNN, one must choose a value for K. If there is no reason to prefer any

particular value a priori , then one can train classifiers using several values of K, and

choose the value that minimizes the testing error. That is the approach taken in this

paper. One must also choose a measure of “distance” (or similarity) between two objects.

If the objects are vectors, then several choices naturally suggest themselves, including

Euclidean distance, correlation coefficient, and the angle between the vectors. This paper

uses Euclidean distance.

3.2.6 Hidden Markov Models

Hidden Markov Models are the only method used in this chapter specifically designed to

deal with sequences. A Markov Model (MM) can be thought of as a finite automaton

with a probabilistic interpretation.3 That is, it consists of a set of states and transitions

between them; however, unlike ordinary automata, each transition in a MM has a prob-

ability associated with it. The result is that whereas an ordinary automata defines a set

3Strictly speaking, these are so-called first-order Markov Models.



Chapter 3. Discriminant Analysis 21

of sequences, a Markov Model defines a distribution of sequences, since each sequence

has a certain probability of being generated. A Hidden Markov Model (HMM) differs

from a Markov Model in that in addition to transitions, each state also has a set of

outputs symbols, each with an associated probability. When an HMM is in a given state,

it chooses an output symbol probabilistically, and prints it. Whereas a MM generates a

sequence of states, a HMM generates a sequence of output symbols. Like MMs, HMMs

define a probability distribution over sequences, but since HMMs can generate sequences

that MMs cannot, they are strictly more powerful.

Efficient algorithms have been developed for HMMs. For instance, given a sequence, s,

and a HMM, inference algorithms compute the probability, π(s), that s will be generated

by the HMM. Learning algorithms also exist for HMMs. Given a set of sequences,

these algorithms will find the HMM with a given number of states that is most likely

to generate the set. These algorithms are also used in sequence classification. First,

a learning algorithm is used to estimate an HMM for each class. Next, to classify a

particular sequence, s, an inference algorithm is used to compute the prior probability,

πk(s), that s belong to class k. Then, Bayes Rule is used to compute the posterior

probability, pk(s), that s belongs to class k. Finally, a likelihood ratio test is used to

assign s to a class.

3.3 Study Design

As described in Section 3.1, we divide the peptides in the training data into two classes,

those that produce high spectral counts, and those that produce low spectral counts.

One complication is that in the high-throughput MS/MS experiments from which the

data was derived, the amount of protein input to the mass spectrometer is unknown.

Thus, it is in general unclear whether a high spectral count is due to the properties of

the peptide (which we are interested in) or simply due to a large amount of protein at



Chapter 3. Discriminant Analysis 22

the input (which we are not interested in). We resolved this problem by focusing on the

spectra one protein at a time. In the spectrum of a single protein, all the spectral counts

are derived from the same (unknown) amount of protein, so differences in peak intensity

are not due to differences in protein input. In this way, by picking the highest and lowest

spectral counts in each spectrum, we can factor out the effect of protein input levels.

To do this, we first identified those proteins that have at least two peptides with

observable spectral counts in their spectra. We then built an index for these proteins,

and a separate index for their peptides. For the Brain dataset, the indexes contain 8,527

peptides and 1,664 proteins, respectively. For the Heart dataset, the indexes contain

7,660 peptides and 1,281 proteins, respectively. For the Kidney dataset, the indexes

contain 7,074 peptides and 1,291 proteins, respectively.

For each protein, we then picked the peptides with the highest and lowest spectral

peaks. Moreover, we did this only for proteins with a wide range of spectral counts,

so that we could be sure of obtaining peptides with genuinely low- and high-spectral

counts. We did this in two different ways, producing two pairs of peptide classes, which

we call MAX-MIN and STD-DEV, respectively. The two pairs differ only in the proteins

selected. For MAX-MIN, a protein is selected if (i) the highest spectral count in its

spectrum is greater than 12, and (ii) the value of this highest spectral is at least 12

times greater than the count of the lowest peak. For the STD-DEV, a protein is selected

if the standard deviation of all its peak intensities is greater than 4. Both MAX-MIN

and STD-DEV contain two classes of peptides, one with high spectral counts, and one

with low spectral counts. In MAX-MIN, the two classes of peptides are guaranteed to

have very different spectral counts, since the high spectral counts are guaranteed to be

at least 15 times greater than the low spectral counts. In STD-DEV, the peptides in

the two classes do not always have such a great difference in spectral counts, but they

contain more peptides, i.e., more data on which to train and test the classifiers. In this

way, from the original, unlabeled Kidney dataset, we generated two labeled datasets, one



Chapter 3. Discriminant Analysis 23

using MAX-MIN and one using STD-DEV. Likewise for the Heart and Brain datasets,

for a total of six labeled datasets.

The sizes of the datasets generated by the MAX-MIN method are as follows: the

Brain dataset has 658 peptides in the “high spectral counts” class, and 1567 in the “low

spectral counts ” class; the Heart dataset has 389 peptides in the “high spectral counts”

class, and 1232 in the “low spectral counts ” class; the Kidney dataset has 470 peptides in

the “high spectral counts” class, and 1,211 in the “low spectral counts ” class. The sizes

of the datasets generated by the STD-DEV method are as follows: the Brain dataset has

818 peptides in the “high spectral counts” class, and 1,735 in the “low spectral counts ”

class; the Heart dataset 463 peptides in the “high spectral counts” class, and 1,297 in the

“low spectral counts ” class; the Kidney dataset has 550 peptides in the “high spectral

counts” class, and 1,327 in the “low spectral counts ” class;

We estimated the generalization error of the methods in two ways. In the first ap-

proach, we divided each of the six labeled datasets randomly into training and testing

data, in a 2:1 ratio. We then trained and tested each classification method on each of the

six datasets. The results show the variation in performance of the methods over different

datasets and different data-generation methods. In the second approach, we used only

one of the six datasets: the Kidney dataset generated by STD-DEV. On this dataset, we

did 10-fold cross validation for each classification method. The results show the variation

in performance of each method over different splits in the dataset.

Finally, for many of the classification methods used in this study, we must represent

each peptide as a vector, x. We have two ways of doing this, using vectors with 21

and 421 components, respectively. The 21-component vectors represent the amino-acid

composition of a peptide. Since there are twenty different amino acids, the vector has 20

components, (x1, ..., x20), where the value of xi is the number of occurrences a particular

amino acid in the peptide. In addition, the vector has a 21st , x0, whose value is always

1, to represent a bias term, as is common in machine learning models [24]. The 421-



Chapter 3. Discriminant Analysis 24

component vector includes the original 21 components plus 400 more representing the

dimer composition of a peptide. A dimer is a sequence of two amino acids, and since

there are 20 distinct amino acids, there are 400 distinct dimers. This, larger vector

representation was used only with the Naive bayes classifier, because of its reputation for

working well in high dimesnions. The other vector-based classifiers were used only with

21-component vectors, to prevent overfitting. For comparison purposes, Naive Bayes was

sometinmes also used with this shorter vector representation.

3.4 Results and Analysis

Figures 3.1 through 3.4 show ROC curves evaluating the performance of each of the

classification methods under various conditions. In an ROC curve, the horizontal axis is

referred to as specificity, and the vertical axis as sensitivity [24]. In our case, specificity

is the probability that a peptide with spectral counts is predicted to have high spectral

counts. Likewise, sensitivity is the probability that a peptide with low spectral counts is

predicted to have low spectral counts. Each ROC curve corresponds to a single classifi-

cation method, and each point in an ROC curve corresponds to the method being used

with a different decision threshold.

Figure 3.1 shows ROC curves for K-Nearest Neighbors and Hidden Markov Models,

with different values for K and number of states, respectively. The six subfigures rep-

resent experimental results for each of the two methods on each of the three datasets

generated by the STD-DEV method. Note that in these figures, K-NN performs best

when K=50, except on the heart dataset, where 10-NN performs better. Likewise, HMM

performs best when it has only 1 state, except on the brain dataset, where it performs

best with 5 states. Figure 3.2 shows ROC curves for all six classification methods on all

six labeled datasets. In the top half of the figure, the datasets were generated by the

MAX-MIN method. In the bottom half, they were generated by the STD-DEV method.



Chapter 3. Discriminant Analysis 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for K Nearest Neighbour Classifier with different K on Brain Dataset

3−NN
10−NN
20−NN
30−NN
40−NN
50−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for K Nearest Neighbour Classifier with different K on Heart Dataset

3−NN
10−NN
20−NN
30−NN
40−NN
50−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for K Nearest Neighbour Classifier with different K on Kidney Dataset

3−NN
10−NN
20−NN
30−NN
40−NN
50−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC for Hidden Markov Models with different state number on brain dataset

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

HMM−state num:1
HMM−state num: 2
HMM−state num: 5
HMM−state num: 8
HMM−state num: 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for Hidden Markov Models with different state number on heart dataset

HMM−state num:1
HMM−state num: 2
HMM−state num: 5
HMM−state num: 8
HMM−state num: 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for Hidden Markov Models with different state number on kidney dataset

HMM−state num:1
HMM−state num: 2
HMM−state num: 5
HMM−state num: 8
HMM−state num: 10

Figure 3.1: ROC curves illustrating the performance on three different datasets of the

KNN and HMM classifiers. The top panels show KNN with six different values of K.

The bottom panels show HMM with five different numbers of states. The left figures are

for the Mouse brain dataset, the middle figures are for the Mouse heart dataset, and the

right figures are for the Mouse kidney dataset. All three datasets were generated by the

STD-DEV method.

Except for Naive Bayes, which used the 421-component vectors, all the vector-based

classifiers in this figure used 21-component vectors.

Figure 3.3 shows the results of cross validation on each of the six methods. Here,

KNN is used with K=50, and HMM is used with a single state, the values for which they

performed best in the earlier experiments. Each of the six subfigures contains ten ROC

curves, one for each run of 10-fold cross validation. The one exception is the subfigure for

the Naive Bayes classifier, which contains twenty ROC curves, ten for Naive Bayes used



Chapter 3. Discriminant Analysis 26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for all discriminantion methods on Mouse Brain Dataset

HMM State:5
QDA
LR
Naive Bayes
LDA
50−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for all discriminantion methods on Mouse Heart Dataset

HMM State:1
QDA
LR
Naive Bayes
LDA
10−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for all discriminantion methods on Mouse Kideny Dataset

HMM State:1
QDA
LR
Naive Bayes
LDA
50−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for all discriminantion methods on Mouse Brain Dataset

HMM State:1
QDA
LR
Naive Bayes
LDA
50−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for all discriminantion methods on Mouse Heart Dataset

HMM State:1
QDA
LR
Naive Bayes
LDA
50−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correctness rate for class 2

c
o

rr
e

c
tn

e
s
s
 r

a
te

 f
o

r 
c
la

s
s
 1

ROC for all discriminantion methods on Mouse Kidney Dataset

HMM State:1
QDA
LR
Naive Bayes
LDA
50−NN

Figure 3.2: Comparison of all the discrimination methods on three datasets. The top

panels are for datasets generated by the MAX-MIN method, and the bottom panels are

for datasets generated by the STD-DEV method.

with 21-component vectors, and ten for 421-component vectors. The other vector-based

classifiers were all used with 21-component vectors. The curves in Figure 3.3 illustrate

the variability in our estimates of generalization error, variability due to the splitting

of the data into training and test sets. Figure 3.4 shows average ROC curves for each

classification method. Each point in an average curve is the mean of ten corresponding

points in ten curves in Figure 3.3. These average curves provide an estimate of the

average generalization error of each classification method.



Chapter 3. Discriminant Analysis 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
LDA

Specificity

S
e
n
s
it
iv

it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
LR

Specificity

S
e
n
s
it
iv

it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Naive Bayes

Specificity

S
e

n
s
it
iv

it
y

solid:NB−421
dotted:NB−21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
QDA

Specificity

S
e
n
s
it
iv

it
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Specificity

S
e

n
s
it
iv

it
y

50−NN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
HMM State:1

Specificity

S
e
n
s
it
iv

it
y

Figure 3.3: Results of the cross-validation experiments on all the discrimination methods.

3.4.1 ROC Curves and Evaluation

From the ROC curves, several conclusions are immediately apparent: (i) LDA performs

the best, (ii) Hidden Markov Models perform the worst, (iii) the variability in the other

methods is large compared to the differences in their average performance, and (iv)

except for HMM, all the methods performed better with a 9:1 split of training to testing

data than with a 2:1 split. This last observation is probably due to the larger portion of

training data available in the 9:1 split.

The simple LDA method produced impressively better performance than other, more-

sophisticated methods, such as QDA and especially Hidden Markov Models. With the

exception of the Mouse Kidney dataset generated by STD-DEV, on which Logistic Re-

gression performed best, LDA performed better than all other methods on all datasets.

Many of the other methods appear to be overfitting, which may be why their perfor-



Chapter 3. Discriminant Analysis 28

Table 3.1: Test set Error. Of the Misclassified Samples for 6 Discrimination Methods

Applied to 4 Datasets. Two Measurements for selecting high and low classes are used.

Mouse Brain Mouse Heart Mouse Kidney

MAX-MIN STD-DEV MAX-MIN STD-DEV MAX-MIN STD-DEV

LDA 0.3316 0.3446 0.3192 0.3178 0.3080 0.3218

QDA 0.3498 0.3635 0.3542 0.3632 0.3398 0.3744

LR 0.3632 0.3544 0.3336 0.3517 0.3237 0.3272

KNN 0.3641 0.3633 0.3651 0.3528 0.4056 0.3681

NB 0.4078 0.3794 0.3880 0.3832 0.3775 0.3397

HMM 0.4065 0.4235 0.3808 0.3791 0.3492 0.3352

mance on the testing data is worse than LDA. For example, since QDA has almost twice

as many parameters as LDA, it may be overfitting. Likewise, Logistic Regression is more

general than LDA and can require about 30% more data to obtain the same fit [24].

Although it is hard to rank methods other than LDA and HMM, it should be noted

that Naive Bayes performed better with 421-component vectors than with 21-component

vectors. This is apparent both in Figure 3.4 and in Figure 3.3. Of course, more parameters

can always lead to a better fit on the training data, and with only 1000 to 1500 training

points, Naive Bayes is in danger of overfitting when used with 421-component vectors.

So, it is surprising that it performs well on the testing data, living up to its reputation

of performing well in high-dimensional spaces. It may be possible to further improve the

performance of Naive Bayes by using more-complex prior distributions for the individual

features. At present, we use binary distributions. Since each feature represents an amino-

acid count, a binary distribution effectively means that each amino acid is modeled as

being either present or absent in a peptide. This represents a loss of information, which

more-complex prior distributions could eliminate.

To our surprise, Hidden Markov Models performed the worst of all the classification



Chapter 3. Discriminant Analysis 29

methods: sometimes even worse than randomly guessing. This is despite the fact that

they work directly on the peptide sequences, and not on vectors with lower information

content. One reason seems obvious from the ROC curves in Figure 3.1. These show that

performance generally degrades as the number of states in the HMM increases. This is a

sure sign of overfitting. In fact, a HMM with 10 states will have 10 + 102 + 10× 20 = 310

parameters. The factor of 20 comes from the 20 amino acids that each of the 10 states

must be able to output. Since the classes in our training data often have only about

300 samples, over fitting is surely taking place. Even with only 5 states, the number of

parameters is 5 + 52 + 5× 20 = 130, which is still too many. In addition to this, HMMs

only capture the proportion of amino acids in a peptide sequence. In particular, with

only a small number of states, they cannot capture the absolute number of amino-acid

occurrences, as our vectors do. It seems reasonable to suppose that the actual presence of

a particular number of certain acids may be an important factor in the ionization of pep-

tides. In fact, in a separate experiment, we used vectors whose components represented

amino-acid proportions, instead of absolute numbers, and this caused the performance

of Logistic Regression to decrease greatly, to about the same level as HMMs.

3.4.2 Classification Error Rate

In general, classification error rates depend on the size of the labeled classes, and can

be deceptively low when the classes have very different sizes (as ours do, since most

peptide peaks are low-intensity, not high-intensity). Even random guessing can appear

to produce very low error rates. To compensate for this, we used the ROC data to

estimate classification error rates for classes of equal size. This is easily done with the

following formula

error rate = 1 − specificity + sensitivity

2
(3.1)



Chapter 3. Discriminant Analysis 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mean ROC curve on seven methods

Specificity

S
e

n
si

tiv
ity

LDA
LR
QDA
NB−21
50−NN
HMM State:1
NB−421

Figure 3.4: Mean ROC curves for the seven methods

We applied this formula to every point on every ROC curve in Figure 3.2. For each curve,

we chose the lowest resulting error rate, to indicate the best possible performance for the

classifier on the dataset. Table 3.4.1 shows the resulting classification error rates for each

of the six classifiers on each of the three different datasets, with both MAX-MIN and

STD-DEV used to choose proteins. The table shows that the classification error rates

range from 0.3 to 0.4. In addition, it corroborates some of the results discussed above.

For instance, LDA performs the best across all datasets, while HMMs perform the worst.



Chapter 3. Discriminant Analysis 31

3.5 Conclusions of Discriminant Analysis

In this chapter, we applied several well-known classification methods to Peptide Tandem

Mass Spectrometry data. We evaluated and compared the methods based on their ability

to predict the level of spectral counts in a mass spectrum based on the amino-acid

sequence of peptides. Specifically, the methods were required to divide peptides into two

classes: those that produce high spectral counts, and those that produce low spectral

counts.

Overall, we found that for our datasets, simple classifiers such as LDA performed

well compared with more sophisticated ones, such as QDA and Hidden Markov Models.

In the main comparison based on ROC evaluation, LDA has the best generalization

performance. In decreasing order of performance, the other classifiers were Logistic

regression, Naive Bayes (with 421-component vectors), QDA, KNN (with K=50), Naive

Bayes (with 21-component vectors), and finally HMMs (with any number of states),

which sometimes performed worse than random guessing. The performance of all the

methods was quite variable. Misclassification rates for classes of equal size were also

estimated, and they corroborate our conclusions drawn from the ROC evaluation.

Several further steps suggest themselves. For instance, the performance of each of

the methods might be improved by boosting. Decision trees (which often work well with

boosting) could be tried. Clustering methods could also be used to search for structure

within each of the labeled classes, in order to provide better priors for the classification

methods. In addition, Bayesian inference, bootstrapping and bagging could be used to

deal with the problems of overfitting. To prevent over fitting of Hidden Markov Models,

we are considering more-structured versions of them, such as Profile Hidden Markov

Models, which have significantly fewer parameters. Especially the mixed Hidden Markov

Models and some Bayesian analysis with some biological a priori may also be interesting.

Finally, we are considering methods for extracting more training data from the MS/MS

spectra. In this chapter, we considered two methods, MAX-MIN and STD-DEV, but



Chapter 3. Discriminant Analysis 32

many other methods are also possible.



Chapter 4

Regression Analysis

4.1 Modeling the MS/MS Data

1 In the high-throughput experiments we are dealing with, the amount of protein input

to the mass spectrometer is unknown, our goal in this chapter is to develop methods

to estimate it. Here, our working hypothesis is that for a given MS/MS experiment,

each spectral count in a spectrum is produced independently of the others. That is, we

assume that the value of the spectral count depends on only two factors: (i) the peptide

responsible for this spectral count, and (ii) the (unknown) amount of protein input to

the mass spectrometer. Although interactions between peptides do sometimes occur in

mass spectrometer experiments, we use independence as a simplifying approximation

in this initial study. More specifically, we assume that each peptide has an associated

ionization efficiency that accounts for the relative values of the various spectral counts

in a spectrum. The ionization efficiency represents the probability that a given peptide

will enter the mass spectrometer as an ion. Since only these peptides contribute to the

value of a spectral count, we expect that spectral count will be proportional to ionization

efficiency. The ionization efficiency can be thought of as the propensity of a peptide to

1This chapter has appeared in [6]

33



Chapter 4. Regression Analysis 34

ionize, though it can include other factors as well, such as the propensity of the peptide

to be produced in the first place, i.e., to be cleaved from the original protein. This idea

is expressed formally by the equation output = input× ie, where output is the value

of a spectral count (measured in number of peptide molecules), input is the amount of

protein from which the peptide was derived (measured in number of protein molecules),

and ie is the ionization efficiency, a number between 0 and 1.

Under ideal conditions, each protein molecule would fragment into a set of peptide

molecules, each of which would then ionize, enter the mass spectrometer, and contribute

to a spectral count [48]. In this case, the ionization efficiency of each peptide would

be 1, and the spectral counts for a given protein would all have the same values (equal

to the amount of protein input). In practice, though, peptides do not all ionize with

equal efficiency, and they produce spectral counts of different values [10]. In fact, some

peptides do not ionize at all, so their ionization efficiency is 0 and they produce spectral

count of value 0 [22]. The problem is to account for these differences and, more quan-

titatively, to estimate the ionization efficiency of each peptide. In data-mining terms,

we want to learn a function, f , from peptides to the interval [0, 1], where f(p) is the

ionization efficiency of peptide p. We shall identify peptides by their amino-acid se-

quence, seq, so f(p) is really f(seq).2 The equation for peak intensity therefore becomes

output = input× f(seq), where output and seq are observed, input is unobserved, and

f is to be learned.

Note that once f is learned, we can apply it to new peptides to estimate the amount

of protein input to the mass spectrometer, via the equation input = output/f(seq).

Our experiments in Sections 4.3 and 4.4 illustrate this idea by learning f on a training

dataset and then applying it to a test dataset to estimate protein levels. Learning f

is thus the central problem in estimating amounts of protein. This problem would be

2In fact, we are interested not just in peptides, but in peptide ions, which are identified by their
sequence and their charge. However, to simplify the presentation, we leave it as understood that charge
is included. Charge is explicitly included in our experiments, as described in Section 4.3.2.



Chapter 4. Regression Analysis 35

relatively straightforward if the amounts of protein in the training dataset were known.

In this case, we could estimate values of f for numerous values of seq, via the equa-

tion f(seq) = output/input, so learning f would be a regression problem. Unfortu-

nately, the training data does not include information about protein amounts. In effect,

the amounts of protein is a set of thousands of hidden variables, one for each protein.

Dealing with these hidden variables is the main data-mining challenge addressed in this

chapter.

4.1.1 Modelling Ionization Efficiency

Varying the form of the function f leads to a variety of different models of the data and

to different learning problems. In this initial study, we consider three kinds of function:

Linear : f(seq) = x•β Exponential : f(seq) = ex•β Inverse : f(seq) = 1/(x•β)

Here, x is a vector of peptide properties (derived from seq), β is a vector of parameters

(to be learned), and • represents the dot product (or inner product) of the two vectors.

The theoretical results in Section 4.2 show that for these three kinds of function, the

learning problem reduces to tractable problems in linear algebra. The study design in

Section 4.3 describes how the property vector, x, is derived from a peptide sequence.

Finally, the experimental results in Section 4.4 measure the biological realism of these

functions and vectors.

Briefly, we investigate linear models because of their simplicity and because they are

directly amenable to the techniques of linear algebra. We investigate exponential models

because, by taking logs, they become linear. In addition, exponential models have the

advantage that the ionization efficiency is guaranteed to be positive. In contrast (as

we shall see in Section 4.4), the linear model may produce a preponderance of positive

values, but it sometimes produces negative values as well, which are meaningless (though

very small negative values can be assumed to be zero). As we shall see, both models



Chapter 4. Regression Analysis 36

allow for efficient estimation of the (unknown) amount of protein input, though by very

different means.

The inverse model has a different motivation. As we show in Chapter 2, spectral

counts have a very skewed distribution of values, ranging over several orders of magnitude,

with most of the values concentrated at the very low end of the spectrum. In fact, we

show that the distribution is O(1/y2), where y denotes spectral count. It is very difficult

to fit a linear model to data with this kind of distribution, since a small number of very

large values tends to dominate the fit. Even if the largest values are removed, the next

largest values dominate, ad infinitum. Taking logarithms helps, but even log(y) has a

skewed distribution. However, 1/y has a uniform distribution, thus eliminating all skew.

This is the motivation for the inverse model: to transform the data to a form that is

more manageable. In addition, as we shall see in Section 4.2, all the methods we develop

for fitting the linear model can easily be adapted to fit the inverse model.

4.1.2 Instantiating the Model

To keep track of different proteins and peptides, we use two sets of indices, usually i for

proteins and j for peptides. Proteins are numbered from 1 to N, and the peptides for the

ith protein are numbered from 1 to ni. Thus, seqij denotes the amino acid sequence of

peptide number j of protein number i. Likewise, xij denotes the vector of properties for

peptide j of protein i. In the sequel, we shall use y to denote the value of a spectral count.

Thus, yij is the spectral count value of peptide j of protein i. We shall also use in to

denote the (input) amount of a protein. Thus, ini is the amount of protein i. With this

notation, the equation for spectral counts described above becomes a set of equations:

yij = ini × f(seqij) for i from 1 to N, and j from 1 to ni. (4.1)



Chapter 4. Regression Analysis 37

When instantiated with linear, exponential and inverse functions, they become, respec-

tively,

yij = ini × (xij • β) yij = ini × exij•β yij = ini/(xij • β)

Not all these equations contain useful information. In fact, only those proteins that

produce at least two peptides can be used for estimating f . If a protein produces only one

peptide, then j = 1 and the protein yields only one equation: yi1 = ini × f(seqi1). This

is the only equation containing the unknown value ini. Once we know f , we can use this

equation to estimate ini. However, the equation provides absolutely no help in estimating

f itself, since it does not constrain f in any way. In fact, it is trivially satisfied for any

f by using ini = yi1/f(seqi1). If all the proteins produced only one peptide, then we

would have no way to estimate f , since any f would do. For this reason, our data-mining

methods ignore all those proteins that produce only one peptide. In fact, the first method

considered below explicitly requires at least two peptides per protein.

Finally, we note a fundamental limit to what can be learned from the data available

to us. In particular, we can only learn the relative amount of a protein in a tissue sample,

not the absolute amount. For instance, we could infer that the amount of protein 1 is

twice that of protein 2, but we cannot infer exactly how much there is of either protein.

This follows immediately from equation 4.1. Since ini and f are both unknown, we can

always scale one up as long as we scale the other down by the same amount. Specifically,

suppose that in1, · · · , inN and f is a solution to the equation. Then in′1, · · · , in′N and f ′ is

an equally good solution, where in′i = ini × c and f ′(seq) = f(seq)/c, for all i and seq,

and any constant c. Thus, there are infinitely many solutions, each predicting different

absolute amounts for the proteins and different ionization efficiencies for the peptides.

However, all these solutions predict the same relative values, since ini/inj = in′i/in
′
j for

any two proteins i and j, and f(seqi)/f(seqj) = f ′(seqi)/f
′(seqj) for any two peptides i

and j. In this way, the relative amounts of protein and the relative ionization efficiencies

of peptides can be learned. Moreover, by using a small amount of calibration data,



Chapter 4. Regression Analysis 38

we can convert these relative values into absolute ones. That is, if we are given the

absolute amount of just a few proteins, we can then use the ratios ini/inj to estimate

absolute values for all the proteins, from which we can estimate absolute values for all

the ionization efficiencies.

4.2 Fitting the Models to Data

In the previous section, we developed three generative models of MS/MS data, linear,

exponential and inverse. In this section, we develop methods for fitting these models

to data, including methods for estimating the amount of protein input to the mass

spectrometer.

An important parameter in any model of MS/MS data is the amount of each pro-

tein, ini, input to the mass spectrometer. If this amount were known, then fitting our

models to the data would be a straightforward problem of regression. If the fit is good,

this would solve the biological problem of predicting the intensity of each spectral peak

given the amino-acid sequence of the peptide and the amount of protein at the input.

Unfortunately, the amounts of each protein are unknown. Moreover, there are thousands

of proteins, each with a different input level, and the various input levels differ by several

orders of magnitude. To deal with these complications, we treat the input levels, ini, as

latent, or hidden variables, whose values must be estimated. We therefore have thousands

of hidden values to estimate, in addition to the parameters of our models. An accurate

estimation of these values would solve another important biological problem: estimating

the amounts of each of the thousands of proteins in a tissue sample given their MS/MS

spectra. Moreover, since the protein levels differ so dramatically, even an approximate

estimate would be biologically useful.



Chapter 4. Regression Analysis 39

4.2.1 Linear Models

In this section, we develop a family of methods for fitting the linear model to experimental

data, where each method is meant to improve upon the one before. The first two methods

are closely related. They have in common that learning is divided into two phases: the

first phase estimates a value for β, and the second phase uses β to help estimate values

for the ini. The two methods differ in the optimization criteria they use to fit the model

to the data. The third model is different from the first two in that it has only one learning

phase, in which all parameters are estimated simultaneously. In this way, we hope to get

a better fit to the data, since the estimate of β is now affected by how well the estimates

of ini fit the data, something that is impossible in the two-phase approach.

Recall that the linear model is given by equations of the form

yij = ini · (xij • β) (4.2)

where the parameter vector β and all the ini are unknown and must be learned. Of

course, these equations are not exact, and provide at best an approximate description of

the data. The goal is to see how closely they fit the data, and to estimate values for β

and ini in the process. From the discussion at the end of Section 4.2, we know it is only

possible to estimate relative values for these quantities. This effectively means we can

determine the direction of β but not its magnitude. In fact, in the absence of calibration

data, the magnitude of β is meaningless. For this reason, the methods described in this

section all impose constraints on the magnitude of β in order to obtain a unique solution.

LIN1: Two-Phase Learning

This approach factors out the amount of protein, ini, from the set of Equations 4.2. The

result is a set of linear eigenvector equations for the parameter vector β, which we can

solve using standard eigenvector methods. With this estimate in hand, the value of each

ini can be estimated by linear regression.



Chapter 4. Regression Analysis 40

From Equations 4.2, we see that protein i gives rise to the following set of equations,

one equation for each peptide:

yi1 = ini ·(xi1•β) yi2 = ini ·(xi2•β) · · · yini
= ini ·(xini

•β) (4.3)

Note that the unknown value ini is the the same in each equation. Thus, by dividing each

equation by the previous one, we can eliminate this unknown value, leaving the parameter

vector β as the only unknown quantity. That is, yij/yi,j−1 = (xij • β)/(xi,j−1 • β), for

j from 2 to ni. Cross multiplying gives yij(xi,j−1 • β) = yi,j−1(xij • β), and rearranging

terms gives the following:3

zij •β = 0 where zij = yijxi,j−1−yi,j−1xij for j from 2 to ni, and i from 1 to N.

(4.4)

Geometrically, these equations mean that the parameter vector β is orthogonal to each

of the derived vectors zij. Note that this is a constraint on the direction of β but not

its magnitude, which is to be expected. Equation 4.4 is a restatement of Equation 4.2

with the unknown values ini removed. Like Equation 4.2, it is an approximation, and

our goal is to see how closely we can fit it to the data.

A simple approach is to choose β so that the values of zij • β are as close to 0 as

possible. That is, we can try to minimize the sum of their squares,
∑

i,j(zij • β)2. Of

course, this sum can be trivially minimized to 0 by setting β = 0. But, as described above,

the magnitude of β is meaningless, and only its direction is important. So, without loss of

generality, we minimize the sum of squares subject to the constraint that the magnitude

of β is 1. To do this, we use the method of Lagrange multipliers. That is, we minimize

the following function:

F (β, λ) =
∑

i,j

(zij • β)2 − λ(‖β‖2 − 1) (4.5)

3Of course, we could generate many more equations of this form by cross multiplying all possible
pairs of equations from 4.3, instead of just the successive ones. However, only ni − 1 of the resulting
equations would be linearly independent.



Chapter 4. Regression Analysis 41

Taking partial derivatives with respect to β and setting the result to 0, we get the equation

∑

ij

zij(zij • β) = λβ (4.6)

Taking the inner product of both sides with β gives
∑

ij(zij • β)2 = λβ • β = λ‖β‖2

= λ, where the last equation follows from the constraint ‖β‖ = 1. We have therefore

derived the following two equations:

∑

ij

zijz
T
ij β = λβ λ =

∑

ij

(zij • β)2

where the left equation is just Equation (4.6) expressed in matrix notation, with all

vectors interpreted as column vectors. The left equation says that β is an eigenvector

of the matrix
∑

ij zijz
T
ij, and the right equation says that its eigenvalue is just the sum

of squares we want to minimize. We should therefore choose the eigenvector with the

smallest eigenvalue.

Having estimated a value for β, we must now estimate values for the remaining

unknowns, in1, · · · , inN . Equations 4.3 suggests a natural way to do this. Letting

vij = xij • β, we get yij = inivij, for j from 1 to ni. Thus, for each value of i, we

get a system of ni linear equations involving ini, and we can estimate the value of ini us-

ing a simple univariate linear regression. The values of in1, · · · , inN can thus be estimated

by carrying out N such regressions.

LIN2: Improving the Optimization Criterion

The previous section developed a method for fitting the linear model to data. The

method uses the equation ‖β‖ = 1 to constrain the magnitude of the parameter vector

β. However, the choice of this particular equation was arbitrary, since any equation of

the form ‖Aβ‖ = 1 also constrains the magnitude of β, for any non-singular matrix A.

In the previous section, we implicitly chose A = I, the identify matrix. In this section, we

use A = X, where each row of matrix X is one of the feature vectors xT
ij. We still try to



Chapter 4. Regression Analysis 42

minimize the sum of squares
∑

ij(zij • β)2, but subject to the new constraint ‖Xβ‖ = 1.

Note that this constraint is equivalent to
∑

ij(xij • β)2 = 1.

The advantage of this constraint is that it leads to estimates of ionization efficiency

and protein abundance that do not depend on arbitrary choices in data represention. For

example, the estimates do not depend on whether we represent peptide mass in milligrams

or micrograms. More generally, the estimates are invariant under any one-to-one linear

transformation of the feature vectors. That is, suppose we let x′ij = Bxij, where B is a

non-singular matrix. Then our estimates of protein abundance and ionization efficiency

will not depend on whether we use xij or x′ij to represent the peptides. This is how

things should be. After all, the vectors xij and x′ij contain exactly the same information,

since each can be derived from the other. In fact, any change in the estimates would

imply that the estimates are somewhat arbitrary, since they depend on arbitrary choices

in data representation. In other words, if using xij leads to one set of estimates, while

using x′ij leads to another, then which estimates are correct? The estimation method

developed here does not have this problem.

Before developing the method in detail, we first show that its estimates are indeed

invariant under linear transformation. By Equation 4.2, it is enough to show that the

values of xij • β are invariant. To do this, first note that if x′ij = Axij and β′ = A−T β,

then xij • β = x′ij • β′. Thus, it is enough to show that if each feature vector, xij,

is replaced by Axij, then the estimated parameter vector changes from β̂ to A−T β̂.

To show that the method behaves this way, first recall from Equation 4.4 that zij

= yijxi,j−1 − yi,j−1xij. Thus z′ij = yijx
′
i,j−1 − yi,j−1x

′
ij = A−T (yijxi,j−1 − yi,j−1xij)

= A−Tzij. Thus, if β′ = A−T β, and x′ij = Axij for all i and j, then zij •β = z′ij •β′

for all i and j. Hence,

β = β̂ minimizes
∑

ij(zij • β)2 subject to
∑

ij(xij • β)2 = 1

if and only if

β = A−T β̂ minimizes
∑

ij(z
′
ij • β)2 subject to

∑
ij(x

′
ij • β)2 = 1



Chapter 4. Regression Analysis 43

since none of the dot products changes value. Thus, all our estimates of ionization effi-

ciency and protein abundance will remain unchanged under a one-to-one linear transafor-

mation of the feature vectors. This is true for any method that solves this constrained

minimization problem.

As in Section 4.2.1, the method developed here is based on Lagrange multipliers.

That is, we minimize the following function, which is the new version of function (4.5):

F (β, λ) =
∑

i,j

(zij • β)2 − λ(
∑

ij

(xij • β)2 − 1)

Taking partial derivatives with respect to β and setting the result to 0, we now get

∑

ij

zij(zij • β) = λ
∑

ij

xij(xij • β) (4.7)

Taking the inner product of both sides with β, we get
∑

ij(zij • β)2 = λ
∑

ij(xij • β)2 = λ,

where the last equation comes from the constraint
∑

ij(xij • β)2 = 1. Thus, expressing

Equation (4.7) in matrix notation, we have the following two equations:

∑

ij

zijz
T
ijβ = λ

∑

ij

xijx
T
ijβ λ =

∑

ij

(zij • β)2

The left equation is a generlalized eigenvector equation, that is, an equation of the

form Aβ = λBβ, where A and B are square matrices. In this case, since A and

B are symmetric, the eigenvectors and eigenvalues are guaranteed to be real. There is

therefore a smallest eigenvalue. As before, the right equation says that the eigenvalue

is the sum of squares we are trying to minimize. We therefore choose the generalized

eigenvector with the smallest eigenvalue. Estimating β in this way (the first phase of

learning), we then use it to estimate values for the ini using univariate linear regression,

as before (the second phase of learning).

LIN3: Simultaneous Learning

Here, we outline a single-phase approach to learning, one that estimates values for β and

all the ini simultaneously. Since the estimate for one parameter takes into account the

estimates for all the other parameters, we hope to get a better overall fit to the data.



Chapter 4. Regression Analysis 44

In order to do this, we first transform Equation 4.2. Observe that the right-hand

side of this equation contains a product of two unknowns, ini and β. To eliminate this

non-linear term, we divide both sides by ini, to obtain a model that is linear in all

the unknowns: yijαi = xij • β, where αi = 1/ini. Since both sides of this equation

contain unknown parameters, we cannot simply minimize the error between them, since

by setting αi = 0 and β = 0 the error is trivially minimized to 0, which is clearly

incorrect. Instead, we minimize the angle between two vectors, the vector of values on the

right-hand side of the equation, and the vector of values on the left-hand side. Moreover,

we do this by maximizing the cosine of the angle between them. In general, the cosine of

the angle between two vectors, v and w, is given by the formula v •w/‖v‖ · ‖w‖. We

must therefore maximize the following expression:

∑
ij(yijαi) · (xij • β)√∑

ij(yijαi)2
√∑

ij(xij • β)2
(4.8)

Note that this measure of error is insensitive to the absolute magnitude of the parameters,

αi and β, which can all be scaled up or down by the same amount without affecting the

angle between the two vectors.

In [7], we develop a method to efficiently carry out this maximization. It is based on

Theorem 1 below, which is also proved in 5. In this theorem, Yi is the column vector

(yi1, yi2, ..., yik)
T , and Xi is the matrix (xi1,xi2, ...,xini

)T , where each xij is viewed as a

column vector. They represent, respectively, the spectral peak intensities and peptide

property vectors for protein i.

Theorem 1: Expression (4.8) is maximized when the parameter vector β is a solution

of the following generalized eigenvector equation:

ρ2
∑

ij

XT
i Xi β = [

∑

i

XT
i YiY

T
i Xi/‖Yi‖2] β

Moreover, it is the eigenvector corresponding to the largest eigenvalue, ρ2. In addition,

αi = YT
i XT

i β/ρ‖Yi‖2



Chapter 4. Regression Analysis 45

Finally, ρ is the maximum value of Expression (4.8). (So the minimum angle, θ, between

the two vectors is given by ρ = cos(θ)).

4.2.2 Inverse Models

All of the methods developed above for fitting the linear model to data are easily adapted

to fitting the inverse model. Recall that in the inverse model,

yij = ini/(x • β)

By inverting both sides of the equation, we get,

y′ij = in′ij · (x • β)

where y′ij = 1/yij and in′ij = 1/inij. This is precisely the linear model. In addition,

y′ij is known and in′ij is unknown, which is precisely the condition for applying the linear

fitting methods developed in Section 4.2.1. When the linear methods LIN1, LIN2 and

LIN3 are adapted in this way to the inverse model, we refer to them as INV1, INV2 and

INV3.

4.2.3 Exponential Models

In this section, we develop two methods for fitting the exponential model to the data.

Recall that in the exponential model,

yij = ini · exij•β

Taking logs of both sides converts this to a linear model:

log yij = log ini + xij • β (4.9)

The two methods described below differ in their treatment of the latent variables ini.

As with the linear methods of Section 4.2.1, one method is a two-phase learner, and the



Chapter 4. Regression Analysis 46

other is single-phase. The first method operates in two phases: it estimates a value for

the parameter vector, β, and then it uses this estimate to determine values for the protein

input levels, ini. In contrast, the second method operates in a single phase that estimates

values for β and ini simultaneously, finding the combination of values that best fits the

data. Unlike the linear methods, the workhorse of these methods is linear regression, not

eigenvector decomposition.

EXP1: Two-Phase Learning

From the above equations, we see that for the peptides from protein i,





log yi1 = log ini + xi1β

log yi2 = log ini + xi2β

· · ·
log yini

= log ini + xini
β

(4.10)

¿From this, we get that log yi,j−1 − log yi,j = (xi,j−1 − xi,j)β for j from 2 to ni, or

equivalently Yij = Xij • β, where

Yij = log yi,j−1 − log yi,j Xij = xi,j−1 − xi,j (4.11)

β can thus be estimated from the new variables Xij and Yij using linear regression.

This is the first phase of learning. Once β is known, its value can be used to help

estimate values for the remaining unknowns, in1, ..., inN . This is the second phase of

learning. Equation 4.9 suggests a natural approach. Letting vij = log yij − xij • β, we

get vij = log ini, for j from 1 to ni. Like Equation 4.9, this equation is only approximate.

The value of log ini that minimizes the mean squared error is just the mean of the vij.

We therefore use log ini = (vi1 + · · ·+ vini
)/ni.

Although it is straightforward, a potential problem with this method is in the er-

ror that it minimizes. We would like to minimize (the sum of squares of) the er-

rors εij = logyij − log ini − xij • β. Instead, however, the method minimizes (the



Chapter 4. Regression Analysis 47

sum of squares of) εij − εi,j−1., which is not the same thing. The method developed

next solves this problem.

EXP2: Simultaneous Learning

In order to minimize the errors εij directly, we treat the unknown values log ini in

Equation (4.9) as regression parameters. To this end, we define β′ to be the extended

parameter vector (β1, ..., βp, b1, ..., bN)T . Here, bi is a parameter representing log ini,

and (β1, ..., βp)
T is the original parameter vector, β, used above. Values for all the

parameters in β′ will be estimated simultaneously in a single act of linear regression. To

do this, we define a number of matrices. First, we define O to be the following sparse

matrix: 


1 · · · 1 0 · · · 0 · · · · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · · · · 0 · · · 0

...
...

...
...

. . .
...

0 · · · 0 0 · · · 0 · · · · · · 0 · · · 0

0 · · · 0 0 · · · 0 · · · · · · 1 · · · 1




T

where the ith vertical block has ni columns. In this matrix, each row corresponds to

a protein, and each column to a peptide. A 1 in the matrix means that the pep-

tide belongs to the protein. In addition, we define X to be the matrix of predic-

tors (x11, ...,x1,n1 ,x21, ...,x2n2 , ...,xN1, ...,xNnN
)T , and Y to be the column vector of

responses (Y11, ..., Y1,n1 , Y21, ..., Y2n2 , ..., YN1, ..., YNnN
)T , where Yij = log yij. With this

notation, it is not hard to see that the set of linear Equations (4.9) becomes the single

matrix equation Y = Vβ′ where V is the extended predictor matrix (X,O). Thus, the

problem again reduces to linear regression, though with a far larger set of parameters.

The solution is

β′ = (VTV)−1VT Y (4.12)

Observe that X is a M × p matrix, where M =
∑

i ni is the total number of peptides,



Chapter 4. Regression Analysis 48

and p is the number of features in the vectors xij. Likewise, O is a M ×N matrix,

where N is the number of proteins. Consequently, V has dimensions M × (p + N), and

VTV has dimensions (p + N)× (p + N). Although p is relatively small in our datasets,

N is large, so the matrix VTV is extremely large, and inverting it is computationally

very expensive.

Fortunately, because of the sparse and regular structure of O, we can develop a more

efficient procedure. The first step is to partition the matrix (VTV)−1 into blocks as

follows:

(VTV)−1 =




A B

C D


 (4.13)

Here, the submatrices have the following dimensions: A is p× p, B is p×N , C is

N × p, and D is N ×N . The submatrix A is therefore small, while D is extremely

large. The next step is to solve for A, B, C and D, as follows:

I = (VTV)(VTV)−1 =




XT

OT


 (X,O)




A B

C D


 =




XTXA + XTOC XTXB + XTOD

OTXA + OTOC OTXB + OTOD




We can view this as four matrix equations in four unknowns, A, B, C, D. Solving, we

get

A = (XTX−X̂T P−1X̂)−1 B = −AX̃T C = BT D = P−1−X̃AX̃T

where X̂ = OTX, P = OTO, and X̃ = P−1X̂. The first point to notice here is

that A is a small matrix, of size p × p, so even though it requires a matrix inversion, it

is not costly. The second point is that the matrices P and O are both exremely large,

of size N ×N and M ×N , respectively. However, neither one needs to be materialized.

To see this, note that the rows of OT are orthogonal, and P is therefore diagonal. In

fact, the ith diagonal element of P is simply ni, the number of peptides in protein i. The

ith diagonal element of P−1 is therefore 1/ni. Multiplication by P or P−1 is therefore

a simple operation. Likewise for left multiplication by OT . For instance, the ith row of

X̂ = OTX is simply
∑

j xT
ij. In this way, neither P , P−1 nor O needs to be materialized.



Chapter 4. Regression Analysis 49

Neither does the extremely large matrix D. In fact, the largest matrix that needs to

be materialized is the data matrix, X. To see this, first rewrite Equation 4.12 as



β

b


 =




A B

C D







XT

OT


 Y =




AXT Y + BOT Y

CXT Y + DOT Y




where we have decomposed the extended parameter vector, β′, into the original param-

eter vector, β = (β1, ..., βp)
T , and a vector of the new parameters, b = (b1, ..., bN)T .

Expanding the definition of D, we get two equations:

β = AXT Y + BŶ (4.14)

b = CXT Y + (P−1 − X̃AX̃T )Ŷ

= CXT Y + Ỹ − X̃AX̃T Ŷ (4.15)

where Ŷ = OT Y and Ỹ = P−1Ŷ . Note that Ŷ is a column vector whose ith component

is Ŷi =
∑

j Yij. Likewise, Ỹ is a column vector whose ith component is Ỹi = Ŷi/ni.

Thus, it is still unneccessary to materialize the very large matrices P , P−1 and O.

Finally, observe that the largest matrix in Equations 4.14 and 4.15 is the data matrix

X, which has size M × p. The matrices X̂ and X̃ both have size N×p, the matrix A has

size p× p, and the matrices B and C have sizes p×N and N × p, respectively. All of

these are smaller than X since p < N < M . Moreover, if all the matrix multiplications

are carried out from right to left, then all the intermediate results are column vectors,

not large matrices. In this way, the parameter vectors β and b can be estimated without

having to materialize or manipulate any matrices larger that X. In fact, for fixed p, the

total cost of estimating the parameters is linear in M , the number of peptides; i.e., the

total cost is linear in the number of data points.

4.3 Experiments

We evaluated the methods and models developed above on real and simulated datasets.

This section describes the design of the experiments, and the evaluation methods. The



Chapter 4. Regression Analysis 50

main difficulty in evaluating the methods is the distribution of the real data. As shown

in Chapter 2, it ranges over several orders of magnitude and is highly skewed, with

most data concentrated at very low values. We deal with these difficulties in two ways.

First, we use the Spearman rank correlation coefficient to measure the goodness of fit of

our estimates to the observed values [3]. Unlike the more common Pearson correlation

coefficient, which measures linear correlation, Spearman’s coefficient measures monotone

correlation and is insensitive to extreme data values. In addition, we use log-log plots of

observed v.s. estimated values to provide an informative visualization of the fit.

4.3.1 Simulated Datasets

In addition to real-world datasets (described above), we generated simulated data on

which to test the learning models and methods developed in Sections 4.1 and 4.2. While

real-world data tests the biological relevance of our methods, simulated data allows us to

test their mathematical and computational correctness. To this end, we use simulated

data that is based on the same statistical models as our learning methods. This serves

two purposes. First, it acts as a sanity check, since errors in either the mathematics or the

programming of the methods can easily appear as unexpected or bizarre results. Second,

it tells us the performance we can expect from the methods under ideal circumstances,

and with controllable amounts of noise. In [6], a thorough set of simulated experiments

is performed. In this paper, we present a small sample of results to demonstrate that

our methods can in principle estimate the amounts of protein at the input to the mass

spectrometer.

The simulator generates data for the linear, inverse and exponential models. Although

different, these models each have the same kinds of parameters: an input amount, ini,

for each protein; a feature vector, xij, for each peptide; and a parameter vector, β,

with which to compute ionization efficiencies. Protein amounts are generated randomly

from a uniform distribution ranging from 20 to 250. Peptides are represented by vectors



Chapter 4. Regression Analysis 51

with 22 components, as in the real datasets. For each component of a peptide vector,

values are generated randomly from a normal distribution with mean 4 and standard

deviation 2. For each component of the vector β, values are generated randomly from

a uniform distribution ranging from 0 to 1. From this data, we compute ionization ef-

ficiencies and spectral count values, according to our models of MS/MS data. In each

model, we add noise to xij • β, since this is what our methods minimize. We then

compute ionization efficiencies from these values. Thus, for the linear model, the ioniza-

tion efficiency of peptide i of protein j is ieij = xij • β + noise, for the inverse model it

is ieij = 1/(xij • β + noise), and for the exponential model it is ieij = exij•β+noise. In

all these cases, the noise is generated from a normal distribution with mean 0. Finally,

spectral count values are generated, and in all three models, the spectral count of peptide

ij is yij = ini · ieij. For the simulated data, the standard deviation of the noise is con-

stant, but different experiments use different amounts of noise, i.e., noise with different

standard deviations. Here, noise level is measured with respect to the variation within

the peptide data. For example, a noise level of 50% means that the standard deviation of

the noise is 50% of the standard deviation of the components of the peptide vectors xij.

For each simulated experiment, we simulated 100 different proteins, each fragmenting

into 10 different peptides, for a total of 1000 peptides. In addition, in order to obtain

a nice visual representation of the accuracy of our estimates of protein level, we divided

the proteins into ten groups, where each protein in a group has exactly the same input

amount, ini.

Each simulated experiment uses the same protein levels, ini, the same peptide feature

vectors, xij, the same parameter vector, β, and often the same noise. Of course, the

datasets for the three models—linear, inverse, and exponential— will still differ, since,

according to the formulas given above, the ionization efficiencies, ieij, and spectral count,

yij, will be different in the three models.



Chapter 4. Regression Analysis 52

4.3.2 Experimental Design

As described in Section 4.1, only those proteins that produce at least two peptides with

positive spectral counts are useful for fitting models to data. We first identified these

proteins. We then built an index for these proteins, and a separate index for their pep-

tides. For the Brain dataset, the indexes contain 8,527 peptides and 1,664 proteins,

respectively. For the Heart dataset, the indexes contain 7,660 peptides and 1,281 pro-

teins, respectively. For the Kidney dataset, the indexes contain 7,074 peptides and 1,291

proteins, respectively. In addition, in order to estimate the generalization error of the

fitted models, each of these three data sets is divided randomly into 10 subsets, we use

10-fold cross-validation to estimate the standard deviation and mean of the performance

of each model.

Finally, to use the models developed in Section 4.1, each peptide must also be repre-

sented as a vector, x. we evaluate several ways of doing this, using vectors with 22, 42, 62

and 232 components, respectively. The 22-component vector represents the amino-acid

composition of a peptide. Recall that a peptide is a sequence of amino acids. Since there

are twenty different amino acids, the vector has 20 components, (x1, ..., x20), where the

value of xi is the number of occurrences of a particular amino acid in the peptide. In

addition, the vector has a 21st component, x0, whose value is always 1, to represent a

bias term, as is common in linear regression [24]. The vector also has a 22nd component

whose value is the charge of the peptide ion, as given in Table 2.1 in Chapter 2. The

232-component vector uses these same 22 components plus an additional 210 quadratic

components of the form xixj computed from xi and xj for 1 ≤ i, j ≤ 20.

These vectors capture the charge and amino-acid composition of a peptide, but they

do not contain any sequential information. The 42-component vector ameliorates this

situation somewhat. It divides a peptide sequence into two subsequences, by cutting

it in half, and represents the amino-acid composition of each half. This requires 40

vector components. Again, we add a 41st component to act as a bias term, and a 42nd



Chapter 4. Regression Analysis 53

component to represent charge. The 62-component vector carries this idea one step

further by dividing a peptide into three subsequences, thereby capturing more sequential

information.

These four different peptide representations can be used with any of the eight fitting

methods developed in Section 4.2, namely, LIN1, LIN2, LIN3, EXP1, EXP2, INV1, INV2

and INV3. When applied to the training data, these methods each estimate a vector of

parameters, β, from which we can estimate the ionization efficiency of any peptide. As

described in Section 4.1, the ionization efficiency of a peptide is given by the following

formulas, depending on the model:

Linear : ie = x•β Exponential : ie = ex•β Inverse : ie = 1/(x•β)

(4.16)

where x is the vector representation of the peptide, as described above. To estimate the

accuracy of these models, we use them to predict the spectral counts of all the peptides

in the testing data. We then compare the predictions to the observed values.

The first step is to estimate the amount of each protein in the testing data. Recall

that yij = ini · ieij, where ini is the amount of protein i, ieij is the ionization efficiency

of peptide ij, and yij is the value of the peptide’s spectral count. The goal is to estimate

a value for ini given the observed values of yij and the estimated values of ieij. There

are numerous ways this can be done, and the most appropriate depends on the statistical

model being used. Recall that in each model, the formula yij = ini · ieij is transformed

so that X • β appears as a linear term. In particular:

Linear : yij = ini · (xij •β) Exponential : log(yij) = log(ini) + xij •β

Inverse : y−1
ij = in−1

i · (xij • β)

In each of these models, yij, xij and β are known, and ini must be estimated. Thus, in

the linear model, ini can be estimated by univariate linear regression. Likewise, in the

inverse model, after first computing values for y−1
ij , a value for in−1

i can be estimated



Chapter 4. Regression Analysis 54

by univariate linear regression, from which the value of ini can be estimated as 1/in−1
i .

Finally, in the exponential model, a value for log(ini) can be estimated as the mean

of log(yij)− (xij • β), from which the value of ini can be estimated by taking exponen-

tials.

Let îni denote the estimate of ini, and let îeij be the estimate of ieij. If these were the

true amount of protein i and the true ionization efficiency of peptide ij, then the value

of the peptide’s spectral count would be ŷij = îni × îeij. By comparing this estimate

to the observed value, yij, for each peptide in the test set, we obtain an estimate of the

generalization error of our methods.

A common way to make such a comparisons is to use the Pearson correlation coeffi-

cient, which measures the linear correlation between two random variables [3]. However,

because of the distribution of our data—highly skewed and ranging over several orders

of magnitude—the Pearson correlation coefficient can be misleading, since its value is

dominated by a relatively small number of extremely large data values. In addition,

because of the variety of models we use, it is not clear whether we should compute the

correlation of y v.s. ŷ, or of log(y) v.s. log(ŷ), or of 1/y v.s. 1/ŷ. Fortunately, all

these problems are solved by using the Spearman rank correlation coefficient [3]. This is

similar to the Pearson correlation coefficient, except that instead of correlating the data

values themselves, it correlates their ranks. It is therefore insensitive to the exact values

of the data, and in particular, to extremely large values. Moreover, instead of measuring

linear correlation, it measures monotone correlation (i.e., the tendency of one variable

to increase or decrease with the other variable). In fact, the value of the Spearman rank

correlation coefficient is invariant under monotonic transformations of the data. Thus, it

does ot matter whether we consider y or log(y) or 1/y.

Finally, in order to judge the significance of our results, we compare them to a set of

naive and random models. We use naive versions of the linear, exponential and inverse

models, denoted LIND, EXPD and INVD, respectively (where D stands for “Dumb”).



Chapter 4. Regression Analysis 55

In each naive model, each peptide is simply assumed to have an ionization efficiency of

1. From Equations (4.16), this is equivalent to assuming that, for all peptides, x • β is

1 in the linear model, 0 in the exponential model, and 1 in the inverse model. We then

specialize the methods described above for estimating ini, as follows:

• in the linear model, ini is estimated to be the mean of yij;

• in the exponential model, log(ini) is estimated to be the mean of log(yij);

• in the inverse model, 1/ini is estimated to be the mean of 1/yij.

Using these estimates of protein input, the spectral count of each peptide is estimated

to be ŷij = îni · îeij = îni, since îeij = 1 in all of the naive models. Finally, we

compare these estimated spectral counts to the observed values using Spearman’s rank

correlation coefficient. Note that for the naive models, the Spearman coefficient will

not depend on which vectors we use to represent peptide sequences, since the models

themselves are independent of this. Similarly, we propose random versions of the linear,

exponential and inverse models, denoted LINR, EXPR and INVR, respectively (where R

stands for “Random”). In each random model, each peptide is simply assumed to have

an ionization efficiency which satisfies uniform distribution U [0, 1], the model fitting of

the random models are exactly the same as the naive models.

4.4 Results and Analysis

4.4.1 Experiments on Simulated Data

Since the protein levels are unknown in the real datasets, we must resort to simulated data

in order to directly compare the estimated protein levels to their true values. Figures 4.1,

4.2 and 4.3 illustrate the estimation of protein input levels for the simulated data. The

straight blue lines in the figures represent the true protein levels, while the jagged red



Chapter 4. Regression Analysis 56

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

different proteins

in
pu

t l
ev

el
s

LIN1 model with 50% noise

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

different proteins

in
pu

t l
ev

el
s

LIN2 model with 50% noise

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

different proteins

in
pu

t l
ev

el
s

LIN3 model with 50% noise

Figure 4.1: Illustration of the estimated input levels for different linear models with noise

level 50%, The figures shows the fitting result for LIN1,LIN2,LIN3,

lines represent their estimated values.4 Notice that the curve of estimated values has

the same general shape as the curve of real values: when the real values rise or fall

dramatically, so to the estimated values; and when the real values remain constant, the

estimated values vary around the true value. However, the amount of variation varies

considerably from model to model.

4As emphasized in Sections 4.1 and 4.2, it is only possible to estimate the relative values of protein
levels, not their absolute values. Thus, the true and estimated protein levels may differ by a possibly-
large constant factor. We have compensated for this in the figures by scaling the estimates so that they
have the same sum of squares as the true values.



Chapter 4. Regression Analysis 57

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

240

different proteins

in
pu

t l
ev

el
s

INV1 model with 50% noise

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

240

different proteins

in
pu

t l
ev

el
s

INV2 model with 50% noise

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

240

different proteins

in
pu

t l
ev

el
s

INV3 model with 50% noise

Figure 4.2: Illustration of the estimated input levels for different inverse models with

noise level 50%, here shows the results for INV1, INV2 and INV3

Figure 4.1 clearly show that the variance in the estimated protein levels is much

greater for LIN1 than for the other two linear models, LIN2 and LIN3, which have about

equal variance. In addition, figure 4.2 show that the variance is about equal for all three

inverse models, INV1, INV2 and INV3. The upper and lower panels cannot be directly

compared, however, since the linear and inverse models are based on different noise

models. (As described in Section 4.3.1, in the linear model, noise is added to ionization

efficiency, ie, while in the inverse model, noise is added to 1/ie.)



Chapter 4. Regression Analysis 58

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300
EXP1 model on the simulated data

different proteins

in
p

u
t 

le
ve

ls

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350
EXP2 model on the simulated data

different proteins

in
p

u
t 

le
ve

ls

Figure 4.3: Illustration of the estimated input levels for different exponential models

with noise level 25%. The left panel shows results for EXP1, while the right panel shows

results for EXP2

Figure 4.3 shows a similar trend for the two exponential models, EXP1 and EXP2:

the curve of estimated protein levels has the same general shape as the curve of true

protein levels. In addition, we can see that the variance in the estimated protein levels is

about the same for the two exponential models. Note, however, that the ostensible noise

level is half of that used in Figures 4.1 and 4.2 for the linear and inverse models, yet

the variance in protein estimates appears to be much higher. This is because the noise

model is multiplicative, not additive. In particular, as described in Section 4.3.1, the

ionization efficiency is multiplied by enoise. Thus, an ostensible noise level of 25% has a

much greater impact on the exponential model than on the linear model.

4.4.2 Experiments on Real-World Data

Tables 4.1, 4.2 and 4.3 show mean testing Spearman rank correlation coefficients of 10-fold

cross validation. While tables 4.4 to 4.11 are complete results for 10-fold cross validation

for mouse brain dataset, in these tables, we collect the mean of both the training and



Chapter 4. Regression Analysis 59

testing cases with the corresponding standard deviations, the entries are Spearman rank

correlation coefficients between y and ŷ or ie vs. îe. For more results on Mouse Heart

dataset and Mouse Kidney dataset, please refer to the Appendix. In our experiment,

according to the 10-fold cross validation, we divide the dataset into 10 parts, each time,

we use 9 partitions among them to be the training set, while the remaining 1 as the testing

set, the Spearman correlation coefficients of spectral count y vs. estimated value ŷ for

the 10 runs are calculated. The mean values and standard deviations on both training

cases and testing cases are recorded to evaluate the performance of different methods.

For every combination of eleven fitting methods, four peptide representations, and three

Mouse datasets. The rows of each table represent fitting methods, and the columns

represent vector representations of peptides (identified by the number of features in the

vectors.) Each table entry is the mean value Spearman rank correlation coefficients of

y and ŷ for 10-fold cross validation, that is, of observed peptide spectral counts and

estimated values. The performance of the these methods, along with the naive methods,

is illustrated graphically in Figure 4.4, 4.5, 4.6, which plot the mean value of Spearman

rank correlation coefficients of 10-fold cross validation against the size of the feature

vectors. Each point in the curve represents the mean Spearman correlation coefficient,

while each curve in the figure represents a different method.

The following observations about the fitting methods are immediately apparent from

these tables: LIN1 and LIN2 perform the worst; of the linear methods, LIN3 performs

the best; of the inverse methods, INV3 performs the best; INV3 always performs better

than LIN3; the exponential methods perform the best of all; the naive methods perform

better than many of the other methods; and of the naive methods, INVD performs the

worst; Except the models LIN1 and LIN2, INV1, all the models perform better than

random models.

Recall that the only difference between LIN1 ad LIN2 is the constraints on which

they are based. The poorer performance of LIN1 suggests that its constraint is much less



Chapter 4. Regression Analysis 60

22 42 62 232
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

feature number

Comparison of different models for test y vs. y
h
at on Brain dataset

LIN1
LIN2
LIN3
INV2
INV1
INV3
EXP1
EXP2
LIND
INVD
EXPD
CCA1

Figure 4.4: A comparison of the generalization performance of different models on the

Mouse Brain dataset

appropriate than the constraint for LIN2, as argued in Section 4.2.1. Recall also that

LIN1 and LIN2 use a two-phase approach to learning, in which the parameter vector β is

estimated first, after which protein input levels are estimated from β. In contrast, LIN3

is based on a single-phase approach to learning, in which parameters and protein levels

are all learned simultaneously. The better performance of LIN3 over LIN1 and LIN2 on

the real datasets suggests that the single-phase approach is more appropriate, at least

for tandem mass spectrometry data, as suggested in Section 4.2.1. (Interestingly, in our

experiments on simulated data, LIN1 and LIN2 performed comparably, and clearly worse

than LIN1.) These conclusions are all corroborated by the performance of INV1, INV2



Chapter 4. Regression Analysis 61

22 42 62 232
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

feature number

Comparison of different models for testing y vs. y
h
at on Heart dataset

LIN1
LIN2
LIN3
INV2
INV1
INV3
EXP1
EXP2
LIND
INVD
EXPD
CCA1

Figure 4.5: A comparison of the generalization performance of different models on the

Mouse Heart dataset

and INV3, which parallels that of LIN1, LIN2 ad LIN3, upon which they are based.

That INV3 always performs better than LIN3 suggests that the inverse transformation

upon which INV3 is based had its intended effect. However, the result is not conclusive,

since the naive inverse method, INVD, does not perform significantly better than the

other two naive methods, LIND and EXPD, especially on the kidney dataset. In the

naive methods, there is no attempt to model the ionization efficiency of peptides, so that

data transformation is the only factor that distinguishes them. The random models be

be viewed as a benchmark, the poor performance of these random models suggests that

our proposed modeling strategy is effective.



Chapter 4. Regression Analysis 62

22 42 62 232

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

feature number

Comparison of different models for test y vs. y
h
at on Kidney dataset

LIN1

LIN2

LIN3

INV2

INV1

INV3

EXP1

EXP2

LIND

INVD

EXPD

CCA1

Figure 4.6: A comparison of the generalization performance of different models on the

Mouse Kidney dataset

The superior performance of the exponential models suggests that the logarithmic

transformation on which they are based is the most appropriate. This is perhaps not

surprising. Logarithms remove the problem of data ranging over several orders of mag-

nitude, while simultaneously compressing a sparse set of extremely large values into a

denser set of smaller values. This effectively deals with two of the main problems in

our datasets. In addition, it is reasonable to suppose that in estimating spectral counts,

as with many other real-world values, it is the percentage error, not the absolute error

that matters. Thus, the appropriate noise model would appear to be multiplicative, not

additive. Logarithms conveniently convert multiplicative noise to additive noise, thus



Chapter 4. Regression Analysis 63

Table 4.1: Spearman rank correlation coefficients on the Mouse Brain dataset

Models 22 features 42 features 62 features 232 features

LIN1 0.1826 0.2424 0.2135 0.2538

LIN2 0.2326 0.2520 0.2300 0.1996

LIN3 0.4433 0.4426 0.4492 0.4532

INV1 0.3107 0.2809 0.2337 0.1965

INV2 0.4968 0.4932 0.3867 0.2508

INV3 0.4971 0.4942 0.5030 0.5.55

EXP1 0.5134 0.5118 0.5222 0.4171

EXP2 0.5184 0.5178 0.1224 0.5435

LIND 0.4087 0.4087 0.4087 0.4087

INVD 0.4215 0.4215 0.4215 0.4215

EXPD 0.4664 0.4664 0.4664 0.4664

LINR 0.3783 0.3783 0.3783 0.3783

INVR 0.3867 0.3867 0.3867 0.3867

EXPR 0.4566 0.4566 0.4566 0.4566

making linear regression a natural method to apply to the transformed data, which is

exactly what the two exponential methods do. One thing to note is the bad performance

of EXP2 model when using 62 features, from our experiments, this is because of the

not full column rank of the matrix V T V mentioned in Section 4.2.3. Therefore, before

applying EXP2, a pre-check of full-rankness is a necessity. In addition, unlike the inverse

transformation, logarithms map large values to large values, and small values to small

values. In contrast, since the inverse transformation maps large values to small values, a

small error in the estimated value of 1/y can result in a large error in y when y is large.

This may more than compensate for the ability of the inverse model to eliminate all skew



Chapter 4. Regression Analysis 64

Table 4.2: Spearman rank correlation coefficients on the Mouse Heart dataset

Models 22 features 42 features 62 features 232 features

LIN1 0.1792 0.1699 0.1559 0.1290

LIN2 0.1599 0.1629 0.1681 0.1674

LIN3 0.4939 0.4926 0.4002 0.4303

INV1 0.3186 0.2525 0.2366 0.2634

INV2 0.5385 0.5328 0.3511 0.2092

INV3 0.5322 0.5274 0.5310 0.4963

EXP1 0.5495 0.5463 0.5531 0.4963

EXP2 0.5511 0.5266 0.1635 0.5684

LIND 0.4685 0.4685 0.4685 0.4685

INVD 0.5132 0.5132 0.5132 0.5132

EXPD 0.5137 0.5137 0.5137 0.5137

LINR 0.4436 0.4436 0.4436 0.4436

INVR 0.4523 0.4523 0.4523 0.4523

EXPR 0.5033 0.5033 0.5033 0.5033

from the data.

However, even the exponential methods perform only slightly better than the best

naive method (which, as it turns out, is the exponential naive method, EXPD). The

naive methods essentially estimate the protein level by taking an average of the peptide

spectral counts for that protein. That they perform as well as they do can be interpreted

in a straightforward way. Higher protein levels will certainly give rise to higher peptide

spectral count. Apparently, the reverse is also true to an extent: higher spectral counts

are, on average, a reflection of higher protein levels. Put another way, two factors con-

tribute to spectral counts: the input level of the protein, and the ionization efficiency of



Chapter 4. Regression Analysis 65

Table 4.3: Spearman rank correlation coefficients on the Mouse Kidney dataset

Models 22 features 42 features 62 features 232 features

LIN1 0.1540 0.2186 0.1826 0.2299

LIN2 0.2112 0.1857 0.1685 0.1884

LIN3 0.4678 0.4685 0.4692 0.2027

INV1 0.3191 0.2784 0.2238 0.1826

INV2 0.5130 0.5049 0.3198 0.2299

INV3 0.5117 0.5098 0.5101 0.2314

EXP1 0.5214 0.5091 0.5240 0.3894

EXP2 0.5254 0.5266 0.1855 0.5338

LIND 0.4215 0.4215 0.4215 0.4215

INVD 0.4215 0.4215 0.4215 0.4215

EXPD 0.4695 0.4695 0.4695 0.4695

LINR 0.3947 0.3947 0.3947 0.3947

INVR 0.3998 0.3998 0.3998 0.3998

EXPR 0.4584 0.4584 0.4584 0.4584

the peptide. The naive methods focus entirely on the former factor, which by itself is

enough to garner a correlation coefficient of about 0.5. However, the naive methods do

nothing to explain the very large differences in spectral count between different peptides

from the same protein. Instead, they assume the spectral counts are all of equal intensity,

something that is not observed experimentally.

Finally, we should point out that of the four different vector representations, the 22-

feature vector generally works the best, though the 42-feature and 62-feature vectors are

often competitive. This suggests that sequential information (as captured in these latter

two vectors) is not as important as good statistics on amino-acid counts (as captured



Chapter 4. Regression Analysis 66

in the 22-feature vector). The generally poor performance of the 232-feature vector

suggests that it is overfitting, since it includes all the features of the 22-feature vector,

which performs best. However, theses comments apply only when we consider all of the

fitting methods. When we consider only EXP1 and EXP2, the best performing methods,

their performance seems independent of which vector representation is used.

4.4.3 Visualization of the Goodness of Fit

−3 −2 −1 0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

2.5

log(\hat{ie})

lo
g

(i
e

)

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3
−16

−14

−12

−10

−8

−6

−4

−2

log(\hat{ie})

lo
g

(i
e

)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

6

7

log(\hat{ie})
lo

g
(i
e

)

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

log(\hat{y})

lo
g

(y
)

−8 −6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

log(\hat{y})

lo
g

(y
)

−1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

log(\hat{y})

lo
g

(y
)

Figure 4.7: Log-log plots of y v.s. ŷ (bottom row) and ie v.s. îe (top row) on the Kidney

dataset. The two left panels are the results of EXP1 method, the two middle panels are

the results of the LIN3 method, and the two right panels are the results of the INV3

method.

As mentioned above, the three methods LIN3, INV3 and EXP1 comes from different

families: linear models, inverse models, exponential models, respectively. To help visu-



Chapter 4. Regression Analysis 67

alize the goodness of the fit provided by these methods, Figure 4.7 provides log-log plots

of observed and estimated values for a training dataset.5 For each method, we provide

two figures, a plot of y v.s. ŷ, and a plot of ie v.s. îe. Here, ie and îe are derived from y

and ŷ, respectively, by dividing by în, the estimate of protein input level. ie and îe thus

provide two different measures of the ionization efficiency of a peptide. Note that îe is

the same as the estimate described in Section 4.3.

The first thing to notice is the strong horizontal lines in the plots of y v.s. ŷ. These

are due to the discrete nature of the observed values, y, most of which take on small,

positive integer values. The plots have no such vertical lines because the estimates, ŷ,

are real valued. The second thing to notice is that the plots of ie v.s. îe have no strong

lines. This is because ionization efficiency is inherently real-valued. Formally, dividing y

by în produces a real number, since îe is real valued. Finally, notice that the plot of ie

v.s. îe for the EXP1 method is by far the most Gaussian-looking of all the plots. This is

another measure by which it provides the best fit to the experimental data, in addition

to its relatively high correlation coefficient. In contrast, the plots for LIN3 and INV3 all

show evidence of residual structure that the methods were unable to fit.

4.5 Conclusions of Regression Analysis

We develop and evaluate a number of methods for estimating protein levels and peptide

spectral counts in Tandem Mass Spectrometry (MS/MS) data. Other researchers have

attempted to estimate the peptide spectral counts in an MS/MS spectrum given the

amount of protein input to a mass spectrometer [21]. However, in this chapter, we

addressed the reverse problem of estimating the amount of protein input given an MS/MS

spectrum. A solution to this problem would allow biologists to efficiently estimate the

amounts of the thousands of proteins in a tissue sample. To our knowledge, this is the

5The INV3 and LIN3 methods produce a very small number of negative estimates, which we discard
before taking logs.



Chapter 4. Regression Analysis 68

first attempt to solve this problem using large amounts of data.

The methods we developed are based on simple, generative models of MS/MS data. In

fitting the models to the data, the methods attempt to solve two problems simultaneously:

estimating protein input levels, and explaining why different peptides produce peaks of

different intensity. Of the eight methods developed, the two exponential methods, EXP1

ad EXP2, performed the best. However, this research is just a first step, and additional

work is needed before protein levels and spectral counts can be predicted accurately.

The results here suggest several directions for future work:

(i)More sophisticated regression methods, such as kernel methods and regression trees

could be tried. String kernels, in particular, could extract more information from the

peptide sequences. Such methods could easily be adapted to the framework of our EXP1

method, which transforms the data into a more manageable form while simultaneously

factoring out the unknown amount of protein input.

(ii) The problem of a fit being dominated by a few extremely large data values might

be ameliorated by a weighting scheme that places a large weight on small values.

(iii)Although we tested several representations of peptides in this paper, it is not

yet clear whether the solution lies in more sophisticated regression schemes or in better

representations of peptides. Representations that capture more sequential information

(such as string kernels) may be important. In addition, a more refined representation

of peptide spectral counts may be needed. For instance,spectral peak shape, not just

values of spectral counts, may be important. To this end, we have recently acquired

more detailed MS/MS data that allows us to estimate peak shape.

(iv)The possible problem of overfitting can be addressed by regularization and bag-

ging. In particular, regularized linear regression could easily be incorporated into our

EXP1 method in order to test the utility of large vector representations of peptides.



Chapter 4. Regression Analysis 69

Table 4.4: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Brain

dataset with 22 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.1823 0.0064 0.1826 0.0384

LIN2 0.2262 0.0070 0.2326 0.0511

LIN3 0.4017 0.0054 0.4433 0.0550

INV1 0.3164 0.0046 0.3107 0.0377

INV2 0.5030 0.0047 0.4968 0.0525

INV3 0.3954 0.0056 0.4971 0.0495

EXP1 0.5210 0.0046 0.5134 0.0455

EXP2 0.5249 0.0047 0.5184 0.0432

LIND 0.4100 0.0059 0.4087 0.0563

INVD 0.4647 0.0058 0.4215 0.0356

EXPD 0.4692 0.0055 0.4664 0.0551

LINR 0.3839 0.0062 0.3783 0.0485

INVR 0.3915 0.0056 0.3867 0.0516

EXPR 0.4586 0.0051 0.4566 0.0497



Chapter 4. Regression Analysis 70

Table 4.5: Spearman rank correlation coefficients about ie vs. îe on the Mouse Brain

dataset with 22 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.3054 0.0115 0.3008 0.0483

LIN2 0.3088 0.0190 0.2943 0.0772

LIN3 0.3966 0.0051 0.3598 0.0365

INV1 0.2834 0.0051 0.2834 0.0402

INV2 0.2490 0.0081 0.2412 0.0298

INV3 0.2872 0.0064 0.2479 0.0368

EXP1 0.3432 0.0044 0.3312 0.0358

EXP2 0.3489 0.0044 0.3379 0.0326

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0746 0.0144 0.0916 0.0654

INVR 0.0682 0.0146 0.0641 0.0400

EXPR 0.0640 0.0131 0.0513 0.0379



Chapter 4. Regression Analysis 71

Table 4.6: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Brain

dataset with 42 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2215 0.0088 0.2424 0.0610

LIN2 0.2416 0.0190 0.2520 0.0423

LIN3 0.4039 0.0057 0.4426 0.0565

INV1 0.2798 0.0045 0.2809 0.0447

INV2 0.5031 0.0048 0.4932 0.0531

INV3 0.3967 0.0061 0.4942 0.0511

EXP1 0.5235 0.0048 0.5118 0.0508

EXP2 0.5286 0.0049 0.5178 0.0470

LIND 0.4100 0.0059 0.4087 0.0563

INVD 0.4647 0.0058 0.4215 0.0356

EXPD 0.4692 0.0055 0.4664 0.0551

LINR 0.3839 0.0062 0.3783 0.0485

INVR 0.3915 0.0056 0.3867 0.0516

EXPR 0.4586 0.0051 0.4566 0.0497



Chapter 4. Regression Analysis 72

Table 4.7: Spearman rank correlation coefficients about ie vs. îe on the Mouse Brain

dataset with 42 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2874 0.0043 0.2860 0.0442

LIN2 0.2987 0.0154 0.2885 0.0659

LIN3 0.4077 0.0049 0.3631 0.0356

INV1 0.2454 0.0056 0.2421 0.0329

INV2 0.2504 0.0082 0.2341 0.0364

INV3 0.2977 0.0062 0.2481 0.0373

EXP1 0.3503 0.0039 0.3324 0.0405

EXP2 0.3596 0.0042 0.3421 0.0350

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0746 0.0144 0.0916 0.0654

INVR 0.0682 0.0146 0.0641 0.0400

EXPR 0.0640 0.0131 0.0513 0.0379



Chapter 4. Regression Analysis 73

Table 4.8: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Brain

dataset with 62 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2102 0.0098 0.2135 0.0573

LIN2 0.2290 0.0138 0.2300 0.0537

LIN3 0.4138 0.0059 0.4492 0.0582

INV1 0.2501 0.0175 0.2337 0.0390

INV2 0.3769 0.1435 0.3867 0.1512

INV3 0.4152 0.0054 0.5030 0.0480

EXP1 0.5377 0.0046 0.5222 0.0497

EXP2 0.1155 0.0729 0.1224 0.0725

LIND 0.4100 0.0059 0.4087 0.0563

INVD 0.4647 0.0058 0.4215 0.0356

EXPD 0.4692 0.0055 0.4664 0.0551

LINR 0.3839 0.0062 0.3783 0.0485

INVR 0.3915 0.0056 0.3867 0.0516

EXPR 0.4586 0.0051 0.4566 0.0497



Chapter 4. Regression Analysis 74

Table 4.9: Spearman rank correlation coefficients about ie vs. îe on the Mouse Brain

dataset with 62 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.3143 0.0132 0.3216 0.0440

LIN2 0.2928 0.0183 0.2989 0.0598

LIN3 0.4264 0.0049 0.3784 0.0358

INV1 0.2681 0.0284 0.2795 0.0599

INV2 0.2659 0.0482 0.2551 0.0625

INV3 0.3306 0.0056 0.2748 0.0370

EXP1 0.3881 0.0044 0.3630 0.0407

EXP2 0.0712 0.0515 0.4376 0.0838

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0746 0.0144 0.0916 0.0654

INVR 0.0682 0.0146 0.0641 0.0400

EXPR 0.0640 0.0131 0.0513 0.0379



Chapter 4. Regression Analysis 75

Table 4.10: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Brain

dataset with 232 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2510 0.0402 0.2538 0.0523

LIN2 0.1981 0.0135 0.1996 0.0382

LIN3 0.4434 0.0057 0.4532 0.0505

INV1 0.1986 0.0133 0.1965 0.0647

INV2 0.2565 0.0861 0.2508 0.0690

INV3 0.4704 0.0070 0.5055 0.0524

EXP1 0.4275 0.1495 0.4171 0.1231

EXP2 0.5864 0.0050 0.5435 0.0416

LIND 0.4100 0.0059 0.4087 0.0563

INVD 0.4647 0.0058 0.4215 0.0356

EXPD 0.4692 0.0055 0.4664 0.0551

LINR 0.3839 0.0062 0.3783 0.0485

INVR 0.3915 0.0056 0.3867 0.0516

EXPR 0.4586 0.0051 0.4566 0.0497



Chapter 4. Regression Analysis 76

Table 4.11: Spearman rank correlation coefficients about ie vs. îe on the Mouse Brain

dataset with 232 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2630 0.0547 0.2526 0.0766

LIN2 0.2946 0.0126 0.2953 0.0448

LIN3 0.4974 0.0062 0.4075 0.0337

INV1 0.2091 0.0807 0.2121 0.0992

INV2 0.2688 0.0340 0.2710 0.0549

INV3 0.4157 0.0064 0.3387 0.0334

EXP1 0.4379 0.0456 0.4301 0.0719

EXP2 0.4959 0.0060 0.4397 0.0320

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0746 0.0144 0.0916 0.0654

INVR 0.0682 0.0146 0.0641 0.0400

EXPR 0.0640 0.0131 0.0513 0.0379



Chapter 5

Canonical Correlation Analysis

5.1 Introduction

1In this chapter, we investigate the possibility of predicting protein abundance with an

existing generative model, called Canonical Correlation Analysis (CCA) [25], which can

be viewed as an extension of multiple linear regression. Although it is a standard tool of

multivariate statistical analysis and has been used, for example, in economics, medicine,

meteorology and even in the classification of malt whiskey [31], CCA is surprisingly

unknown in the field of data mining, some exceptions being [27, 17, 2]. Because this is an

initial study, we chose it for its simplicity and tractability, and the goal was to see how

well (or poorly) it fits the data, and to quantify the error. The model predicts the spectral

count of a peptide based on two factors: its amino-acid sequence, and the abundance of

the protein from which it was derived. The model provides an explanation for the linear

relationship between protein abundance and spectral count. More importantly, we show

how to use the model to estimate protein abundance from spectral count.

However, while we have found that CCA is quite adequate for small data sets, we

have also found that it is computationally expensive for the large data sets we are dealing

1this chapter also appeared in [7]

77



Chapter 5. Canonical Correlation Analysis 78

with. As an alternative, this chapter explores that LIN3 model developed in Chapter 4

can be viewed as an approximation of CCA, one that avoids the need to deal with large,

dense matrices. LIN3 is correct for data of a certain form, which includes the kind of

data we are dealing with. We trained and tested both CCA and LIN3 on the biological

datasets mentioned before.The main evaluation method was 10-fold cross validation,

with correlation coefficient used to measure the goodness-of-fit of a learned model to the

testing portion of the data. The main difficulty in carrying out the evaluation was the

distribution of the spectral counts, which ranges over several orders of magnitude and

is highly skewed, with most data concentrated at very low values. To deal with this

difficulty, we use the same strategy as before, ie. we use the Spearman rank correlation

coefficient to measure the goodness-of-fit.

The rest of this chapter is organized as follows. Section 5.2 reviews the mathemati-

cal background of CCA, and how to use the CCA model to fit mass spectromety data.

Section 5.2.3 discusses the computational bottlenecks of CCA and show why LIN3 is an

efficient and robust approximation. Section 5.3 discusses generalization and regulariza-

tion issues. Section 5.4 presents our experimental results. Finally, Section 5.5 presents

conclusions and possible extensions.

5.2 Canonical Correlation Analysis (CCA)

5.2.1 Mathematical Background

Canonical correlation analysis (CCA), first developed by H. Hotelling [25], is a way of

measuring the linear relationship between two multidimensional variables, X and Y.

This can be defined as the problem of finding two sets of basis vectors, one for X and

the other for Y, such that the correlations between the projections of the variables onto

these basis vectors are mutually maximized. Consider the linear combinations x = XTwx

and y = YTwy of the two variables respectively. This means that the function to be



Chapter 5. Canonical Correlation Analysis 79

maximized is

ρ = E[x·y]√
E[x2]E[y2]

= E[wT
x XYTwy]√

E[wT
x XXTwx]E[wT

y YYTwy]

= wT
x Cxywy√

wT
x CxxwxwT

y Cyywy

(5.1)

Here, Cxy is the covariance matrix of X and Y, and wx and wy are corresponding ma-

trices, the columns of which form the pairwise orthogonal basis vectors. The subsequent

canonical correlations are uncorrelated for different solutions. That is, when i 6= j,




E[xixj] = E[wT
xiXXTwxj] = wT

xiCxxwxj = 0

E[yiyj] = E[wT
yiYYTwyj] = wT

yiCyywyj = 0

E[xiyj] = E[wT
xiXYTwyj] = wT

xiCxywyj = 0

(5.2)

The random variables x and y (i.e., the projections of X and Y onto wx and wy, respec-

tively) are called canonical variables.

To find the canonical correlations between the random, multidimensional variables,

X and Y, assume without loss of generality that the variables have mean 0. Their total

covariance matrix is therefore

C =




Cxx Cxy

Cyx Cyy


 = E







X

Y







X

Y




T 
 (5.3)

This is a block matrix where Cxx and Cyy are the within-sets covariance matrices of X

and Y, respectively, and Cxy = CT
yx is the between-sets covariance matrix. The canonical

correlations can then be found by solving the following generalized eigenvalue equations:




ρ2Cxxβ = CxyC
−1
yy Cyxβ

ρ2Cyyα = CyxC
−1
xx Cxyα

(5.4)

Here, the eigenvalues ρ2 are the squared canonical correlations, and the eigenvectors β

and α are the normalized canonical correlation basis vectors. The number of non-zero

solutions to these equations is limited to the smallest dimensionality of X and Y.

In this chapter, we are interested in the eigenvectors that corresponds to the largest

eigenvalue; that is, we want the largest canonical correlation. Thus, we want to find two



Chapter 5. Canonical Correlation Analysis 80

parameter vectors α and β such that the correlation coefficient between the two variables

x = XT β and y = YT α is maximal.

5.2.2 Applying CCA in Mining MS/MS data

Our goal is to fit a parametric model to the MS/MS data. As shown in a parallel paper

[8], this problem can be modeled under a linear regression framework. The model uses the

following variables: Pi is a protein; pi1, pi2,...,piki
are the peptides fragmented from the

protein in an MS/MS experiment; yi1, yi2, ...yiki
are the spectral counts of these peptides

in the protein’s mass spectrum; ini is the amount of protein Pi in the protein mixture

that is being analyzed by the MS/MS experiment. Note that ini is a latent variable

whose value we do not know. The following equation provides a simple model of the

generation of spectral peaks:

yij = ini · ieij + εij (5.5)

This equation divides the peak intensity into two factors: ini, the amount of protein

from which the peptide was generated; and ieij, the ionization efficiency of peptide

pij. Ionization efficiency can be thought of as the propensity of the peptide to ionize

and contribute to a peak, though it includes all factors that contribute to peak intensity

other than the amount of protein. In this way, we hope to untangle the amount of protein

(which we want to estimate) from all other factors. εij is simply the error in this model.

To estimate the ionization efficiency of a peptide, we model it as a linear function

with error:

ieij = xij • β + ε′ij (5.6)

Here, β is a vector of parameters (to be learned), xij is a vector of peptide properties

(derived from the peptide sequence), and • denotes the dot product (or inner product) of

the two vectors. The peptide properties could include such things as length, mass, amino-

acid composition, and estimates of various biochemical properties such as hydrophobicity,

chargeablity, etc. ε′ij is the error in the linear model.



Chapter 5. Canonical Correlation Analysis 81

Combining the two equations above gives our overall model:

yij = ini · (xij • β) + ε′′ij (5.7)

Observe that the right-hand side contains a product of two unknowns, ini and β. To

eliminate this non-linear term, we divide both sides by ini, to obtain a linear model:

yij · αi = xij • β + ε′′′ij (5.8)

where αi = 1/ini. Additional details of this model can be found in [6]. We call this an

”extended” regression model because of the presence of unknown values on both sides

of the equation. Such models cannot be solved by the classical techniques of linear

regression. However, we use CCA to provide an elegant solution.

First, we construct a sparse matrix, Y, as follows:

Y =




y11 · · · y1k1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 y21 · · · y2k2 · · · . . .
...

0 · · · 0 0 · · · 0
. . .

0 · · · 0 0 · · · 0 · · · 0 0

0 · · · 0 0 · · · 0 · · · yll · · · ylkl




where l is the number of proteins. In this matrix, each row corresponds to a protein,

and each column to a peptide. Element yij is the value of the spectral count of the jth

peptide of protein Pi.

We also construct the following matrix:

X = (x11, ..., x1k1 , x21, ..., x2k2 , ..., xl1, ..., xlkl
)

Here, each xij is a column vector, the vector of properties of peptide pij, defined above.

In addition to these two (known) matrices, X and Y, we define two (unknown)

column vectors, α and β. β was defined above, and α is defined to be (α1, ..., αl)
T ,

where αi = 1/ini as defined above. Of course, our aim is to estimate values for α and β.



Chapter 5. Canonical Correlation Analysis 82

With these definitions, Equation 5.8 can be rewritten as:

YT α = XT β + E (5.9)

where E is a column vector of errors. We use CCA to find values for α and β that

maximize the correlation coefficient between the two random vectors YT α and XT β.

From Equation 5.4, the solution to α and β can be found by solving the following system

of generalized eigenvector equations:





ρ2(XXT )β̂ = XYT (YYT )−1YXT β̂

ρ2(YYT )β̂ = YXT (XXT )−1XYT β̂
(5.10)

Because the eigenvalue, ρ2, represents the squared correlation coefficient between the two

random vectors YT α and XT β, we choose the eigenvectors, α and β, with the largest

eigenvalue.

Although elegant, we have found that solving the two equations 5.10 is computa-

tionally intractable. The main problem is the large size of the matrix Y. The data we

are dealing with contains about 10,000 different peptides and 2,000 different proteins.

Matrix Y therefore has dimensions 2, 000× 10, 000, and so the matrix YYT has dimen-

sions 2, 000× 2, 000. The first equation in 5.10 requires inverting this matrix. However,

inverting such a large matrix requires an inordinate amount of time and space, and leads

to severe numerical problems [11]. The second Equation in 5.10 requires inverting the

matrix XXT , which is not nearly so large and can easily be inverted. However, on the

left side of the equation, we again encounter the large matrix YYT , which makes the

generalized eigenvector decomposition extremely expensive.

Because of these problems, we must try to find an approximation to CCA, one that

is much more efficient and robust, as shown in the next section.



Chapter 5. Canonical Correlation Analysis 83

5.2.3 The Relationship between CCA and LIN3

In this section, we will show that LIN3 is in fact a more efficient and robust approxi-

mation of the CCA model under some specific settings. Although it is very large, the

matrix Y defined in the previous section is also very sparse. In every column, only one

element is non-zero. By exploiting the structure and sparseness of this matrix, an efficient

approximation of CCA could be developed.

In CCA, the statistical measure of similarity between two random vectors is cor-

relation coefficient. Formally, we want to find α and β that maximize the following

expression:

(YT α−YT α) • (XT β −XT β)

‖YT α−YT α‖ · ‖XT β −XT β‖ (5.11)

The point to notice here is that the two vectors are centered, by subtracting their means.

The correlation coefficient is thus the cosine of the angle between the two centered vectors,

and CCA finds α and β to minimize this angle. Unfortunately, from a computational

point of view, the centering of the vectors causes a great deal of problems, because it

effectively destroys the sparse structure of matrix Y. This is because the large covariance

matrix, Cyy, is defined not in terms of Y, but in terms of Y −Y. Unfortunately,

although Y is sparse, Y is dense, so Y −Y is also dense. In fact, in row i of matrix

Y, each entry is
∑ni

j=1 yij/N , so Y has no zeros and is maximally dense. Likewise

for Y −Y.

In the approximation method developed here, we retain the idea of minimizing the

angle, but without the requirement of centering the vectors first. That is, we minimize

the angle between the uncentered vectors YT α and XT β, by maximizing the cosine of

the angle between them. This amounts to maximizing the following expression:

YT α •XT β

‖YT α‖ · ‖XT β‖ (5.12)

Recall the our discussion in Chapter 4, it’s easy to see that this is exactly the model LIN3.

Maximizing this expression leads to the same generalized eigenvector equations given in



Chapter 5. Canonical Correlation Analysis 84

Equation 5.4, except that now the covariance matrices are defined in terms of uncentered

random variables. Thus, instead of Cyy = (Y −Y)(Y −Y)T , we now use Cyy = YYT .

Of course, this does not change the dimensions of any of the covariance matrices. In

particular, Cyy is still very large. However, it is now possible to simplify Equations 5.4

so that the remaining matrices are relatively small. This is shown in Theorem 1 be-

low. In this theorem, Yi is the column vector (yi1, yi2, ..., yini
)T , and Xi is the matrix

(xi1, xi2, ..., xini
). They represent, respectively, the spectral peak intensities and peptide

properties for protein i. Note that X = (X1,X2, ...,XN), so each Xi is a vertical slice

of the larger matrix X.

Theorem 1: Expression 5.12 above is maximized when the parameter vector β is a

solution of the following generalized eigenvector equation:

ρ2XXT β = [
∑

i

XiYiY
T
i XT

i /‖Yi‖2] β (5.13)

Moreover, it is the eigenvector with the largest eigenvalue, ρ2. In addition, ρ = cos θ,

where θ is the angle between the vectors YT α and XT β. Finally, the elements of the

parameter vector α are given by the following equation:

αi = YT
i XT

i β/ρ‖Yi‖2 (5.14)

Proof: First, observe that the maximum of expression 5.12 is the same as the max-

imum of the simpler expression AY •XT β subject to the constraints ‖AY ‖ = 1

and ‖XT β‖ = 1. To carry out this constrained maximization, we use Lagrange multi-

pliers and maximize the following expression:

AY •XT β − λ(‖AY ‖2 − 1) − µ(‖XT β‖2 − 1)

It is not hard to see that this expression is equivalent to the following:

∑

i

αiY
T
i XT

i β − λ(
∑

i

‖αiYi‖2 − 1) − µ(‖XT β‖2 − 1)



Chapter 5. Canonical Correlation Analysis 85

Taking partial derivatives with respect to β and αi and setting the results to 0 gives the

following equations:

∑

i

αiXiYi = 2µXXT β (5.15)

Y T
i XT

i β = 2λαi‖Yi‖2 (5.16)

Left-multiplying Equation 5.15 by βT gives

βT
∑

i

αiXiYi = 2µβTXXT β (5.17)

= 2µ‖XT β‖2 (5.18)

= 2µ (5.19)

since, by our constraint, ‖XT β‖ = 1. In a similar fashion, multiplying Equation 5.16 by

αi and summing over i gives

∑

i

αiY
T
i XT

i β = 2λ
∑

i

α2
i ‖Yi‖2 (5.20)

= 2λ‖AY ‖2 (5.21)

= 2λ (5.22)

since, by our constraint, ‖AY ‖ = 1. Note that Equations 5.19 and 5.22 can be rewritten

as follows:

2λ = AY •XT β = 2µ (5.23)

In other words, λ = µ = ρ/2, where ρ is the value we are maximizing. From this and

Equation 5.16, it follows immediately that

αi = Y T
i XT

i β/ρ‖Yi‖2 (5.24)

This proves Equation 5.14. To prove Equation 5.13, note that from Equations 5.15

and 5.24, we get

2µρXXT β = [
∑

i

XiYiY
T
i XT

i /‖Yi‖2]β



Chapter 5. Canonical Correlation Analysis 86

The result follows immediately, since 2µρ = ρ2.

End of Proof.

Comparing Equation 5.13 in this theorem with Equation 5.4 in Section 5.2, the im-

portant point is that we no longer need to compute or invert the large covariance matrix

Cyy. As for the other matrices, Xi has dimensions p×ni, where p is the number of prop-

erties (or features) characterizing each peptide. Matrix X thus has dimensions p ×M ,

where M =
∑

i ni is the total number of peptides. This means that the matrices XXT

and XiYiY
T
i XT

i have dimensions p × p. It is the size of these p × p matrices that is

important, since this determines the cost of solving eigenvector equation 5.13.

Since our data sets contain about 10,000 peptides, M is large. However, p, the number

of peptide features is much smaller. In this paper, we use two different feature sets, one

with p = 21 and one with p = 421, as described in Section 5.4. With p = 21 the

eigenvector matrices are very small. With p = 421 they are much larger, and although

they slowed down the eigenvector computations discernably, they still posed no significant

problems. Moreover, they are considerably smaller than the covariance matrix Cyy in

Equation 5.4, which has dimensions 2000× 2000 and did cause significant computational

problems. Perhaps more importantly, the size of the p × p matrices is independent of

how many proteins or peptides are in the data set. Thus, computational cost will not be

significantly affected as the data sets grow.

5.3 Generalization and Regularization Issues

In fitting a model to data, one may not wish to treat all data points equally, but to place

different importance on different data. To allow for this, one can introduce weights into

the optimization criterion. For LIN3, the optimization criterion is given by Equation 5.12,

which specifies the angle between two vectors. In this case, we can define what might be

called a generalized angle, in which different vector components are weighted differently.



Chapter 5. Canonical Correlation Analysis 87

If the two vectors are denoted U and V , then the generalized angle is defined by (the arc

cosine of) the following expression:

UTWV√
UTWU

√
V TWV

Here, W is a diagonal matrix, whose ith diagonal element, wi, is the weight of the

ith component of the vectors. When W is the identity matrix, we get the ordinary,

unweighted angle. To compute the generalized angle between U and V , we can use the

above formula, or we can first transform the vectors as follows:

U ′
i = Ui

√
wi V ′

i = Vi

√
wi

and then compute the unweighted angle between U ′ and V ′. This latter approach shows

that giving weight wi to data point (Ui, Vi) is equivalent to simply multiplying Ui and Vi

by
√

wi. This makes intuitive sense, since the angle between two vectors is more strongly

influenced by large vector components than by small ones.

In the case of our MS/MS data, this corresponds to assigning a different weight to

each peptide, and to transforming each peptide’s peak intensity and feature vector as

follows:

y′ij = yij
√

wij x′ij = xij
√

wij

where wij is the weight assigned to peptide j of protein i. We then apply Theorem 1 to

y′ij and x′ij, instead of to yij and xij. The choice of what weights to use is heuristic, and in

our experiments, we chose two different sets of weights, wij = ||Yi|| and wij = 1/||Yi||,
respectively. These weights are a simple attempt to address two different sources of noise

and error. The first set of weights emphasizes peptides from proteins with large spectral

counts, since they have a higher resolution and a better signal-to-noise ratio. The second

set of weights attempts to stabilize the model error, assuming that peptides from proteins

with larger counts will tend to have larger error.



Chapter 5. Canonical Correlation Analysis 88

5.4 Experiments

5.4.1 Experimental Results on the simulated Data

Table 5.1: ie vs. îe on the simulated data

model 0% 25% 50% 100% 200%

CCA 1.0000 0.9855 0.9461 0.8334 0.6384

1.0000 0.9849 0.9440 0.8263 0.6268

1.0000 0.9843 0.9414 0.8194 0.6114

weighted CCA 1.0000 0.9979 0.9931 0.9802 0.9523

1.0000 0.9976 0.9917 0.9769 0.9469

1.0000 0.9972 0.9903 0.9709 0.9393

LIN3 1.0000 0.9853 0.9457 0.8257 0.6063

1.0000 0.9847 0.9441 0.8191 0.5920

1.0000 0.9841 0.9410 0.8142 0.5751

Weighted LIN3 0.9998 0.9853 0.9449 0.8257 0.6051

0.9998 0.9844 0.9424 0.8189 0.5889

0.9998 0.9837 0.9395 0.8094 0.5733

Besides the real world dataset, we also generated simulated data on which to test our

methods. The function of the simulated data is two fold: first, since we have already

known every aspect of the dataset, the result for a specific model can be predicted

theoretically, thus convince the others that the implementation detail is correct; second,

with simulated data, we can test the intrinsic properties of models based from from

different aspects. For every assumption, our simulated data have altogether 100 proteins,

and each protein have 10 different peptide fragmentation sequences. the occurrence

frequency of each single amino acid satisfy normal distribution with mean 4 and standard



Chapter 5. Canonical Correlation Analysis 89

Table 5.2: y vs. ŷ on the simulated data

model 0% 25% 50% 100% 200%

CCA 0.9999 0.9977 0.9919 0.9669 0.8545

0.9999 0.9972 0.9904 0.9590 0.8316

0.9999 0.9965 0.9874 0.9471 0.8006

weighted CCA 0.9762 0.9738 0.9645 0.8135 0.3080

0.9711 0.9703 0.9588 0.5050 0.2018

0.9656 0.9649 0.9435 0.2240 0.0921

LIN3 1.0000 0.9980 0.9921 0.9684 0.8864

1.0000 0.9975 0.9903 0.9627 0.8725

1.0000 0.9968 0.9883 0.9519 0.8470

Weighted LIN3 1.0000 0.9978 0.9920 0.9668 0.8930

1.0000 0.9975 0.9902 0.9619 0.8735

1.0000 0.9968 0.9875 0.9552 0.8528

deviation 2. the input levels for different peptides are ranged from 20 to 250. every

peptide fragmented from the same protein has the same input. Further more, to make

the analysis more easy, we constraint every 10 proteins have the same input level. Thus,

there are altogether 100 different input levels for all the peptides. To test the robustness

of different models facing noise, we add Gaussian noise on the generated data. the noise

has the mean 0 and the standard deviation can be adjusted, as we have shown in table

2 and table 3 in the following. Several noise levels (d = 0%, 25%, 50%, 100%, 200%)

were examined. The entire procedure is repeated N = 100 times. Each run yields

a correlation coefficient for each predictor; the results are summarized by computing

the median correlation coefficient for each predictor, the 75th percentile, and the 25th

percentile over the 100 runs (Table 5.1 and Table 5.2). For this experiment, the CCA



Chapter 5. Canonical Correlation Analysis 90

model, the weighted CCA model, LIN3 and the weighted LIN3 were each tested to see

the correlation coefficients on the simulated datasets. The corresponding experimental

results are shown in Table 5.1 and Table 5.2). These tables show the correlation of

observed and estimated values for ionization efficiency (ie v.s. îe) and for spectral count

(y v.s. ŷ). In general, we regard the latter correlation to be the more important one,

since y is observed directly in an MS/MS experiment, whereas ie is not, but is computed

from y using our estimates of the amounts of protein input.

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

different proteins

in
pu

t l
ev

el
s

CCA with 50% noise

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

different proteins

in
pu

t l
ev

el
s

weighted CCA with 50% noise

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

different proteins

in
pu

t l
ev

el
s

approxmiate model with 50% noise

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

different proteins

in
pu

t l
ev

el
s

weighted approxmiate with 50% noise

Figure 5.1: Illustration of the estimated input levels for different models with noise

level 100%, they are CCA, weighted CCA, Approximate method, weighted approximated

method respectively



Chapter 5. Canonical Correlation Analysis 91

From Tables 5.1 and 5.2, we can see that the correlation of y vs ŷ is normally better

than that of ie vs. îe. Also, the results of LIN3 are very close to those of CCA methods,

suggesting that it is a good approximation. More importantly, using y vs. ŷ, the LIN3

model performs much better than CCA, from which we can conclude that LIN3 model is

more robust to noise than CCA. Similar results can also be seen in the real-world dataset,

below. For both the CCA model and LIN3, the weighted strategy appears very effective,

and performance can be improved greatly, which is evidence that the weighting strategy

is robust for Gaussian noise.

Figure 5.4.1 shows the estimation of the input levels for different models, From which,

we can see that all these four methods can effectively estimate the relative input levels

of different peptides, but the weighted CCA model is more sensitive than the other three

models. Also, the estimated values of the LIN3 model is close to those of the CCA model,

which is also a good evidence that LIN3 is a good or even better approximation to the

CCA model.

5.4.2 Experimental Results on Real-world Datasets

This section uses real-world data to experimentally evaluate the learning methods and

models described above. The main evaluation strategy is ten-fold cross validation, with

correlation coefficient used to measure the fit of a learned model to the testing portion

of the data.

Study Design

We evaluated the learning methods on three data sets derived from tissue samples taken

from Mouse. Similar in form to Table 2.1 in Chapter 2. For the learning methods de-

veloped in this chapter, each peptide must be represented as a vector, x. This section

evaluates two ways of doing this, using vectors with 21 features and 421 features, respec-

tively. The vectors with 21 features represent the amino-acid composition of a peptide.



Chapter 5. Canonical Correlation Analysis 92

Since there are twenty different amino acids, the vector has 20 features, (x1, ..., x20),

where the value of feature xi is the number of occurrences of a particular amino acid in

the peptide. In addition, the vector has a 21st feature, x0, whose value is always 1, to

represent a bias term, as is common in machine learning models [24]. The vectors with

421 features include the original 21 plus an additional 400 features representing the dimer

composition of a peptide. A dimer is a sequence of two amino acids, and since there are

20 distinct amino acids, there are 400 distinct dimers.

We evaluated numerous combinations of feature vector, learning method and weight-

ing scheme. Due to space limitations, we present only five of them here. In addition,

because of the time required to execute CCA, we used it in only one combination: un-

weighted and with vectors having 21 features. We also evaluated four versions of the ap-

proximate method developed in Section 5.2. The first two versions are both unweighted

and use vectors with 21 features and 421 features, respectively. We refer to these two ver-

sions as LIN3-21 and LIN3-421. The other two versions are both weighted and use vectors

with 21 features. The two weighting schemes used are wi = ||Yi|| and wi = 1/||Yi||, as

described in Section 5.3. Finally, our methods are compared with the random models as

proposed in Chapter 4.

Using ten-fold cross validation, we evaluated each of these five learning methods on

each of the three Mouse data sets. Thus, each method was trained on nine tenths of the

data (the training set), and the fitted model was then evaluated on the remaining one

tenth of the data (the test set), and this was repeated in ten possible ways. Each training

session produced an estimate, β̂, of the parameter vector β, and an estimate, în, of the

input amount for each protein in the training set. Using β̂, we estimated the ionization

efficiency of each peptide in the entire data set, using the formula îe = x • β̂, where

x is the vector representation of the peptide. Applying univariate linear regression to

Equation 5.5, we then estimated an input amount, în, for each protein in the test set. We

then estimated the spectral count of each peptide in the entire data set, using ŷ = în · îe.



Chapter 5. Canonical Correlation Analysis 93

Finally, we compared the estimated and observed values of peptide spectral count (that

is, ŷ and y) by computing correlation coefficients.

The results are shown in Table 5.3. In this table, each column corresponds to a

Mouse data set, and each row corresponds to a learning method. Each position in the

table shows four numbers, stacked vertically. The top two numbers are the mean and

standard deviation of the correlation coefficient of ŷ and y on the training data. The

bottom two numbers are the mean and standard deviation of the correlation coefficient

on the test data. (Since at this stage, we are only interested in rough estimates of corre-

lation coefficient, the ten estimates produced by ten-fold cross validation are enough.) In

addition, by dividing ŷ and y by în, we get two different estimates of ionization efficiency,

which we denote îe and ie, respectively. The correlation coefficient between these two

estimates is what CCA tries to maximize. Thus, while the correlation coefficient of ŷ

and y measures the ability of the fitted model to predict experimental observations, the

correlation coefficient of îe and ie provides the most direct measure of fit between the

model and the data. The results are shown in Table 5.4, which has the same format as

Table 5.3. Also, The performance of the these methods, along with the naive methods,

is illustrated graphically in Figure 5.2, 5.3 which plot the mean value of Spearman rank

correlation coefficients of 10-fold cross validation against the size of the feature vectors.

Each point in the curve represents the mean Spearman correlation coefficient, while each

curve in the figure represents a different method.

Results

The first point to notice is that of all the methods that use vectors with 21 features, CCA

provides the best fit to the training data in Table 5.4. (only LIN3-421 produces a better

fit, and only on the Kidney data, but it uses more features.) This is to be expected since

CCA maximizes the correlation coefficient, which is what the table measures. On the

other hand, LIN3-21 provides the best fit to the test data. The same is true in Table 5.3,



Chapter 5. Canonical Correlation Analysis 94

CCA LIN3−21 LIN3−421 LIN3−y LIN3−1/y LINR
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

methods

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Comparison of different models for test y vs. y
h
at across three datasets

Brain Train
Brain Test
Heart Train
Heart Test
Kidney Train
Kidney Test

Figure 5.2: A comparison of the generalization performance of different models across

the three datasets for y vs. ŷ

where LIN3-21 provides better test predictions of y, the peptide spectral count and the

main biological observable. These results suggest that while our method may be an

approximation of CCA, it may also be more appropriate for this problem, in terms of

accuracy as well as speed.

The effect of the weighted methods is inconclusive. In Table 5.4, the unweighted

LIN3-21 has consistently better performance on the test data than either of the two

weighted schemes, but not dramatically better. In Table 5.3, the three methods perform

comparably on the test data, though weights of |1/y| seem to be marginally best, and

weights of |y| seems to be marginally worst, with LIN3-21 in between.



Chapter 5. Canonical Correlation Analysis 95

CCA LIN3−21 LIN3−421 LIN3−y LIN3−1/y  LINR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

methods

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Comparison of different models for ie vs. ie−hat across three datasets

Brain Train
Brain Test
Heart Train
Heart Test
Kidney Train
Kidney Test

Figure 5.3: A comparison of the generalization performance of different models across

the three datasets for ie vs. îe

The effect of the larger feature vector is more conclusive. If we compare the LIN3-

21 and LIN3-421 methods in Table 5.4, we can see that LIN3-421 shows evidence of

overfitting, since the fit on the testing data is often much worse than on the training

data. The 400 dimer values included among the 421 features thus appear to have little

predictive value. Biologically, this a useful negative result.

Table 5.3 shows some apparently anomalous patterns. For instance, the fit on the

testing data is often better than on the training data. Also, LIN3-21 has a better fit to

the training data than LIN3-421, even though the features used in LIN3-21 are a subset

of those used in LIN3-421. These patterns are probably a result of comparing ŷ and y,



Chapter 5. Canonical Correlation Analysis 96

whereas the learning methods try to fit îe and ie. The same patterns are not present in

Table 5.4, which compares îe and ie.

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x*beta

b*
y

the distribution of x*beta vs. b*y−−original−21

−0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x*beta

b*
y

the distribution of x*beta vs. b*y−−original−421

−2 −1 0 1 2 3 4 5 6

x 10
−3

−2

0

2

4

6

8

10

12

14

16
x 10

−3

x*beta

b*
y

the distribution of x*beta vs. b*y−−weight−y

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x*beta

b*
y

the distribution of x*beta vs. b*y−−weight−1/y

Figure 5.4: Plots of ie vs. îe as estimated by LIN3-21 (left) and LIN3-421 (right) on the

Mouse Kidney data set.

In addition to the measurements presented in Tables 5.3 and 5.4, Figure 5.4 provides

a visual representation of how well the estimated models fit the data. The figure shows

two plots. In each plot, the horizontal axis is îe, the vertical axis is ie, and each point

represents a single peptide. The left plot was generated by the LIN3-21 method, and the

right plot by the LIN3-421 method, both trained on the entire Kidney data set. The other

methods generate similar plots. The first point to notice is that in both plots, the vast

majority of values of îe and ie are positive, which is how things should be, since ionization



Chapter 5. Canonical Correlation Analysis 97

efficiency is inherently positive. The LIN3-421 method has more negative points than

LIN3-21, but again, this could be a result of overfitting. The second point to notice is that

each plot appears to consist of two components—a fairly linear diagonal component, and

a less-linear horizontal blob. This suggests that there are two populations of peptides,

those whose ionization efficiency is well-modeled by a linear function, and those whose

ionization efficiency is much less predictable. This would explain why the correlation

coefficients in Table 5.4 are low. It also suggests a natural topic for future research:

characterizing those peptides that can be modeled linearly.

5.5 Conclusion of Canonical Correlation Analysis

In this chapter, CCA, LIN3 model as an approximate CCA and their application in

mining peptide tandem MS/MS data were introduced. the main purpose of this work

was to determine if the spectral counts of the MS/MS experiment could be predicated by

some simple statistical models. Experiments on both simulated dataset and real-world

datasets were conducted to evaluate the advantages and weakness of different models.

Based on the experimental results, reasonable hypothesis were made which will be our

future directions. Especially, even though CCA is too computational expensive to be

practical, our proposed more efficient and robust approximation method LIN3 can be a

useful data mining tool for a kind of interesting real-world problems, for which besides the

corresponding coefficients for the predictors, there may also be different latent variables

for responses. One of the limitations for LIN3 is that it’s based on the specific structure

of the matrix Y as introduced before. Even though for most spectrum based mining

problem, this is a reasonable assumption, it makes LIN3 not as general purpose as CCA,

for this, we are considering a technique by finding sub-clusters to capture the structure

of the data. Thus reduce problem yields much smaller matrices of which the generalized

eigenvalue decomposition and inverse can be computed more efficient for CCA.



Chapter 5. Canonical Correlation Analysis 98

Table 5.3: Correlation of y and ŷ on real data

Method Statistics Brain Heart Kidney

Data Data Data

CCA Mean Train: 0.0350 0.0273 0.0335

Std Train: 0.0292 0.0162 0.0413

Mean Test: 0.3694 0.2575 0.3563

Std Test: 0.1118 0.1683 0.0865

LIN3-21 Mean Train: 0.2180 0.3319 0.2850

Std Train: 0.0356 0.0135 0.0583

Mean Test: 0.4190 0.4250 0.4109

Std Test: 0.1133 0.0906 0.0705

LIN3-421 Mean Train: 0.0660 0.1299 0.1742

Std Train: 0.0529 0.1631 0.0745

Mean Test: 0.2869 0.2839 0.4090

Std Test: 0.1975 0.1098 0.0999

Weighted Mean Train: 0.2121 0.4004 0.3518

LIN3-21 Std Train: 0.0678 0.0935 0.0363

w = |y| Mean Test: 0.4225 0.4406 0.4302

Std Test: 0.1004 0.0934 0.0951

Weighted Mean Train: 0.2568 0.3811 0.3005

LIN3-21 Std Train: 0.0067 0.0168 0.0186

w = |1/y| Mean Test: 0.3924 0.4223 0.3999

Std Test: 0.0924 0.0799 0.0586

LINR Mean Train: 0.3839 0.4497 0.3943

Std Train: 0.0062 0.0061 0.0059

Mean Test: 0.3783 0.4440 0.3902

Std Test: 0.0485 0.0479 0.0349



Chapter 5. Canonical Correlation Analysis 99

Table 5.4: Correlation of ie and îe on real data

Method Statistics Brain Heart Kidney

Data Data Data

CCA Mean Train: 0.6027 0.5929 0.5971

Std Train: 0.0042 0.0054 0.0040

Mean Test: 0.1054 0.0459 0.2049

Std Test: 0.0763 0.0486 0.0846

LIN3-21 Mean Train: 0.4298 0.3921 0.4078

Std Train: 0.0057 0.0081 0.0074

Mean Test: 0.2759 0.2234 0.2530

Std Test: 0.0432 0.0605 0.0485

LIN3-421 Mean Train: 0.5460 0.5469 0.6080

Std Train: 0.1998 0.2616 0.0071

Mean Test: 0.0982 0.0913 0.2335

Std Test: 0.1125 0.1058 0.0424

Weighted Mean Train: 0.4613 0.3909 0.3916

LIN3-21 Std Train: 0.0051 0.0104 0.0135

w = |y| Mean Test: 0.2021 0.1163 0.2272

Std Test: 0.0737 0.0788 0.0456

Weighted Mean Train: 0.3118 0.2995 0.3072

LIN3-21 Std Train: 0.0056 0.0070 0.0093

w = |1/y| Mean Test: 0.1999 0.1786 0.1905

Std Test: 0.0349 0.0528 0.0376

LINR Mean Train: 0.0746 0.0784 0.0802

Std Train: 0.0144 0.0172 0.0127

Mean Test: 0.0916 0.0911 0.0941

Std Test: 0.0654 0.0259 0.0293



Chapter 6

Conclusions

This work uses data-mining techniques to take a first step towards developing a theory

about modeling peptide tandem mass spectromety data. Specifically, to help to explain

the difference between peptide spectral counts, we compare and evaluate different dis-

criminant methods; To predict the peptide abundance and spectral count quantitatively,

we develop three generative models of MS/MS data, and for each, we develop a family

of methods for efficiently fitting the model to data. Because this is an initial study, the

models were chosen for their simplicity and tractability, and the goal is to see how well

(or poorly) they fit the data, and to quantify the error. Each model predicts the spectral

count of a peptide based on two factors: its amino-acid sequence, and the abundance

of the protein from which it was derived. The three models differ in their treatment of

peptide ionization. However, they each provides an explanation for the linear relation-

ship between protein abundance and spectral count. More importantly, we show how

to use each model to estimate protein abundance from spectral count; Finally, we tried

canonical correlation analysis model directly and showed its relationship with the LIN3

model we proposed before.

100



Appendix

Table 6.1: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Heart

dataset with 22 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.1690 0.0244 0.1792 0.0507

LIN2 0.1854 0.0111 0.1599 0.0357

LIN3 0.4579 0.0055 0.4939 0.0524

INV1 0.3275 0.0062 0.3186 0.0429

INV2 0.5452 0.0048 0.5385 0.0472

INV3 0.4103 0.0058 0.5322 0.0508

EXP1 0.5566 0.0050 0.5495 0.0424

EXP2 0.5581 0.0050 0.5551 0.0449

LIND 0.4735 0.0061 0.4685 0.0599

INVD 0.5181 0.0061 0.5132 0.0536

EXPD 0.5178 0.0058 0.5137 0.0512

LINR 0.4486 0.0048 0.4436 0.0500

INVR 0.4553 0.0058 0.4523 0.0494

EXPR 0.5081 0.0050 0.5041 0.0479

101



Chapter 6. Conclusions 102

Table 6.2: Spearman rank correlation coefficients about ie vs. îe on the Mouse Heart

dataset with 22 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2624 0.0137 0.2648 0.0429

LIN2 0.2810 0.0174 0.2487 0.0501

LIN3 0.3682 0.0077 0.3180 0.0425

INV1 0.2566 0.0117 0.2579 0.0620

INV2 0.2350 0.0043 0.2310 0.0282

INV3 0.2625 0.0052 0.2216 0.0317

EXP1 0.3068 0.0050 0.2995 0.0325

EXP2 0.3076 0.0054 0.2949 0.0321

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0846 0.0119 0.0902 0.0593

INVR 0.0695 0.0104 0.0991 0.0274

EXPR 0.0548 0.0081 0.0500 0.0443



Chapter 6. Conclusions 103

Table 6.3: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Heart

dataset with 42 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.1509 0.0067 0.1699 0.0397

LIN2 0.1685 0.0078 0.1629 0.0553

LIN3 0.4622 0.0058 0.4926 0.0516

INV1 0.2580 0.0041 0.2525 0.0371

INV2 0.5438 0.0052 0.5328 0.0476

INV3 0.4096 0.0061 0.5274 0.0526

EXP1 0.5586 0.0051 0.5463 0.0425

EXP2 0.5364 0.0037 0.5266 0.0323

LIND 0.4735 0.0061 0.4685 0.0599

INVD 0.5181 0.0061 0.5132 0.0536

EXPD 0.5178 0.0058 0.5137 0.0512

LINR 0.4486 0.0048 0.4436 0.0500

INVR 0.4553 0.0058 0.4523 0.0494

EXPR 0.5081 0.0050 0.5041 0.0479



Chapter 6. Conclusions 104

Table 6.4: Spearman rank correlation coefficients about ie vs. îe on the Mouse Heart

dataset with 42 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2472 0.0093 0.2382 0.0449

LIN2 0.2349 0.0202 0.2168 0.0377

LIN3 0.3821 0.0069 0.3210 0.0419

INV1 0.2025 0.0054 0.2024 0.0297

INV2 0.2371 0.0059 0.2231 0.0266

INV3 0.2763 0.0057 0.2203 0.0330

EXP1 0.3141 0.0047 0.2921 0.0315

EXP2 0.3704 0.0067 0.3526 0.0386

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0846 0.0119 0.0902 0.0593

INVR 0.0695 0.0104 0.0991 0.0274

EXPR 0.0548 0.0081 0.0500 0.0443



Chapter 6. Conclusions 105

Table 6.5: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Heart

dataset with 62 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.1546 0.0146 0.1559 0.0423

LIN2 0.1800 0.0115 0.1681 0.0448

LIN3 0.3671 0.1686 0.4002 0.1583

INV1 0.2289 0.0084 0.2366 0.0501

INV2 0.3564 0.1660 0.3511 0.1684

INV3 0.4289 0.0060 0.5310 0.0489

EXP1 0.5687 0.0046 0.5531 0.0387

EXP2 0.1496 0.1183 0.1635 0.1083

LIND 0.4735 0.0061 0.4685 0.0599

INVD 0.5181 0.0061 0.5132 0.0536

EXPD 0.5178 0.0058 0.5137 0.0512

LINR 0.4486 0.0048 0.4436 0.0500

INVR 0.4553 0.0058 0.4523 0.0494

EXPR 0.5081 0.0050 0.5041 0.0479



Chapter 6. Conclusions 106

Table 6.6: Spearman rank correlation coefficients about ie vs. îe on the Mouse Heart

dataset with 62 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2726 0.0154 0.2807 0.0452

LIN2 0.2567 0.0365 0.2344 0.0567

LIN3 0.3832 0.0303 0.3249 0.0544

INV1 0.2433 0.0174 0.2490 0.0713

INV2 0.2256 0.0556 0.2218 0.0555

INV3 0.3021 0.0052 0.2452 0.0343

EXP1 0.3466 0.0055 0.3192 0.0325

EXP2 0.0874 0.0591 0.4418 0.0569

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0846 0.0119 0.0902 0.0593

INVR 0.0695 0.0104 0.0991 0.0274

EXPR 0.0548 0.0081 0.0500 0.0443



Chapter 6. Conclusions 107

Table 6.7: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Heart

dataset with 232 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.1253 0.0135 0.1290 0.0308

LIN2 0.1526 0.0112 0.1674 0.0658

LIN3 0.4423 0.0565 0.4303 0.0824

INV1 0.2703 0.0066 0.2634 0.0565

INV2 0.2159 0.0084 0.2092 0.0571

INV3 0.4419 0.0144 0.4963 0.0557

EXP1 0.6065 0.0042 0.5585 0.0427

EXP2 0.6169 0.0042 0.5684 0.0415

LIND 0.4735 0.0061 0.4685 0.0599

INVD 0.5181 0.0061 0.5132 0.0536

EXPD 0.5178 0.0058 0.5137 0.0512

LINR 0.4486 0.0048 0.4436 0.0500

INVR 0.4553 0.0058 0.4523 0.0494

EXPR 0.5081 0.0050 0.5041 0.0479



Chapter 6. Conclusions 108

Table 6.8: Spearman rank correlation coefficients about ie vs. îe on the Mouse Heart

dataset with 232 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2610 0.0132 0.2691 0.0410

LIN2 0.2701 0.0087 0.2935 0.0335

LIN3 0.4832 0.0331 0.3445 0.0733

INV1 0.2768 0.0101 0.2669 0.0551

INV2 0.2784 0.0173 0.3084 0.0429

INV3 0.4018 0.0068 0.3031 0.0441

EXP1 0.4612 0.0065 0.3951 0.0433

EXP2 0.4785 0.0058 0.4108 0.0403

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0846 0.0119 0.0902 0.0593

INVR 0.0695 0.0104 0.0991 0.0274

EXPR 0.0548 0.0081 0.0500 0.0443



Chapter 6. Conclusions 109

Table 6.9: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Kidney

dataset with 22 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.1515 0.0095 0.1540 0.0414

LIN2 0.2023 0.0160 0.2112 0.0666

LIN3 0.4188 0.0029 0.4678 0.0311

INV1 0.3189 0.0060 0.3191 0.0426

INV2 0.5181 0.0041 0.5130 0.0358

INV3 0.4041 0.0044 0.5117 0.0379

EXP1 0.5261 0.0037 0.5214 0.0303

EXP2 0.5309 0.0037 0.5254 0.0323

LIND 0.4222 0.0040 0.4215 0.0356

INVD 0.4721 0.0041 0.4695 0.0356

EXPD 0.4721 0.0075 0.2716 0.0357

LINR 0.3955 0.0054 0.3947 0.0342

INVR 0.4003 0.0047 0.3998 0.0404

EXPR 0.4610 0.0043 0.4579 0.0351



Chapter 6. Conclusions 110

Table 6.10: Spearman rank correlation coefficients about ie vs. îe on the Mouse Kidney

dataset with 22 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2479 0.0157 0.2449 0.0546

LIN2 0.2517 0.0191 0.2448 0.0631

LIN3 0.3657 0.0064 0.3488 0.0322

INV1 0.2855 0.0050 0.2874 0.0461

INV2 0.2769 0.0081 0.2660 0.0358

INV3 0.3199 0.0079 0.2813 0.0407

EXP1 0.3419 0.0066 0.3342 0.0258

EXP2 0.3576 0.0063 0.3489 0.0298

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0852 0.0161 0.0907 0.0435

INVR 0.0691 0.0144 0.0659 0.0314

EXPR 0.0524 0.0121 0.0737 0.0434



Chapter 6. Conclusions 111

Table 6.11: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Kidney

dataset with 42 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2160 0.0050 0.2186 0.0470

LIN2 0.1788 0.0169 0.1857 0.0805

LIN3 0.4231 0.0033 0.4685 0.0322

INV1 0.2803 0.0032 0.2784 0.0321

INV2 0.5171 0.0046 0.5049 0.0360

INV3 0.4115 0.0040 0.5098 0.0386

EXP1 0.5149 0.0038 0.5091 0.0330

EXP2 0.5364 0.0037 0.5266 0.0323

LIND 0.4222 0.0040 0.4215 0.0356

INVD 0.4721 0.0041 0.4695 0.0356

EXPD 0.4721 0.0075 0.2716 0.0357

LINR 0.3955 0.0054 0.3947 0.0342

INVR 0.4003 0.0047 0.3998 0.0404

EXPR 0.4610 0.0043 0.4579 0.0351



Chapter 6. Conclusions 112

Table 6.12: Spearman rank correlation coefficients about ie vs. îe on the Mouse Kidney

dataset with 42 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2810 0.0072 0.2717 0.0398

LIN2 0.2509 0.0253 0.2433 0.0713

LIN3 0.3763 0.0066 0.3490 0.0318

INV1 0.2274 0.0078 0.2309 0.0438

INV2 0.2784 0.0069 0.2548 0.0315

INV3 0.3344 0.0080 0.2812 0.0412

EXP1 0.2908 0.0050 0.2794 0.0327

EXP2 0.3704 0.0067 0.3526 0.0306

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0852 0.0161 0.0907 0.0435

INVR 0.0691 0.0144 0.0659 0.0314

EXPR 0.0524 0.0121 0.0737 0.0434



Chapter 6. Conclusions 113

Table 6.13: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Kidney

dataset with 62 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.1805 0.0176 0.1826 0.0433

LIN2 0.1652 0.0214 0.1685 0.0530

LIN3 0.4288 0.0032 0.4692 0.0313

INV1 0.2237 0.0127 0.2238 0.0400

INV2 0.3119 0.1464 0.3198 0.1183

INV3 0.4177 0.0038 0.5101 0.0354

EXP1 0.5368 0.0035 0.5240 0.0300

EXP2 0.1597 0.1055 0.1855 0.1176

LIND 0.4222 0.0040 0.4215 0.0356

INVD 0.4721 0.0041 0.4695 0.0356

EXPD 0.4721 0.0075 0.2716 0.0357

LINR 0.3955 0.0054 0.3947 0.0342

INVR 0.4003 0.0047 0.3998 0.0404

EXPR 0.4610 0.0043 0.4579 0.0351



Chapter 6. Conclusions 114

Table 6.14: Spearman rank correlation coefficients about ie vs. îe on the Mouse Kidney

dataset with 62 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2927 0.0195 0.2742 0.0425

LIN2 0.2463 0.0205 0.2402 0.0514

LIN3 0.3868 0.0067 0.3544 0.0323

INV1 0.2452 0.0276 0.2717 0.0443

INV2 0.2538 0.0338 0.2567 0.0452

INV3 0.3569 0.0052 0.2933 0.0334

EXP1 0.3694 0.0052 0.3465 0.0309

EXP2 0.0805 0.0408 0.3532 0.0518

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0852 0.0161 0.0907 0.0435

INVR 0.0691 0.0144 0.0659 0.0314

EXPR 0.0524 0.0121 0.0737 0.0434



Chapter 6. Conclusions 115

Table 6.15: Spearman rank correlation coefficients about y vs. ŷ on the Mouse Kidney

dataset with 232 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2442 0.0443 0.2299 0.0672

LIN2 0.1851 0.0142 0.1884 0.0501

LIN3 0.2181 0.0829 0.2027 0.1127

INV1 0.1979 0.0175 0.1826 0.0501

INV2 0.2189 0.0233 0.2299 0.0435

INV3 0.1652 0.1047 0.2314 0.1665

EXP1 0.4128 0.1700 0.3894 0.1602

EXP2 0.5872 0.0034 0.5338 0.0289

LIND 0.4222 0.0040 0.4215 0.0356

INVD 0.4721 0.0041 0.4695 0.0356

EXPD 0.4721 0.0075 0.2716 0.0357

LINR 0.3955 0.0054 0.3947 0.0342

INVR 0.4003 0.0047 0.3998 0.0404

EXPR 0.4610 0.0043 0.4579 0.0351



Chapter 6. Conclusions 116

Table 6.16: Spearman rank correlation coefficients about ie vs. îe on the Mouse Kidney

dataset with 232 features (10-cross validation settings)

Models mean train std dev-train mean test std dev-test

LIN1 0.2684 0.0434 0.2591 0.0623

LIN2 0.3001 0.0161 0.2823 0.0431

LIN3 0.4439 0.0091 0.3015 0.0477

INV1 0.1929 0.0732 0.1847 0.1153

INV2 0.2586 0.0610 0.2589 0.0804

INV3 0.4322 0.0057 0.2752 0.0519

EXP1 0.4250 0.0401 0.4062 0.0559

EXP2 0.4827 0.0060 0.4072 0.0387

LIND NA NA NA NA

INVD NA NA NA NA

EXPD NA NA NA NA

LINR 0.0852 0.0161 0.0907 0.0435

INVR 0.0691 0.0144 0.0659 0.0314

EXPR 0.0524 0.0121 0.0737 0.0434



Bibliography

[1] Aebersold, R., Mann, M. Mass spectrometry-based proteomics, Nature 422, pp 198-

207. 2003

[2] Becker, S. Mutual information maximization: models of cortical self-organization.

Network: Computation in Neural Systems, 7, pp 7-31. 1996

[3] Bickel, P., Doksum, K. Mathematical Statistics: Basic Ideas and Selected Topics,

Holden-Day INC. 1977

[4] Bonner, A., Liu, H. Comparison of Discrimination Methods for Peptide Classification

in Tandem Mass Spectrometry. 2004 IEEE Symposium on Computational Intelligence

in Bioinformatics and Computational Biology (IEEE CIBCB’04). 2004

[5] Bonner, A., Liu, H. Predicting Protein Levels from Tandem Mass Spectrometry Data.

NIPS-04 Workshop on New Problems and Methods in Computational Biology. Neural

Information, Neural Information Processing Systems 17 (NIPS’04). 2004

[6] Bonner, A., Liu, H. Development and Evaluation of Methods for Predicting Protein

Levels and Peak Intensities from Tandem Mass Spectrometry Data . Technical Report,

Department of Computer Science, University of Toronto. 2004

[7] Bonner, A., Liu, H. Canonical Correlation, an Approximation, and its Application to

the Mining of Peptide Tandem Mass Spectrometry Data. Submitted to SDM workshop

on mining Scientific Database. 2005

117



Bibliography 118

[8] Bornsen, K.O., Gass, M.A., Bruin, G.J., Adrichem, J.H.et al. Influence of solvents and

detergents on matrix-assisted laser desorption/ionization mass spectrometry measure-

ments of proteins and oligonucleotidesRapid Commun Mass Spectrom 11, pp 603-609.

1997

[9] Breiman, L., Friedman, J., Olshen, R., and Stone, C. J., Classification and Regression

Trees,, Chapman and Hall. 1984

[10] Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F.and Sanchez, J.C. The dynamic

range of protein expression: a challenge for proteomic research,Electrophoresis 21, pp

1104-1115. 2000

[11] David, S.W., Fundamentals of Matrix Computation, Wiley-Interscience. 2002

[12] Dogruel, D., Nelson, R.W., Williams, P., Peptide characterization using bioreactive

mass spectrometer probe tips, Rapid Commun Mass Spectrom 2, pp 695-700. 1998

[13] Duda, R., Hart, P., Stork, D. Pattern Classification, second edition. Wiley-

Interscience, 2001.

[14] Dudoit, S., Fridlyand,J. and Speed,T.P., Comparison of discrimination methods for

the classification of tumors using gene expression data. Journal of the American Sta-

tistical Association 97(457), pp 77-87. 2002

[15] Elias, J.E., Gibbons,F.D. King,O.D. Roth,F. Gygi,S.P. Intensity-based protein iden-

tification by machine learning from a library of tandem mass spectra,Nature, biotech-

nology. Volume 22 Number 2, pp14-219. 2004

[16] Eng, J., McCormack, A., Yates, J.R. An approach to correlate tandem mass spec-

tral data of peptides with amino acid sequences in a protein database,j.Am.Soc.Mass

Spectrom.5,, pp 976-989, 1994



Bibliography 119

[17] Fieguth, P.W., Irving, W. W. and Willsky, A. S. Multiresolution model development

for overlapping trees via canonical correlation analysis. In International Conference

on Image Processing, pp 45-48. 1995.

[18] Figueroa, I.D., Torres, O., Russell, D.H., Effects of the Water Content in the Sample

Preparation for MALDI on the Mass Spectra, Annal Chem. 70, pp 4527-4533. 1998

[19] Fisher, R.A. The used of multiple measurements in taxonomic problems, Annals of

Eugenics, 7, pp 179-188. 1936

[20] Gaskell, S. Electrospray: Principles and practices. Journal of Mass Spectrometry,

32, pp 677-688. 1997

[21] Gay, S., Binz, P.A., Hochstrasser, D.F., Appel, R.D. Peptide mass fingerprinting

peak intensity prediction: extracting knowledge from spectra, Proteomics 2, pp 1374-

1391. 2002

[22] Gygi,S.P., Corthals, G.L., Zhang, Y., Rochon, Y., and Aebersold, R. Eval-

uation of two-dimensional gel electrophoresis-based proteome analysis technology,

Proc.Natl.Acad.Sci.pp 9930-9395. 2000

[23] Gygi, S.P., Rist, B., Gerber, S.A.,Turecek, F., Gelb, M.H. and Aebersold, R. Quan-

titative analysis of complex protein mixtures using isotope-coded affinity tags, Nature

Biotechnology 17(10), pp 994-999. 1999

[24] Hastie, H., Tibshirani, R., Friedman, J., The Elements of Statistical Learning: Data

Mining, Inference and Prediction. Springer Series in Statistics, 2001.

[25] Hotelling, H. Relations between two sets of variates. Biometrika, 28: pp 321-377.

1936.



Bibliography 120

[26] Jordan, M. Why the Logistic Function? A tutorial discussion on probabilities

and neural networks. Computational Cognitive Science Technical Report 9503. Mas-

sachusetts Institute of Technology. 1995.

[27] Kay, J. Feature discovery under contextual supervision using mutual information. In

International Joint Conference on Neural Networks, volume 4, pp 79-84. 1992.

[28] Knochenmuss, R., Karbach, V.,Wiesli, U., Breuker, K.,Zenobi, R., The matrix sup-

pression effect in matrix-assisted laser desorption/ionization: Application to negative

ions and further characteristics, Rapic Commun.Mass Spectrom.12, pp 529-534, 1998

[29] Kocher, F., Favre, A, Gonnet, F., Tabet, J.C.et al., Proton affinities of the commonly

occurring L-amino acids by using electrospray ionization-ion trap mass spectrometry.

Jouranl of Mass Spectrom.33, pp 921-935. 1998

[30] Kussmann, M., Nordhoff, E., Rahbek-Nielsen, H., Haebel, S.et al., Matrix-assisted

laser desorption/ionization mass spectrometry sample preparation techniques designed

for various peptide and protein analytes, Journal of Mass Spectrom. 32 pp 593-601.

1997

[31] Legendre, P., Lapointe, F.J., Casgrain, P. A classification of pure malt Scotch

whiskies. Applied Statistics 43: pp 237-257. 1984

[32] Liebler, D.C. Introduction to Proteomics, tools for the new biology, Humana Press,

NJ. 2002.

[33] Liu, H., Sadygov, R.G. and Yates, J.R. A Model for Random Sampling and Esti-

mation of Relative Protein Abundance in Shotgun Proteomics, Anal. Chem. 76, pp

4193–4201. 2004.

[34] McLachlan, G.J. Discriminant analysis and Statistical pattern recognition. Wi-

ley,New York. 1992.



Bibliography 121

[35] Mann, M., Hendrickson, R.C., Pandey, A. Analysis of proteomes by mass spectrom-

etry, Annu.Rew.Biochem.70, pp 437-473. 2001

[36] Mardia, K.V., Kent, J.T. and Bibby, J.M. Multivariate Analysis. Academic Press,

Inc. 1979

[37] Martin, K., Spickermann, J., Rader, H.J., Mullen, K.,MALDI-TOF mass spectrom-

etry in polymer analytics, Rapid Commun Mass Spectrom.10, pp1471-1474. 1996

[38] Mathurin, J.C., Gregoire, S.,Brunot, A. Tabet, J.C.et al. An investigation of ion/ion

interactions which arise during the simultaneous confinement of positive ions and

negative ions in an ion trap mass spectrometer, Journal of Mass Spectrom.32, pp

829-837, 1997

[39] Ong,S., Blagoev,B., Kratchmarovat, I., Kristensen, D.B., Steen, H., Pandey, A. and

Mann, M. Stable Isotope Labelling by Amino Acid in Cell Culture, SILAC, as a Simple

and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics,

pp 376-386. 2002.

[40] Pachter, L., Alexandersson, M., Cawley, S. Applications of Hidden Markov Models to

Alignment and Gene Finding Problems, Proceedings of the Fifth Annual Conference

on Computational Biology, pp 241–248. 2001

[41] Pandey, A., Mann,M. Protemics to study genes and genomes, Nature 405, pp 837-

846, 2000

[42] Poritz, A.B. Linear Predictive Hidden Markov Models and the Speech Signal, Proc.

IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, pp 1291–1294. 1982.

[43] Purves, R. W., Gabryelski, W., Li, L., Investigation of the Quantitative Capabili-

ties of an Electrospray Ionization Ion-Trap/Linear Time-of-Flight Mass Spectrometer,

Rapic Commun.Mass Spectrom.2, pp 695-700. 1998



Bibliography 122

[44] Rice, J. Mathematical Statistics and Data Analysis, second edition. Duxbury Press.

1995.

[45] Ripley, B.D. Pattern recognition and neural networks Cambridge University Press,

Cambridge, New York. 1996

[46] Siuzdak, G. The Expanding Role of Mass Spectrometry in Biotechnology, Mcc Press.

2003.

[47] Thosma, K., Khaled, R.,Dragan, R., PRISM, a Generic Large Scale Proteomics

investigation Strategy for Mammals, Molecular& Cellular Proteomics, pp 96-106. 2003

[48] Washburn, M.P., Wolters, D., and Yates, J.R., III Large-scale analysis of the yeast

proteome by multidimensional protein identification technology, Nat. Biotechnol. 19,

pp 242-247. 2002


