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Abstract— This paper addresses a central problem of Pro-
teomics: estimating the amounts of each of the thousands of
proteins in a cell culture or tissue sample. Although laboratory
methods have been developed for this problem, we seek a simple
method, one that does not involve intricate, complex or expensive
laboratory procedures. Instead, our aim is to use machine-
learning techniques to infer protein levels from the relatively
cheap and abundant data available from high-throughput tandem
mass spectrometry (MS/MS). In this paper, we develop and
evaluate several techniques for tackling this problem. Specifically,
we develop three generative models of MS/MS data, and for each,
we develop a family of methods for efficiently fitting the model to
data. We prove that each method is correct in that it achieves a
well-defined optimization criterion. In addition, to evaluate their
biological relevance, we test each method on three real-world
datasets generated by MS/MS experiments performed on various
tissue samples taken from Mouse.

I. I NTRODUCTION

Proteomics is the large-scale study of the thousands of pro-
teins in a cell [7]. In a typical Proteomics experiment, the goal
might be to compare the proteins present in a certain tissue
under different conditions. For instance, a biologist might want
to study cancer by comparing the proteins in a cancerous liver
to the proteins in a healthy liver. Modern mass spectrometry
makes this possible by enabling the identification of thousands
of proteins in a complex mixture [9], [4]. However,identifying
proteins is only part of the story. It is also important toquantify
them, that is, to estimate how much of each protein is present
in a cell [1], [6]. To this end, a number of laboratory methods
have been developed, notably those based on mass tagging
with isotopes [5], [8]. However, recent research [10] suggests
that simpler, more-direct methods may be possible, methods
that do not require complex laboratory procedures, but which
are simply based on the spectral counts provided by tandem
mass spectrometers. This paper is an initial exploration of this
possibility. In particular, we investigate the possibility of using
machine learning techniques to infer protein quantity from
tandem mass spectrometry data.

Tandem mass spectrometry involves several phases in which
proteins are broken up and the pieces separated by mass [7],
[9]. First, since proteins themselves are too large to deal with,
the thousands of unknown proteins in a cell culture or tissue
sample are fragmented into tens of thousands of peptides.
The peptides are then ionized and passed through a mass
spectrometer. This produces a mass spectrum in which each
spectral peak corresponds to a peptide. From this spectrum,
individual peptides are selected for further analysis. Each
such peptide is further fragmented and passed through a
second mass spectrometer, to produce a so-called tandem mass
spectrum. The result is a collection of tandem mass spectra,

each corresponding to a peptide. Each tandem mass spectrum
acts as a kind of fingerprint, identifying the peptide from which
it came. By searching a database of proteins, it is possible to
identify the protein that produced the peptide that produced the
tandem mass spectrum. In this way, the proteins in the original
tissue sample are identified. The entire process is completely
automatic.

A peptide mixture is not analyzed all at once. Instead, to
increase sensitivity, the peptides are “smeared out” over time
(often using liquid chromatography), so that different kinds
of peptides enter the mass spectrometer at different times.
A typical MS/MS experiment may last many hours, with
proteins and peptides being identified each second. Copies of a
particular peptide may continue to enter the mass spectrometer
for several seconds or minutes. As the copies enter, the peptide
will be repeatedly identified, once a second. In this way,
a peptide may be identified and re-identified many times,
increasing the confidence that the identification is correct. Each
identification of a peptide is called aspectral count, since it
requires the generation of a tandem mass spectrum. A large
spectral count indicates that a peptide has been confidently
identified.

Recent research has shown that the spectral counts of
peptides are linearly related to protein abundance. In particular,
as the relative abundance of a given protein is increased,
the total spectral count of its peptides increases in direct
proportion [10]. In effect, more input leads to proportion-
ately more output. However, the relationship is not at all
straightforward, since two proteins with the same spectral
counts may have different abundances. Thus, despite the linear
relationship, different proteins have different proportionality
constants. Moreover, at present, there is no way to predict what
these constants are. That is, there is no complete quantitative
theory relating a protein’s abundance to its spectral count.

This paper uses machine-learning techniques to take a
first step towards developing such a theory. Specifically, we
develop three generative models of MS/MS data, and for each,
we develop a family of methods for efficiently fitting the model
to data. Because this is an initial study, the models were chosen
for their simplicity and tractability, and the goal is to see how
well (or poorly) they fit the data, and to quantify the error.
Each model predicts the spectral count of a peptide based on
two factors: its amino-acid sequence, and the abundance of the
protein from which it was derived. The three models differ
in their treatment of peptide ionization. However, they each
provides an explanation for the linear relationship between
protein abundance and spectral count. More importantly, we
show how to use each model to estimate protein abundance
from spectral count.



To evaluate the models, the Emili Laboratory at the Banting
and Best Department of Medical Research at the University
of Toronto has provided us with several datasets of several
thousand proteins and peptides. The datasets were derived
from MS/MS experiments on protein mixtures extracted from
various tissue samples of Mouse. A small sample of the data is
shown in Table I. (Details on how this data was generated can
be found in [11].) Each row in the table represents a peptide.
The first (left-most) column is the Swissprot accession number
identifying a protein. The second column is the amino-acid
sequence of the peptide. The third column is the spectral count
of the peptide, and the last column is its charge. (All peptides
are ionized as they pass through the mass spectrometer and
thus have a charge.) Notice that there may be many entries
for the same protein, since a single protein can produce many
peptides.

TABLE I

A FRAGMENT OF A DATA FILE

Protein ID Peptide Count Charge
Q91VA7 TRHNNLV IIR 4 2
Q91VA7 KLDLFAV HV K 3 2
· · · · · · · · · · · ·

High-throughput MS/MS experiments can provide a large
amount of data on which to train and test machine-learning
methods. However, they also introduce a complication, since
the amount of protein input to the mass spectrometer is
unknown. This can be seen in Table I, where spectral count is
provided, but protein abundance is not. Thus, it is in general
unclear whether a high spectral count for a peptide is due
to the properties of the peptide or to a large amount of
protein at the input. One of the challenges is to untangle
these two influences. What makes the problem approachable
is that we have data on spectral counts for peptides from
the same protein, so differences in their counts cannot be
due to differences in protein abundance. The models and
methods we develop were chosen, in part, because of their
ability to exploit this information. In effect, they treat protein
abundance as a latent, or hidden variable, whose value must be
estimated. In addition, they lead to efficient algorithms based
on well-developed operators of linear algebra (specifically,
matrix inversion and eigenvector decomposition). We show
that the algorithms are correct in that they each achieve a
well-defined optimization criterion.

We evaluated our methods and models on real and simulated
datasets. While real-world data tests their biological relevance,
simulated data tests their mathematical and computational
correctness. The tests on simulated data act as a sanity check,
since errors in either the mathematics or the programming
of the methods can easily appear as unexpected or bizarre
results. In addition, since protein levels for the simulated data
are known, these tests show that our methods can in principle
estimate protein abundance, untangling its influence from that
of other factors. To evaluate the methods on real data, we use
ten-fold cross validation, with correlation coefficient used to
measure the goodness-of-fit of a learned model to the testing

portion of the data. The main difficulty is the distribution of the
data. As shown in the full paper, the data ranges over several
orders of magnitude and is highly skewed, with most data
concentrated at very low values. In fact, we show that it has
an O(1/y2) distribution, wherey denotes spectral count. To
deal with this difficulty, we use the Spearman rank correlation
coefficient to measure the goodness-of-fit [2]. Unlike the
more common Pearson correlation coefficient, which measures
linear correlation, Spearman’s coefficient measuresmonotone
correlation and is insensitive to extreme data values. In addi-
tion, we use log-log plots of observed v.s. estimated values
to provide an informative visualization of the fit. Finally, we
compare our methods to a number of naive methods, and report
on their performance.

The full version of this paper is organized as follows.
Sections 1 and 2 introduce the biological problem and provide
biological background. Section 3 develops our three generative
models of MS/MS data. Section 4 develops a number of com-
putational methods for fitting these models to data. Section 5
describes several datasets and an experimental methodology
for training and testing our methods. Section 6 uses the
datasets to test and compare our methods. Finally, Section 7
summarizes the results and suggests possible extensions for
future work.

A draft of the full paper is available on the web [3].

II. M ODELING SPECTRAL COUNTS

This section presents our three models of MS/MS data.
Each model represents a different hypothesis about the way
MS/MS is generated. The main difference between them is
their treatment of peptide ionization. The full paper evaluates
the models on real MS/MS data and quantifies the error.

To keep track of different proteins and peptides, we use
two sets of indices, usuallyi for proteins andj for peptides.
Proteins are numbered from 1 to N, and the peptides for the
ith protein are numbered from 1 toni. In addition, we usey to
denote spectral count, andin to denote the amount of protein
input to the mass spectrometer. Thus,ini is the amount of
proteini, andyij is the spectral count of peptidej of proteini.
With this notation, the following equation provides a common
framework for our models:

yij = ini · ieij (1)

This equation divides spectral count into two factors:ini,
the amount of protein from which peptideij was generated;
and ieij , the ionization efficiencyof the peptide. Ionization
efficiency can be thought of as the propensity of the peptide to
ionize and contribute to a mass spectrum, though it includes
all factors that contribute to spectral countsother than the
amount of protein. In this way, we hope to untangle the amount
of protein (which we want to estimate) from all other factors.
Note thatyij is observed, whileini andieij are both unknown.
Estimating (learning) values for these unknowns is the main
goal of this research.

As mentioned earlier, recent research has shown that the
abundance of a protein is directly proportional to the total



spectral count of its peptides [10]. That is,

ini = bi

∑

j

yij

where bi is an (unknown) proportionality constant. The no-
tion of ionization efficiency provides an explanation for this
proportionality and a way of computing the constantsbi. In
particular, it follows immediately from Equation 1 that

ini =

∑
j yij∑
j ieij

(2)

In other words, bi = 1/
∑

j ieij . Thus, according to the
framework of Equation 1, learning ionization efficiencies,ieij ,
is the central problem in estimating protein abundance.

It should be noted that with the model and data described
above, we can only learnrelative values of these unknowns,
not absolute values. This is because any solution to Equation 1
is only unique up to a constant: multiplying all theini by
a constant, and dividing all theieij by the same constant
gives another, equally good solution. However, estimating the
relative amounts of protein is an extremely useful biological
result. Moreover, by using a small amount of calibration data,
the relative values can all be converted to absolute values.

In order to estimate relative values for these unknowns,
we need a model of ionization efficiency. In this paper, we
investigate three relatively simple models:

Linear : ieij = xij • β
Exponential : ieij = exij•β

Inverse : ieij = 1/(xij • β)

Here, β is a vector of parameters (to be learned),xij is a
vector of (known) peptide properties, and• denotes the dot
product (or inner product) of the two vectors. The peptide
properties are all derived from the amino-acid sequence of
the peptide. They could include such things as length, mass,
amino-acid composition, and estimates of various biochemical
properties such as hydrophobicity, chargeability, pH under the
experimental conditions, etc. The full paper spells out the
specific properties used in this study.

We investigate linear models because they are directly
amenable to the techniques of linear algebra. We investigate
exponential models because, by taking logs, they become
linear. In addition, exponential models have the advantage
that the ionization efficiency is guaranteed to be positive. In
contrast, the linear model may produce a preponderance of
positive values, but it sometimes produces negative values
as well, which are meaningless (though very small negative
values can be assumed to be zero).

The inverse model has a different motivation. As mentioned
earlier, spectral counts have a very skewed distribution of
values, ranging over several orders of magnitude, with most of
the values concentrated at the very low end of the spectrum.
In fact, we show that the distribution isO(1/y2), where y
denotes spectral count. It can be difficult to fit a linear model
to data with this kind of distribution, since a small number
of very large values tends to dominate the fit. Even if the
largest values are removed, the next largest values dominate,
ad infinitum. Taking logarithms helps, but evenlog(y) has a

skewed distribution. However,1/y has a uniform distribution,
thus eliminating all skew. This is the motivation for the
inverse model: to transform the data to a form that is more
manageable. In addition, all the methods we develop for fitting
the linear model are easily adapted to fit the inverse model.

Note that for each model, once the parameterβ is learned,
we can use it to estimate the ionization efficiencies of any
peptide, including peptides not in the training set. We can
then use Equation 2 to estimate the amount of protein in the
input sample, since values are now available for bothyij and
ieij . Our experiments in the full paper illustrate this idea by
learningβ on a training dataset and then applying it to a test
dataset to estimate protein abundance.

III. F ITTING THE MODELS TODATA

The models described above each require the estimation of
a parameter vector,β. For each model, this problem would
reduce to multivariate linear regression if the amounts of
protein,ini, were included in the training data. Unfortunately,
the training data doesnot include this information. This makes
each of the models non-linear in the unknowns. The full paper
develops a number of methods for transforming these non-
linear models into linear ones and for efficiently fitting them
to data. In some cases, the problem still reduces to multivariate
linear regression, but in most cases it reduces to generalized
eigenvector problems. To give a taste of what is involved, we
discuss here the methods for the linear model and develop one
of them in detail.

A. Linear Models

We develop three methods for fitting the linear model to
experimental data, where each method is meant to improve
upon the one before. The first two methods are closely related.
They have in common that learning is divided into two phases:
the first phase estimates a value forβ, and the second phase
usesβ to help estimate values for the amounts of protein,ini.
The two methods differ in the optimization criteria they use
to fit the model to the data. The third model is different from
the first two in that it has only one learning phase, in which
all parameters are estimated simultaneously. In this way, we
hope to get a better fit to the data, since the estimate ofβ
is now affected by how well the estimates ofini fit the data,
something that is impossible in the two-phase approach.

Recall that the linear model is given by equations of the
form:

yij = ini · (xij • β) (3)

where the parameter vectorβ and all theini are unknown and
must be learned. Of course, these equations are not exact, and
provide at best an approximate description of the data. The
goal is to see how closely they fit the data, and to estimate
values forβ and ini in the process. From the discussion in
Section II, we know it is only possible to estimaterelative
values for these quantities. This effectively means we can
determine thedirection of β but not its magnitude. In fact,
in the absence of calibration data, the magnitude ofβ is
meaningless. For this reason, all the methods for the linear



model impose constraints on the magnitude ofβ in order
to obtain a unique solution. We now develop the first (and
simplest) of these methods.

1) LIN1: Two-Phase Learning:This approach factors out
the amount of protein,ini, from the set of Equations 3. The
result is a linear eigenvector equation for the parameter vector
β, which can be solved using standard eigenvector methods.

From Equations 3, we see that proteini gives rise to the
following set of equations, one equation for each peptide:

yi1 = ini · (xi1 • β) · · · yini = ini · (xini • β) (4)

Note that the unknown valueini is the same in each equation.
Thus, by dividing each equation by the previous one, we can
eliminate this unknown value, leaving the parameter vector
β as the only unknown quantity. That is,yij/yi,j−1 =
(xij • β)/(xi,j−1 • β), for j from 2 to ni. Cross multiplying
gives yij(xi,j−1 • β) = yi,j−1(xij • β), and rearranging
terms gives the following:1

zij • β = 0 where zij = yijxi,j−1 − yi,j−1xij (5)

for j from 2 to ni, and i from 1 to N . Geometrically, these
equations mean that the parameter vectorβ is orthogonal to
each of the derived vectorszij . Note that this is a constraint
on the direction ofβ but not its magnitude, which is to be
expected. Equation 5 is a restatement of Equation 3 with
the unknown valuesini removed. Like Equation 3, it is an
approximation, and our goal is to see how closely we can fit
it to the data.

A simple approach is to chooseβ so that the values of
zij • β are as close to 0 as possible. That is, we can try to
minimize the sum of their squares,

∑
i,j(zij •β)2. Of course,

this sum can be trivially minimized to 0 by settingβ = 0. But,
as described above, the magnitude ofβ is meaningless, and
only its direction is important. So, without loss of generality,
we minimize the sum of squares subject to the constraint
that the magnitude ofβ is 1. To do this, we use the method
of Lagrange multipliers. That is, we minimize the following
function:

F (β, λ) =
∑

i,j

(zij • β)2 − λ(‖β‖2 − 1) (6)

Taking partial derivatives with respect toβ and setting the
result to 0, we get the equation

∑

ij

zij(zij • β) = λβ (7)

Taking the inner product of both sides withβ
gives

∑
ij(zij • β)2 = λβ • β = λ‖β‖2 = λ,

where the last equation follows from the constraint‖β‖ = 1.
We have therefore derived the following two equations:

∑

ij

zijzT
ij β = λβ λ =

∑

ij

(zij • β)2

1Of course, we could generate many more equations of this form by
cross multiplying all possible pairs of equations from 4, instead of just the
successive ones. However, onlyni − 1 of the resulting equations would be
linearly independent.

where the left equation is just Equation (7) expressed in matrix
notation, with all vectors interpreted as column vectors. The
left equation says thatβ is an eigenvector of the matrix∑

ij zijzT
ij , and the right equation says that its eigenvalue

is just the sum of squares we want to minimize. We should
therefore choose the eigenvector with the smallest eigenvalue.
This provides an estimate of the parameter vectorβ, and
completes the first phase of learning.

In the second phase, we estimate the ionization efficiency
of each peptide, using the equationieij = xij • β. Finally,
from the ionization efficiencies, we estimate the abundance of
each protein,ini, using Equation 2.
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