discriminative approach

\[P(s | x) \]

scene, \(s \)

\[G^{-1} \]

input image, \(x \)

dim(\(s \)) \ll \text{dim}(\(x \))

\(s = \text{scene representation.} \)
Generative Approach (unsupervised)

Find s that makes $X \approx X$. More generally, find $P(s|X)$. The closer X is to X, the more like $P(s|X)$ is high iff $X \approx X$.

Intractable in general. Use variational approximation (later).
Note:
Use Bayes' Rule to compute \(P(s|X) \):

\[
P(s|X) = \frac{P(X|s) \cdot P(s)}{P(X)}
\]

\[
P(X) = \sum_{s} P(X,s) = \sum_{s} P(X|s) \cdot P(s)
\]

\[
P(X|s) = P(X|X(s))
\]

usually simple (e.g., Gaussian)

\[
P(z|X) = \frac{e^{-\frac{1}{2}z^2 / 2 \sigma^2}}{\sqrt{2\pi} \sigma}
\]
Variational Autoencoder

Simplifying assumption:

Start Train a NN to compute
(an approximation to) \(p(s|x) \)

\[\theta(s|x) \rightarrow \text{samples} \rightarrow G \]

Encoder

\(NN \)

Decoder

\(G \)

Train NN to make \(x \approx \tilde{x} \) (for all training points)

Can train \(G \) can be given or can be trained with \(NN \) simultaneously with \(NN \)

Note: must
Note: must perform gradient descent through both G and NN (the sampling operation).

No problem if G is a NN.

If G is a graphics program, we must be able to differentiate it. (Hence "differentiable rendering").

Note: unlike discriminative approach, VAE is unsupervised.

No scene labels needed.