CSC413 Neural Networks and Deep Learning

Lecture 10

March 22/25, 2021

Overview

Last week, we discussed autoencoders

» Encoder: maps x to a low-dimensional embedding z
» Decoder: uses the low-dimensional embedding z to
reconstructs x

input output

decoder
eencoder

Let's see how much you remember!

Review Q1

What was the objective that we used to train the autoencoder?

Review Q2

If we train an autoencoder, what tasks can we accomplish with just
the encoder portion of the autoencoder?

Review Q3

If we train an autoencoder, what tasks can we accomplish with
mainly the decoder portion of the autoencoder?

Review Q4

What are some limitations of the autoencoder?

Autoencoder limitations

» Images are blurry (we'll talk about this next week)
» It's not certain what good values of embeddings z would be
» Which part of the embedding space does the encoder maps
data to?
» This uncertainty means that we can't generate images without
referring back to the encoder
» What should the dimension of the embeddings z be?

Autoencoder limitations

» Images are blurry (we'll talk about this next week)

» It's not certain what good values of embeddings z would be
» Which part of the embedding space does the encoder maps
data to?
» This uncertainty means that we can't generate images without
referring back to the encoder

» What should the dimension of the embeddings z be?
Is there a probabilistic version of the autoencoder model?

Could we resolve some of the issues with autoencoder, if we use a
more theoretically grounded approach?

Variational Autoencoders

Mathematical Assumptions

Data x; € R are:

» independent, identically distributed (i.i.d)
> generated from the following joint distribution (with the true
parameter 6* unknown)

po-(2,%) = po-(2)po-(x2)

Where z is a low-dimensional vector (latent embedding)

» Example x could be an MNIST digit

» Think of z as encoding digit features like digit shape, tilt, line
thickness, font style, etc. ..

> To generate an image, we first sample from the prior
distribution pg«(z) to decide on these digit features, and use
pe~(x|z) to generate an image given those features

Intractability

Our data set is large, and so the following are intractable

» evidence py«(x)
» posterior distributions py«(z|x)

In other words, exactly computing the distribution of p(x) and
p(z|x) using our dataset has high runtime complexity.

The decoder and encoder

input output

code .-/

decoder

With this assumption, we can think of the autoencoder as doing the

following:

Decoder: A point approximation of the true distribution pg«(x|z)

Encoder: Making a point prediction for the value of the latent
vector z that generated the image x

Alternative:

» what if, instead, we try to infer the distribution py-(z|x)?

VAE Setup so far

Decoder: An approximation of the true distribution py-(x|z)

Encoder: An approximation of the true distribution py«(z|x)

Computing the encoding distribution py-(z|x)

Unfortunately, the true distribution py«(z|x) is complex (e.g. can be
multi-modal).

But can we approximate this distribution with a simpler
distribution?

Let's restrict our estimate gy(z|x) = N (z; 1, X) to be a
multivariate Gaussian distribution with ¢ = (u, X)

> It suffices to estimate the mean p and covariance matrix X of
as(z]x)

P Let's make it simpler and assume that the covariance matrix is
diagonal, X = 02lgy g

(Note: we don't have to make this assumption, but it will make
computation easier later on)

VAE Setup so far

Decoder: An approximation of the true distribution py«(x|z)

Encoder: Predicts the mean and standard deviations of a
distribution g4(z|x), so that the distribution is close to the true
distribution py«(z|x)

We want our estimate distribution to be close to the true
distribution. How do we measure the difference between
distributions?

Kullback-Leibler Divergence

Also called: KL Divergence, Relative Entropy

For discrete probability distributions:

KLla(z) || p(e)) = - alz) og)
For continuous probability distributions:
Kila(2) || p(2)] = [a(z)tog 212)
p(2)

KL Divergence Example Computation

Approximating an unfair coin with a fair coin.

» p(z=1)=0.7 and p(z=0) =0.3
» g(z=1)=q(z=0)=05

KL Divergence Example Computation

Approximating an unfair coin with a fair coin.

» p(z=1)=0.7 and p(z=0) =0.3
» g(z=1)=q(z=0)=05

y4 Z)| = Z)I1o @
KL[q(2) || p(2)] zz:q(Jlog)
=q(0) log ZES; +q(1) log 28

0.5

0.5
=0.5log — BSlog —
050g0.3—i-050g0.7

=0.872

KL Divergence is not symmetric!

Approximating an unfair coin with a fair coin.

» p(z=1)=0.7 and p(z=0)=0.3
» g(z=1)=¢q(z=0)=05

KL Divergence is not symmetric!

Approximating an unfair coin with a fair coin.

» p(z=1)=0.7 and p(z=0) =0.3
» g(z=1)=¢q(z=0)=05

N () 0e P2
KL[p(2) || q(2)] = gp(Jlog %)

_ p(0) p(1)
= p(0) log 4(0) + p(1) log o@D
=0.3log g + 0.7 log %

=0.823
7 KL[a(2) || p(2)]

KL divergence Properties

The KL divergence is a measure of the difference between
probability distributions.

KL divergence is an asymmetric, nonnegative measure, not a norm.
It doesn't obey the triangle inequality.

KL divergence is always positive. Hint: you can show this using the
inequality /n(x) < x —1 for x > 0

KL Divergence: continuous example

Suppose we have two Gaussian distributions p(x) ~ N(j1,0%) and
q(x) ~ N(p2, 53).

What is the KL divergence KL[p(z) || g(z)]?

Recall:

_(z=pq)
1 e 20%
\/2mo?

log p(z; i1, 031) = — log /2703 —

p(zi p1,07) =

(z = m)?
20%

KL Divergence: Entropy and Cross-Entropy

We can split the KL divergence into two terms, which we can
compute separately:

Kilp(e) || a(2)) = [plz logquz

= / z)(log p(z) — log q(z))dz

= / p(z) log p(z)dz — / p(z)log q(z)dz

= —entropy — cross-entropy

KL Divergence: continuous example, entropy computation

/ﬁvw%p@wzz/ﬁ&x—mg hv%—“gﬁﬂﬁw
/p Iog27ml dz—/p _’}L)dz

=5 Iog(27ml)/p(z)dz " 302 /p(z z— p1)’dz

1
=—3 log(2mo?) — =
1 1 1

= — log(03) — 5 log(2) —

Since [p(z)dz =1 and [p(2)(z — p1)?dz = o2

KL Divergence: continuous example, cross-entropy
computation

/ p(2) log q(2)dz = / p(z2)(~log \/2m03 — £ 12)z
RN
/ p(z log(27mz) / p(Z)ﬂdz

Back to autoencoders: summary so far

Autoencoder:

» Decoder: point estimate of py-(x|z)
» Encoder: point estimate of the value of z that generated the

image x

VAE:
» Decoder: probabilistic estimate of py-(x|z)
» Encoder: probabilistic estimate of a Gaussian distribution

qe(z|x) that approximates the distribution ps-(z|x)
» In particular, our encoder will be a neural network that predicts

the mean and standard deviation of g,(z|x)
» We can then sample z from this distribution!

VAE Objective

But how do we train a VAE?
We want to maximize the likelihood of our data:
log p(x) = log [p(x|z)p(x)dz

And we want to make sure that the distributions g(z|x) and p(z|x)
are close:

» We want to minimize KL[q(z|x) || p(z|x)]
» This is a measure of encoder quality

In other words, we want to maximize

—KL[q(z|x) || p(z|x)] + log p(x)

How can we optimize this quantity in a tractable way?

VAE: Evidence Lower-Bound

Ktlatal) || plalx)] = [atelx)log 42z
e (e
= alo8 (ol
= [Eq4[log q(z|x)] — Eq[log p(z|x)]
= Eq[log q(z|x)] — Eq[log p(z, x)] + Eq[log p(x)]
= Eq[log q(z|x)] — Eq[log p(z, x)] + log p(x)

We'll define the evidence lower-bound:
ELBOg4(x) = Eq[log p(z, x) — log q(z|x)]

So we have

log p(x) — KL[q(zlx) || p(zlx)] = ELBOG(x)

Optimizing the ELBO

The ELBO gives us a way to estimate the gradients of
log p(x) — KL[q(z|x) || p(z[x)]

How?

ELBO4(x) = Eq4[log p(z, x) — log g(z|x)]

» The right hand side of this expression is an expectation over
z ~ q(z|x)

» To estimate the ELBO, we can sample from the distribution
z ~ q(z|x), and compute the terms inside.

> We can estimate gradients in the same way—this is called a
Monte-Carlo gradient estimator

Monte Carlo Estimation

(This notation is unrelated to other slides: p(z) is just a univariate
Gaussian distribution, and f(z) is a function parameterized by ¢)

Suppose we want to optimize an objective L(¢) = E,p(;)[fs(2)]
where p(z) is a normal distribution.

We can estimate £(¢) by sampling z; ~ p(z) and computing

Monte Carlo Gradient Estimation

Likewise, if we want to estimate V4L, we can sample z; ~ p(z) and
compute

V¢£ = V¢EZNP(Z) [f¢ (Z)]

=V [p(2)f(2)dz

1 N
i=1

1 N
=N > Voly(z)
i=1

The reparamaterization trick

ELBOg,¢(x) = Eq, [logpy(z, x) — loggs(z|x)]

Problem: typical Monte-Carlo gradient estimator with samples
z ~ qg(z|x) has very high variance

Reparameterization trick: instead of sampling z ~ g, (z|x) express
z = gy(€,x) where g is deterministic and only € is stochastic.

In practise, the reparameterization trick is what makes the VAE
encoder deterministic. When running a VAE forward pass:

1. We get the means and standard deviations from the VAE

2. We sample from A/(0,1)

3. We use the samples from step 2 to get a sample from q(z)
obtained from step 1

VAE: Summary so far
Decoder: estimate of py-(x|z)

Encoder: estimate of a Gaussian distribution g4(z|x) that
approximates the distribution py-(z|x)

» Encoder is a NN that predicts the mean and standard deviation

of gy (zlx)
> Use the reparameterization trick to sample from this
distribution

The VAE objective is equal to the evidence lower-bound:

log p(x) — KL[q(z[x] || p(z]x)) = ELBOG(x)

Which we can estimate using Monte Carlo

ELBO4(x) = Eq4[log p(z, x) — log g(z|x)]

VAE: Summary so far

But given a value z ~ g(z|x), how can we compute

log p(z,x) — log q(z|x)

...or its derivative with respect to the neural network parameters?

We need to do some more math to write this quantity in a form
that is easier to estimate.

VAE: a simpler form

ELBOg,4(x) = Eq, [logpg(z, x) — logqe(z|x)]

VAE: a simpler form

ELBOy,4(x) = Eq, [logps(z, x) — logqy(z[x)]
= Eq, [logps(x|2) + logps(z) — loggy(z|x)]

VAE: a simpler form

ELBOg 4(x) = Eq¢[logp9(z,x) — logqye(z|x)]
= Eq¢[logp9(x|z) + logps(z) — logqe(z|x)]
= Eg,[logps(x|2)] — Eq, [logps(z) + loggy(z[x)]

VAE: a simpler form

ELBOg 4(x) = Eq, [logpg(z, x) — logqe(z|x)]
= Eq¢[logp9(x|z) + logps(z) — logqe(z|x)]
= [Eq,[logps(x|2)] — Eq, [logps(z) + logqs(z|x)]
= Eq, [logps(x|2)] — KL(qs(2|x) || po(2))

VAE: a simpler form

ELBOg 4(x) = Eq, [logpg(z, x) — logqe(z|x)]
Eq¢[logp9(x|z) + logps(z) — logqe(z|x)]

Eq, [logpo(x[2)] — Eq, [logps(z) + loggs(z(x)]
Eq, [logps(x|2)] — KL(qs(2|x) || po(2))

= decoding quality — encoding regularization

Both terms can be computed easily if we make some simplifying
assumptions

Let's see how. ..

Computing Decoding Quality

In order to estimate this quantity

Eq, [logpy(x|z)]

...we need to make some assumptions about the distribution
Po(x|z).
If we make the assumption that py(x|z) is a normal distribution

centered around some pixel intensity, then optimizing py(x|z) is
equivalent to optimizing the square loss!

That is, pp(x|z) tells us how intense a pixel could be, but that pixel
could be a bit darker/lighter, following a normal distribution).

Bonus: A traditional autoencoder is optimizing this same
quantity!

Computing Encoding Quality

This KL divergence computes the difference in distribution between
two distributions:

KL(qs(2[x) [| po(2))

» qy(z|x) is a normal distribution that approximates py(z|x)
» pp(z) is the prior distribution on z
» distribution of z when we don’t know anything about x or any
other quantity

Since z is a /atent variable, not actually observed in the real word,
we can choose py(z)

» we choose py(z) = N(0,1)

... and we know how to compute the KL divergence of two Gaussian
distributions!

Interpretation

The VAE objective

Eq, [logpo(x|2)] — KL(as(2|x) || po(2))

has an extra regularization term that the traditional autoencoder
does not.

This extra regularization term pushes the values of z to be closer to
0!

MNIST results

MNIST, N, MNIST, N, =5 MNIST, N, =10 MNIST, N, =20
100 100 ~100]

-110 10| 110
-120)
130

140

-120

-130
—140 /

o
-130f

140

s =
AEVS (train) oo

Figure 2: Comparison of our AEVB method to the wake-sleep algorithm, in terms of optimizing the
lower bound, for different dimensionality of latent space (IV,). Our method converged considerably
faster and reached a better solution in all experiments. Interestingly enough, more latent variables
does not result in more overfitting, which is explained by the regularizing effect of the lower bound.
Vertical axis: the estimated average variational lower bound per datapoint. The estimator variance
was small (< 1) and omitted. Horizontal axis: amount of training points evaluated. Computa-
tion took around 20-40 minutes per million training samples with a Intel Xeon CPU running at an
effective 40 GFLOPS.

Figure 1: image

Frey Faces results

NNNNARAQQ2v23000020006€
NNUARARLL QL LD DL DDPPFRE
NNS YRR R DL DD DDPP PO
NNNCS2ARARRNLSAP PPN E
NNNNCNCRNRNNVOAP PPN
e e R L S S ST o)
et e L L I P P S S e Y ol
et T L L R N T RO Yo Y e
P POOWWRNWWROOOO0
————r et POLWWOWWOOOOO
————r et WL OLLOOOOO
——e—e, et NN RO WWLLOOOOO
e e NN NN NN LLOOOOO0
e L L L L L TS L LTSN CY N
N N N N L NN NN
SNNNAANN YNy hadd]
LR R R T T R T I
SNNNNNHENNNNNNSLSLLLY

NNYARARLL DL DD 00DPPRPEPS

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for ive models with t i ional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
Pe(x|z) with the learned parameters 6.

Figure 2: image

Dimension of latent variables

Qrr~Onmdrad
O rNVS OOV M
MNP em A~)
™M=v oD
ASND®OPONT N
[N RN RN)
LENMT AN 6PN
OTQOPhome~
NS TREIQ®
el Ra R VAN

WO DN\ e~Q
O~ 2e> QI 0
FO>A OO T
W e AQMmNa~
WS OMOEAQO
MINA RGOV >
ELIONE L) Ne]
s~ oo
0O HINTCT T~
MG~ 0y

AN~ TwOTaN
NSO TNY NS D
©—NOM Y N
SN0 O~mONw
OMmPEeNT N N0
~oaNT 3 e\
Lesmewe~mNy -
L RANNECIENE R
N e L Et)
B R kY

LT T e Mo —
-9 prernrh
W=D ®0HON
TRe~=w—adny
NN G T~
mrMemMIImnag >
N~ mmey m~3
N®e=O0Maef N0
ee-ddrhoeres
Q@rermrY T o

(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities

of latent space.

Figure 3: image

	Variational Autoencoders

