
CSC413 Neural Networks and Deep Learning

Lecture 10

March 22/25, 2021

Overview

Last week, we discussed autoencoders

I Encoder: maps x to a low-dimensional embedding z
I Decoder: uses the low-dimensional embedding z to

reconstructs x

Let’s see how much you remember!

Review Q1

What was the objective that we used to train the autoencoder?

Review Q2

If we train an autoencoder, what tasks can we accomplish with just
the encoder portion of the autoencoder?

Review Q3

If we train an autoencoder, what tasks can we accomplish with
mainly the decoder portion of the autoencoder?

Review Q4

What are some limitations of the autoencoder?

Autoencoder limitations

I Images are blurry (we’ll talk about this next week)
I It’s not certain what good values of embeddings z would be

I Which part of the embedding space does the encoder maps
data to?

I This uncertainty means that we can’t generate images without
referring back to the encoder

I What should the dimension of the embeddings z be?

Is there a probabilistic version of the autoencoder model?

Could we resolve some of the issues with autoencoder, if we use a
more theoretically grounded approach?

Autoencoder limitations

I Images are blurry (we’ll talk about this next week)
I It’s not certain what good values of embeddings z would be

I Which part of the embedding space does the encoder maps
data to?

I This uncertainty means that we can’t generate images without
referring back to the encoder

I What should the dimension of the embeddings z be?

Is there a probabilistic version of the autoencoder model?

Could we resolve some of the issues with autoencoder, if we use a
more theoretically grounded approach?

Variational Autoencoders

Mathematical Assumptions

Data xi ∈ Rd are:

I independent, identically distributed (i.i.d)
I generated from the following joint distribution (with the true

parameter θ∗ unknown)

pθ∗(z, x) = pθ∗(z)pθ∗(x|z)

Where z is a low-dimensional vector (latent embedding)

I Example x could be an MNIST digit
I Think of z as encoding digit features like digit shape, tilt, line

thickness, font style, etc. . .
I To generate an image, we first sample from the prior

distribution pθ∗(z) to decide on these digit features, and use
pθ∗(x|z) to generate an image given those features

Intractability

Our data set is large, and so the following are intractable

I evidence pθ∗(x)
I posterior distributions pθ∗(z|x)

In other words, exactly computing the distribution of p(x) and
p(z|x) using our dataset has high runtime complexity.

The decoder and encoder

With this assumption, we can think of the autoencoder as doing the
following:

Decoder: A point approximation of the true distribution pθ∗(x|z)

Encoder: Making a point prediction for the value of the latent
vector z that generated the image x

Alternative:

I what if, instead, we try to infer the distribution pθ∗(z|x)?

VAE Setup so far

Decoder: An approximation of the true distribution pθ∗(x|z)

Encoder: An approximation of the true distribution pθ∗(z|x)

Computing the encoding distribution pθ∗(z|x)

Unfortunately, the true distribution pθ∗(z|x) is complex (e.g. can be
multi-modal).

But can we approximate this distribution with a simpler
distribution?

Let’s restrict our estimate qφ(z|x) = N (z; µ,Σ) to be a
multivariate Gaussian distribution with φ = (µ,Σ)

I It suffices to estimate the mean µ and covariance matrix Σ of
qφ(z|x)

I Let’s make it simpler and assume that the covariance matrix is
diagonal, Σ = σ2Id×d

(Note: we don’t have to make this assumption, but it will make
computation easier later on)

VAE Setup so far

Decoder: An approximation of the true distribution pθ∗(x|z)

Encoder: Predicts the mean and standard deviations of a
distribution qφ(z|x), so that the distribution is close to the true
distribution pθ∗(z|x)

We want our estimate distribution to be close to the true
distribution. How do we measure the difference between
distributions?

Kullback-Leibler Divergence

Also called: KL Divergence, Relative Entropy

For discrete probability distributions:

KL[q(z) || p(z)] =
∑

z
q(z) log q(z)

p(z)

For continuous probability distributions:

KL[q(z) || p(z)] =
∫

q(z) log q(z)
p(z)dz

KL Divergence Example Computation

Approximating an unfair coin with a fair coin.

I p(z = 1) = 0.7 and p(z = 0) = 0.3
I q(z = 1) = q(z = 0) = 0.5

KL[q(z) || p(z)] =
∑

z
q(z) log q(z)

p(z)

= q(0) log q(0)
p(0) + q(1) log q(1)

p(1)

= 0.5 log 0.5
0.3 + 0.5 log 0.5

0.7
= 0.872

KL Divergence Example Computation

Approximating an unfair coin with a fair coin.

I p(z = 1) = 0.7 and p(z = 0) = 0.3
I q(z = 1) = q(z = 0) = 0.5

KL[q(z) || p(z)] =
∑

z
q(z) log q(z)

p(z)

= q(0) log q(0)
p(0) + q(1) log q(1)

p(1)

= 0.5 log 0.5
0.3 + 0.5 log 0.5

0.7
= 0.872

KL Divergence is not symmetric!

Approximating an unfair coin with a fair coin.

I p(z = 1) = 0.7 and p(z = 0) = 0.3
I q(z = 1) = q(z = 0) = 0.5

KL[p(z) || q(z)] =
∑

z
p(z) log p(z)

q(z)

= p(0) log p(0)
q(0) + p(1) log p(1)

q(1)

= 0.3 log 0.3
0.5 + 0.7 log 0.7

0.5
= 0.823
6= KL[q(z) || p(z)]

KL Divergence is not symmetric!

Approximating an unfair coin with a fair coin.

I p(z = 1) = 0.7 and p(z = 0) = 0.3
I q(z = 1) = q(z = 0) = 0.5

KL[p(z) || q(z)] =
∑

z
p(z) log p(z)

q(z)

= p(0) log p(0)
q(0) + p(1) log p(1)

q(1)

= 0.3 log 0.3
0.5 + 0.7 log 0.7

0.5
= 0.823
6= KL[q(z) || p(z)]

KL divergence Properties

The KL divergence is a measure of the difference between
probability distributions.

KL divergence is an asymmetric, nonnegative measure, not a norm.
It doesn’t obey the triangle inequality.

KL divergence is always positive. Hint: you can show this using the
inequality ln(x) ≤ x − 1 for x > 0

KL Divergence: continuous example

Suppose we have two Gaussian distributions p(x) ∼ N(µ1, σ
2
1) and

q(x) ∼ N(µ2, σ
2
2).

What is the KL divergence KL[p(z) || q(z)]?

Recall:

p(z ;µ1, σ
2
1) = 1√

2πσ2
1

e
− (z−µ1)2

2σ2
1

log p(z ;µ1, σ
2
1) = − log

√
2πσ2

1 −
(z − µ1)2

2σ2
1

KL Divergence: Entropy and Cross-Entropy

We can split the KL divergence into two terms, which we can
compute separately:

KL[p(z) || q(z)] =
∫

p(z) log p(z)
q(z)dz

=
∫

p(z)(log p(z)− log q(z))dz

=
∫

p(z) log p(z)dz −
∫

p(z) log q(z)dz

= −entropy− cross-entropy

KL Divergence: continuous example, entropy computation

∫
p(z) log p(z)dz =

∫
p(z)(− log

√
2πσ2

1 −
(z − µ1)2

2σ2
1

)dz

= −
∫

p(z)12 log(2πσ2
1)dz −

∫
p(z)(z − µ1)2

2σ2
1

dz

= −1
2 log(2πσ2

1)
∫

p(z)dz − 1
2σ2

1

∫
p(z)(z − µ1)2dz

= −1
2 log(2πσ2

1)− 1
2

= −1
2 log(σ2

1)− 1
2 log(2π)− 1

2

Since
∫

p(z)dz = 1 and
∫

p(z)(z − µ1)2dz = σ2
1

KL Divergence: continuous example, cross-entropy
computation

∫
p(z) log q(z)dz =

∫
p(z)(− log

√
2πσ2

2 −
(z − µ2)2

2σ2
2

)dz

= −
∫

p(z)12 log(2πσ2
2)dz −

∫
p(z)(z − µ2)2

2σ2
2

dz

= −1
2 log(2πσ2

2)− 1
2σ2

2

∫
p(z)(z − µ2)2dz

= ...

= −1
2 log(2πσ2

2)− σ2
1 + (µ1 − µ2)2

2σ2
2

Back to autoencoders: summary so far

Autoencoder:

I Decoder: point estimate of pθ∗(x|z)
I Encoder: point estimate of the value of z that generated the

image x

VAE:

I Decoder: probabilistic estimate of pθ∗(x|z)
I Encoder: probabilistic estimate of a Gaussian distribution

qφ(z|x) that approximates the distribution pθ∗(z|x)
I In particular, our encoder will be a neural network that predicts

the mean and standard deviation of qφ(z|x)
I We can then sample z from this distribution!

VAE Objective

But how do we train a VAE?

We want to maximize the likelihood of our data:

log p(x) = log
∫

p(x |z)p(x)dz

And we want to make sure that the distributions q(z |x) and p(z |x)
are close:

I We want to minimize KL[q(z|x) || p(z|x)]
I This is a measure of encoder quality

In other words, we want to maximize

−KL[q(z|x) || p(z|x)] + log p(x)

How can we optimize this quantity in a tractable way?

VAE: Evidence Lower-Bound

KL[q(z|x) || p(z|x)] =
∫

q(z|x) log q(z|x)
p(z|x)dz

= Eq[log q(z|x)
p(z|x)]

= Eq[log q(z|x)]− Eq[log p(z|x)]
= Eq[log q(z|x)]− Eq[log p(z, x)] + Eq[log p(x)]
= Eq[log q(z|x)]− Eq[log p(z, x)] + log p(x)

We’ll define the evidence lower-bound:

ELBOq(x) = Eq[log p(z, x)− log q(z|x)]

So we have

log p(x)− KL[q(z|x) || p(z|x)] = ELBOq(x)

Optimizing the ELBO

The ELBO gives us a way to estimate the gradients of
log p(x)− KL[q(z|x) || p(z|x)]

How?

ELBOq(x) = Eq[log p(z, x)− log q(z|x)]

I The right hand side of this expression is an expectation over
z ∼ q(z |x)

I To estimate the ELBO, we can sample from the distribution
z ∼ q(z |x), and compute the terms inside.

I We can estimate gradients in the same way—this is called a
Monte-Carlo gradient estimator

Monte Carlo Estimation

(This notation is unrelated to other slides: p(z) is just a univariate
Gaussian distribution, and fφ(z) is a function parameterized by φ)

Suppose we want to optimize an objective L(φ) = Ez∼p(z)[fφ(z)]
where p(z) is a normal distribution.

We can estimate L(φ) by sampling zi ∼ p(z) and computing

L(φ) = Ez∼p(z)[fφ(z)]

=
∫

z
p(z)fφ(z)dz

≈ 1
N

N∑
i=1

fφ(zi)

Monte Carlo Gradient Estimation

Likewise, if we want to estimate ∇φL, we can sample zi ∼ p(z) and
compute

∇φL = ∇φEz∼p(z)[fφ(z)]

= ∇φ
∫

z
p(z)fφ(z)dz

≈ ∇φ
1
N

N∑
i=1

fφ(zi)

= 1
N

N∑
i=1
∇φfφ(zi)

The reparamaterization trick

ELBOθ,φ(x) = Eqφ
[logpθ(z, x)− logqφ(z|x)]

Problem: typical Monte-Carlo gradient estimator with samples
z ∼ qφ(z|x) has very high variance

Reparameterization trick: instead of sampling z ∼ qφ(z|x) express
z = gφ(ε, x) where g is deterministic and only ε is stochastic.

In practise, the reparameterization trick is what makes the VAE
encoder deterministic. When running a VAE forward pass:

1. We get the means and standard deviations from the VAE
2. We sample from N (0, I)
3. We use the samples from step 2 to get a sample from q(z)

obtained from step 1

VAE: Summary so far
Decoder: estimate of pθ∗(x|z)

Encoder: estimate of a Gaussian distribution qφ(z|x) that
approximates the distribution pθ∗(z|x)

I Encoder is a NN that predicts the mean and standard deviation
of qφ(z|x)

I Use the reparameterization trick to sample from this
distribution

The VAE objective is equal to the evidence lower-bound:

log p(x)− KL[q(z|x] || p(z|x)) = ELBOq(x)

Which we can estimate using Monte Carlo

ELBOq(x) = Eq[log p(z, x)− log q(z|x)]

VAE: Summary so far

But given a value z ∼ q(z |x), how can we compute

log p(z, x)− log q(z|x)

. . . or its derivative with respect to the neural network parameters?

We need to do some more math to write this quantity in a form
that is easier to estimate.

VAE: a simpler form

ELBOθ,φ(x) = Eqφ
[logpθ(z, x)− logqφ(z|x)]

= Eqφ
[logpθ(x|z) + logpθ(z)− logqφ(z|x)]

= Eqφ
[logpθ(x|z)]− Eqφ

[logpθ(z) + logqφ(z|x)]
= Eqφ

[logpθ(x|z)]− KL(qφ(z|x) || pθ(z))
= decoding quality− encoding regularization

Both terms can be computed easily if we make some simplifying
assumptions

Let’s see how. . .

VAE: a simpler form

ELBOθ,φ(x) = Eqφ
[logpθ(z, x)− logqφ(z|x)]

= Eqφ
[logpθ(x|z) + logpθ(z)− logqφ(z|x)]

= Eqφ
[logpθ(x|z)]− Eqφ

[logpθ(z) + logqφ(z|x)]
= Eqφ

[logpθ(x|z)]− KL(qφ(z|x) || pθ(z))
= decoding quality− encoding regularization

Both terms can be computed easily if we make some simplifying
assumptions

Let’s see how. . .

VAE: a simpler form

ELBOθ,φ(x) = Eqφ
[logpθ(z, x)− logqφ(z|x)]

= Eqφ
[logpθ(x|z) + logpθ(z)− logqφ(z|x)]

= Eqφ
[logpθ(x|z)]− Eqφ

[logpθ(z) + logqφ(z|x)]

= Eqφ
[logpθ(x|z)]− KL(qφ(z|x) || pθ(z))

= decoding quality− encoding regularization

Both terms can be computed easily if we make some simplifying
assumptions

Let’s see how. . .

VAE: a simpler form

ELBOθ,φ(x) = Eqφ
[logpθ(z, x)− logqφ(z|x)]

= Eqφ
[logpθ(x|z) + logpθ(z)− logqφ(z|x)]

= Eqφ
[logpθ(x|z)]− Eqφ

[logpθ(z) + logqφ(z|x)]
= Eqφ

[logpθ(x|z)]− KL(qφ(z|x) || pθ(z))

= decoding quality− encoding regularization

Both terms can be computed easily if we make some simplifying
assumptions

Let’s see how. . .

VAE: a simpler form

ELBOθ,φ(x) = Eqφ
[logpθ(z, x)− logqφ(z|x)]

= Eqφ
[logpθ(x|z) + logpθ(z)− logqφ(z|x)]

= Eqφ
[logpθ(x|z)]− Eqφ

[logpθ(z) + logqφ(z|x)]
= Eqφ

[logpθ(x|z)]− KL(qφ(z|x) || pθ(z))
= decoding quality− encoding regularization

Both terms can be computed easily if we make some simplifying
assumptions

Let’s see how. . .

Computing Decoding Quality

In order to estimate this quantity

Eqφ
[logpθ(x|z)]

. . . we need to make some assumptions about the distribution
pθ(x|z).

If we make the assumption that pθ(x|z) is a normal distribution
centered around some pixel intensity, then optimizing pθ(x|z) is
equivalent to optimizing the square loss!

That is, pθ(x|z) tells us how intense a pixel could be, but that pixel
could be a bit darker/lighter, following a normal distribution).

Bonus: A traditional autoencoder is optimizing this same
quantity!

Computing Encoding Quality

This KL divergence computes the difference in distribution between
two distributions:

KL(qφ(z|x) || pθ(z))

I qφ(z|x) is a normal distribution that approximates pθ(z|x)
I pθ(z) is the prior distribution on z

I distribution of z when we don’t know anything about x or any
other quantity

Since z is a latent variable, not actually observed in the real word,
we can choose pθ(z)

I we choose pθ(z) = N (0, I)

. . . and we know how to compute the KL divergence of two Gaussian
distributions!

Interpretation

The VAE objective

Eqφ
[logpθ(x|z)]− KL(qφ(z|x) || pθ(z))

has an extra regularization term that the traditional autoencoder
does not.

This extra regularization term pushes the values of z to be closer to
0!

MNIST results

Figure 1: image

Frey Faces results

Figure 2: image

Dimension of latent variables

Figure 3: image

	Variational Autoencoders

