
Dynamic Graph CNN for Learning on Point Clouds

YUE WANG,Massachusetts Institute of Technology
YONGBIN SUN,Massachusetts Institute of Technology
ZIWEI LIU, UC Berkeley / ICSI
SANJAY E. SARMA,Massachusetts Institute of Technology
MICHAEL M. BRONSTEIN, Imperial College London / USI Lugano
JUSTIN M. SOLOMON,Massachusetts Institute of Technology

Fig. 1. Point cloud segmentation using the proposed neural network. Bottom: schematic neural network architecture. Top: Structure of the feature
spaces produced at different layers of the network, visualized as the distance from the red point to all the rest of the points (shown left-to-right are the input
and layers 1-3; rightmost figure shows the resulting segmentation). Observe how the feature space structure in deeper layers captures semantically similar
structures such as wings, fuselage, or turbines, despite a large distance between them in the original input space.

Point clouds provide a flexible geometric representation suitable for count-

less applications in computer graphics; they also comprise the raw output

of most 3D data acquisition devices. While hand-designed features on point

clouds have long been proposed in graphics and vision, however, the recent

overwhelming success of convolutional neural networks (CNNs) for image

analysis suggests the value of adapting insight from CNN to the point cloud

world. Point clouds inherently lack topological information so designing

Authors’ addresses: Yue Wang, Massachusetts Institute of Technology, yuewang@

csail.mit.edu; Yongbin Sun, Massachusetts Institute of Technology, yb_sun@mit.edu;

Ziwei Liu, UC Berkeley / ICSI, zwliu@icsi.berkeley.edu; Sanjay E. Sarma, Massachusetts

Institute of Technology, sesarma@mit.edu; Michael M. Bronstein, Imperial College

London / USI Lugano, m.bronstein@imperial.ac.uk; Justin M. Solomon, Massachusetts

Institute of Technology, jsolomon@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2019/1-ART1 $15.00

https://doi.org/10.1145/3326362

a model to recover topology can enrich the representation power of point

clouds. To this end, we propose a new neural network module dubbed Edge-
Conv suitable for CNN-based high-level tasks on point clouds including

classification and segmentation. EdgeConv acts on graphs dynamically com-

puted in each layer of the network. It is differentiable and can be plugged into

existing architectures. Compared to existing modules operating in extrinsic

space or treating each point independently, EdgeConv has several appealing

properties: It incorporates local neighborhood information; it can be stacked

applied to learn global shape properties; and in multi-layer systems affinity

in feature space captures semantic characteristics over potentially long dis-

tances in the original embedding. We show the performance of our model

on standard benchmarks including ModelNet40, ShapeNetPart, and S3DIS.

CCSConcepts: •Computingmethodologies→Neural networks;Point-

based models; Shape analysis;

Additional Key Words and Phrases: point cloud, classification, segmentation

ACM Reference Format:

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,

and Justin M. Solomon. 2019. Dynamic Graph CNN for Learning on Point

Clouds. ACM Trans. Graph. 1, 1, Article 1 (January 2019), 13 pages. https:

//doi.org/10.1145/3326362

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

ar
X

iv
:1

80
1.

07
82

9v
2

 [
cs

.C
V

]
 1

1
Ju

n
20

19

https://doi.org/10.1145/3326362
https://doi.org/10.1145/3326362
https://doi.org/10.1145/3326362

1:2 • Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon

1 INTRODUCTION
Point clouds, or scattered collections of points in 2D or 3D, are

arguably the simplest shape representation; they also comprise

the output of 3D sensing technology including LiDAR scanners

and stereo reconstruction. With the advent of fast 3D point cloud

acquisition, recent pipelines for graphics and vision often process

point clouds directly, bypassing expensive mesh reconstruction or

denoising due to efficiency considerations or instability of these

techniques in the presence of noise. A few of the many recent

applications of point cloud processing and analysis include indoor

navigation [Zhu et al. 2017], self-driving vehicles [Liang et al. 2018;

Qi et al. 2017a; Wang et al. 2018b], robotics [Rusu et al. 2008b], and

shape synthesis and modeling [Golovinskiy et al. 2009; Guerrero

et al. 2018].

These modern applications demand high-level processing of point
clouds. Rather than identifying salient geometric features like cor-

ners and edges, recent algorithms search for semantic cues and

affordances. These features do not fit cleanly into the frameworks

of computational or differential geometry and typically require

learning-based approaches that derive relevant information through

statistical analysis of labeled or unlabeled datasets.

In this paper, we primarily consider point cloud classification

and segmentation, two model tasks in point cloud processing. Tra-

ditional methods for solving these problems employ handcrafted

features to capture geometric properties of point clouds [Lu et al.

2014; Rusu et al. 2009, 2008a]. More recently, the success of deep

neural networks for image processing has motivated a data-driven

approach to learning features on point clouds. Deep point cloud pro-

cessing and analysis methods are developing rapidly and outperform

traditional approaches in various tasks [Chang et al. 2015].

Adaptation of deep learning to point cloud data, however, is far

from straightforward. Most critically, standard deep neural network

models require input data with regular structure, while point clouds

are fundamentally irregular: Point positions are continuously dis-

tributed in the space, and any permutation of their ordering does

not change the spatial distribution. One common approach to pro-

cess point cloud data using deep learning models is to first convert

raw point cloud data into a volumetric representation, namely a 3D

grid [Maturana and Scherer 2015; Wu et al. 2015]. This approach,

however, usually introduces quantization artifacts and excessive

memory usage, making it difficult to go to capture high-resolution

or fine-grained features.

State-of-the-art deep neural networks are designed specifically to

handle the irregularity of point clouds, directly manipulating raw

point cloud data rather than passing to an intermediate regular repre-

sentation. This approach was pioneered by PointNet [Qi et al. 2017b],
which achieves permutation invariance of points by operating on

each point independently and subsequently applying a symmetric

function to accumulate features. Various extensions of PointNet

consider neighborhoods of points rather than acting on each inde-

pendently [Qi et al. 2017c; Shen et al. 2017]; these allow the network

to exploit local features, improving upon performance of the basic

model. These techniques largely treat points independently at local

scale to maintain permutation invariance. This independence, how-

ever, neglects the geometric relationships among points, presenting

a fundamental limitation that cannot capture local features.

To address these drawbacks, we propose a novel simple operation,

called EdgeConv, which captures local geometric structure while

maintaining permutation invariance. Instead of generating point

features directly from their embeddings, EdgeConv generates edge
features that describe the relationships between a point and its

neighbors. EdgeConv is designed to be invariant to the ordering of

neighbors, and thus is permutation invariant. Because EdgeConv

explicitly constructs a local graph and learns the embeddings for

the edges, the model is capable of grouping points both in Euclidean

space and in semantic space.

EdgeConv is easy to implement and integrate into existing deep

learning models to improve their performance. In our experiments,

we integrate EdgeConv into the basic version of PointNet without
using any feature transformation. We show the resulting network

achieves state-of-the-art performance on several datasets, most no-

tably ModelNet40 and S3DIS for classification and segmentation.

Key Contributions. We summarize the key contributions of our

work as follows:

• We present a novel operation for learning from point clouds,

EdgeConv, to better capture local geometric features of point

clouds while still maintaining permutation invariance.

• We show the model can learn to semantically group points by

dynamically updating a graph of relationships from layer to layer.

• We demonstrate that EdgeConv can be integrated into multiple

existing pipelines for point cloud processing.

• We present extensive analysis and testing of EdgeConv and show

that it achieves state-of-the-art performance on benchmark datasets.

• We release our code to facilitate reproducibility and future re-

search.
1

2 RELATED WORK
Hand-Crafted Features. Various tasks in geometric data process-

ing and analysis—including segmentation, classification, andmatching—

require some notion of local similarity between shapes. Traditionally,

this similarity is established by constructing feature descriptors that

capture local geometric structure. Countless papers in computer vi-

sion and graphics propose local feature descriptors for point clouds

suitable for different problems and data structures. A comprehensive

overview of hand-designed point features is out of the scope of this

paper, but we refer the reader to [Biasotti et al. 2016; Guo et al. 2014;

Van Kaick et al. 2011] for discussion.

Broadly speaking, one can distinguish between extrinsic and in-
trinsic descriptors. Extrinsic descriptors usually are derived from the

coordinates of the shape in 3D space and includes classical methods

like shape context [Belongie et al. 2001], spin images [Johnson and

Hebert 1999], integral features [Manay et al. 2006], distance-based

descriptors [Ling and Jacobs 2007], point feature histograms [Rusu

et al. 2009, 2008a], and normal histograms [Tombari et al. 2011], to

name a few. Intrinsic descriptors treat the 3D shape as a manifold

whose metric structure is discretized as a mesh or graph; quantities

1
https://github.com/WangYueFt/dgcnn

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://github.com/WangYueFt/dgcnn

Dynamic Graph CNN for Learning on Point Clouds • 1:3

Fig. 2. Left: Computing an edge feature, ei j (top), from a point pair, xi and xj (bottom). In this example, hΘ() is instantiated using a fully connected layer,
and the learnable parameters are its associated weights. Right: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge
features associated with all the edges emanating from each connected vertex.

expressed in terms of the metric are invariant to isometric defor-

mation. Representatives of this class include spectral descriptors

such as global point signatures [Rustamov 2007], the heat and wave

kernel signatures [Aubry et al. 2011; Sun et al. 2009], and variants

[Bronstein and Kokkinos 2010]. Most recently, several approaches

wrap machine learning schemes around standard descriptors [Guo

et al. 2014; Shah et al. 2013].

Deep learning on geometry. Following the breakthrough results of

convolutional neural networks (CNNs) in vision [Krizhevsky et al.

2012; LeCun et al. 1989], there has been strong interest to adapt

such methods to geometric data. Unlike images, geometry usually

does not have an underlying grid, requiring new building blocks

replacing convolution and pooling or adaptation to a grid structure.

As a simple way to overcome this issue, view-based [Su et al. 2015;

Wei et al. 2016] and volumetric representations [Klokov and Lempit-

sky 2017; Maturana and Scherer 2015; Tatarchenko et al. 2017; Wu

et al. 2015]—or their combination [Qi et al. 2016]—“place” geometric

data onto a grid. More recently, PointNet [Qi et al. 2017b,c] exempli-

fies a broad class of deep learning architectures on non-Euclidean

data (graphs and manifolds) termed geometric deep learning [Bron-

stein et al. 2017]. These date back to early methods to construct

neural networks on graphs [Scarselli et al. 2009], recently improved

with gated recurrent units [Li et al. 2016] and neural message pass-

ing [Gilmer et al. 2017]. Bruna et al. [2013] and Henaff et al. [2015]

generalized convolution to graphs via the Laplacian eigenvectors

[Shuman et al. 2013]. Computational drawbacks of this foundational

approach were alleviated in follow-up works using polynomial [Def-

ferrard et al. 2016; Kipf and Welling 2017; Monti et al. 2017b, 2018],

or rational [Levie et al. 2017] spectral filters that avoid Laplacian

eigendecomposition and guarantee localization. An alternative def-

inition of non-Euclidean convolution employs spatial rather than

spectral filters. The Geodesic CNN (GCNN) is a deep CNN on meshes

generalizing the notion of patches using local intrinsic parameteriza-

tion [Masci et al. 2015]. Its key advantage over spectral approaches

is better generalization as well as a simple way of constructing

directional filters. Follow-up work proposed different local chart-

ing techniques using anisotropic diffusion [Boscaini et al. 2016]

or Gaussian mixture models [Monti et al. 2017a; Veličković et al.

2017]. In [Halimi et al. 2018; Litany et al. 2017b], a differentiable

functional map [Ovsjanikov et al. 2012] layer was incorporated into

a geometric deep neural network, allowing to do intrinsic structured

prediction of correspondence between nonrigid shapes.

The last class of geometric deep learning approaches attempts

to pull back a convolution operation by embedding the shape into

a domain with shift-invariant structure such as the sphere [Sinha

et al. 2016], torus [Maron et al. 2017], plane [Ezuz et al. 2017], sparse

network lattice [Su et al. 2018], or spline [Fey et al. 2018].

Finally, we should mention geometric generative models, which
attempt to generalize models such as autoencoders, variational au-

toencoders (VAE) [Kingma and Welling 2013], and generative adver-

sarial networks (GAN) [Goodfellow et al. 2014] to the non-Euclidean

setting. One of the fundamental differences between these two set-

tings is the lack of canonical order between the input and the output

vertices, thus requiring an input-output correspondence problem

to be solved. In 3D mesh generation, it is commonly assumed that

the mesh is given and its vertices are canonically ordered; the gen-

eration problem thus amounts only to determining the embedding

of the mesh vertices. Kostrikov et al. [2017] proposed SurfaceNets

based on the extrinsic Dirac operator for this task. Litany et al.

[2017a] introduced the intrinsic VAE for meshes and applied it to

shape completion; a similar architecture was used by Ranjan et al.

[2018] for 3D face synthesis. For point clouds, multiple generative

architectures have been proposed [Fan et al. 2017; Li et al. 2018b;

Yang et al. 2018].

3 OUR APPROACH
We propose an approach inspired by PointNet and convolution

operations. Instead of working on individual points like PointNet,

however, we exploit local geometric structures by constructing a

local neighborhood graph and applying convolution-like operations

on the edges connecting neighboring pairs of points, in the spirit

of graph neural networks. We show in the following that such an

operation, dubbed edge convolution (EdgeConv), has properties lying
between translation-invariance and non-locality.

Unlike graph CNNs, our graph is not fixed but rather is dynam-

ically updated after each layer of the network. That is, the set of

k-nearest neighbors of a point changes from layer to layer of the

network and is computed from the sequence of embeddings. Prox-

imity in feature space differs from proximity in the input, leading

to nonlocal diffusion of information throughout the point cloud. As

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 • Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon

Fig. 3. Model architectures: The model architectures used for classification (top branch) and segmentation (bottom branch). The classification model takes
as input n points, calculates an edge feature set of size k for each point at an EdgeConv layer, and aggregates features within each set to compute EdgeConv
responses for corresponding points. The output features of the last EdgeConv layer are aggregated globally to form an 1D global descriptor, which is used to
generate classification scores for c classes. The segmentation model extends the classification model by concatenating the 1D global descriptor and all the
EdgeConv outputs (serving as local descriptors) for each point. It outputs per-point classification scores for p semantic labels. ⊕: concatenation. Point cloud
transform block: The point cloud transform block is designed to align an input point set to a canonical space by applying an estimated 3 × 3 matrix. To
estimate the 3 × 3 matrix, a tensor concatenating the coordinates of each point and the coordinate differences between its k neighboring points is used.
EdgeConv block: The EdgeConv block takes as input a tensor of shape n × f , computes edge features for each point by applying a multi-layer perceptron
(mlp) with the number of layer neurons defined as {a1, a2, ..., an }, and generates a tensor of shape n × an after pooling among neighboring edge features.

a connection to existing work, Non-local Neural Networks [Wang

et al. 2018a] explored similar ideas in the video recognition field,

and follow-up work by Xie et al. [2018] proposed using non-local

blocks to denoise feature maps to defend against adversarial attacks.

3.1 Edge Convolution
Consider an F -dimensional point cloud with n points, denoted by

X = {x1, . . . , xn } ⊆ RF . In the simplest setting of F = 3, each point

contains 3D coordinates xi = (xi ,yi , zi); it is also possible to include
additional coordinates representing color, surface normal, and so

on. In a deep neural network architecture, each subsequent layer

operates on the output of the previous layer, so more generally the

dimension F represents the feature dimensionality of a given layer.

We compute a directed graph G = (V, E) representing local point
cloud structure, where V = {1, . . . ,n} and E ⊆ V × V are the

vertices and edges, respectively. In the simplest case, we construct

G as the k-nearest neighbor (k-NN) graph of X in RF . The graph
includes self-loop, meaning each node also points to itself. We define

edge features as ei j = hΘ(xi , xj), where hΘ : RF × RF → RF ′
is a

nonlinear function with a set of learnable parameters Θ.
Finally, we define the EdgeConv operation by applying a channel-

wise symmetric aggregation operation □ (e.g.,

∑
or max) on the

edge features associated with all the edges emanating from each

vertex. The output of EdgeConv at the i-th vertex is thus given by

x′i = □
j :(i, j)∈E

hΘ(xi , xj). (1)

Making analogy to convolution along images, we regard xi as the
central pixel and {xj : (i, j) ∈ E} as a patch around it (see Fig-

ure 2). Overall, given an F -dimensional point cloud with n points,

EdgeConv produces an F ′-dimensional point cloud with the same

number of points.

Choice of h and □. The choice of the edge function and the ag-

gregation operation has a crucial influence on the properties of

EdgeConv. For example, when x1, . . . , xn represent image pixels

on a regular grid and the graph G has connectivity representing

patches of fixed size around each pixel, the choice θm · xj as the
edge function and sum as the aggregation operation yields standard

convolution:

x ′im =
∑

j :(i, j)∈E
θm · xj , (2)

Here, Θ = (θ1, . . . ,θM) encodes the weights ofM different filters.

Each θm has the same dimensionality as x, and · denotes the Eu-
clidean inner product.

A second choice of h is

hΘ(xi , xj) = hΘ(xi), (3)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Dynamic Graph CNN for Learning on Point Clouds • 1:5

encoding only global shape information oblivious of the local neigh-

borhood structure. This type of operation is used in PointNet, which

can thus be regarded as a special case of EdgeConv.

A third choice of h adopted by Atzmon et al. [2018] is

hΘ(xi , xj) = hΘ(xj) (4)

and

x ′im =
∑
j ∈V

(hθ (xj))д(u(xi , xj)), (5)

where д is a Gaussian kernel and u computes pairwise distance in

Euclidean space.

A fourth option is

hΘ(xi , xj) = hΘ(xj − xi). (6)

This encodes only local information, treating the shape as a collec-

tion of small patches and losing global structure.

Finally, a fifth option that we adopt in this paper is an asymmetric

edge function

hΘ(xi , xj) = ¯hΘ(xi , xj − xi). (7)

This explicitly combines global shape structure, captured by the

coordinates of the patch centers xi , with local neighborhood infor-

mation, captured by xj −xi . In particular, we can define our operator
by notating

e ′i jm = ReLU(θm · (xj − xi) + ϕm · xi), (8)

which can be implemented as a shared MLP, and taking

x ′im = max

j :(i, j)∈E
e ′i jm , (9)

where Θ = (θ1, . . . ,θM ,ϕ1
, . . . ,ϕM)

3.2 Dynamic graph update
Our experiments suggest that it is beneficial to recompute the graph
using nearest neighbors in the feature space produced by each layer.

This is a crucial distinction of ourmethod from graph CNNsworking

on a fixed input graph. Such a dynamic graph update is the reason

for the name of our architecture, the Dynamic Graph CNN (DGCNN).
With dynamic graph updates, the receptive field is as large as the

diameter of the point cloud, while being sparse.

At each layer we have a different graph G(l) = (V(l), E(l)), where
the l-th layer edges are of the form (i, ji1), . . . , (i, jikl) such that

x(l)ji1 , . . . ,x
(l)
jikl

are the kl points closest to x(l)i . Put differently, our

architecture learns how to construct the graph G used in each layer

rather than taking it as a fixed constant constructed before the

network is evaluated. In our implementation, we compute a pairwise

distance matrix in feature space and then take the closest k points

for each single point.

3.3 Properties
Permutation Invariance. Consider the output of a layer

x′i = max

j :(i, j)∈E
hΘ(xi , xj) (10)

and a permutation operator π . The output of the layer x′i is invariant
to permutation of the input xj because max is a symmetric function

(other symmetric functions also apply). The global max pooling

operator to aggregate point features is also permutation-invariant.

Translation Invariance. Our operator has a “partial” translation
invariance property, in that our choice of edge functions (7) explicitly

exposes the part of the function that can be translation-dependent

and optionally can be disabled. Consider a translation applied to xj
and xi ; we can show that part of the edge feature is preserved when

shifting byT . In particular, for the translated point cloud we have

e ′i jm = θm · (xj +T − (xi +T)) + ϕm · (xi +T)
= θm · (xj − xi) + ϕm · (xi +T).

If we only consider xj − xi by taking ϕm = 0, then the operator

is fully invariant to translation. In this case, however, the model re-

duces to recognizing an object based on an unordered set of patches,

ignoring the positions and orientations of patches. With both xj −xi
and xi as input, the model takes account into the local geometry of

patches while keeping global shape information.

3.4 Comparison to existing methods
DGCNN is related to two classes of approaches, PointNet and graph

CNNs, which we show to be particular settings of our method. We

summarize different methods in Table 1.

PointNet is a special case of our method with k = 1, yielding

a graph with an empty edge set E = ∅. The edge function used

in PointNet is hΘ(xi , xj) = hΘ(xi), which considers global but not

local geometry. PointNet++ tries to account for local structure by ap-

plying PointNet in a local manner. In our parlance, PointNet++ first

constructs the graph according to the Euclidean distances between

the points, and in each layer applies a graph coarsening operation.

For each layer, some points are selected using farthest point sam-

pling (FPS); only the selected points are preserved while others are

directly discarded after this layer. In this way, the graph becomes

smaller after the operation applied on each layer. In contrast to

DGCNN, PointNet++ computes pairwise distances using point in-

put coordinates, and hence their graphs are fixed during training.

The edge function used by PointNet++ is hΘ(xi , xj) = hΘ(xj), and
the aggregation operation is also a max.

Among graphCNNs,MoNet [Monti et al. 2017a], ECC [Simonovsky

and Komodakis 2017], Graph Attention Networks [Veličković et al.

2017], and the concurrent work [Atzmon et al. 2018] are the most

related approaches. Their common denominator is a notion of a

local patch on a graph, in which a convolution-type operation can

be defined.
2

Specifically, Monti et al. [2017a] use the graph structure to com-

pute a local “pseudo-coordinate system” u in which the neighbor-

hood vertices are represented; the convolution is then defined as an

M-component Gaussian mixture

x ′im =
∑

j :(i, j)∈E
θm · (xj ⊙ дwn (u(xi , xj))), (11)

whereд is a Gaussian kernel, ⊙ is the elementwise (Hadamard) prod-

uct, {w1, . . . ,wN } encode the learnable parameters of the Gaussians

(mean and covariance), and {θ1, . . . ,θM } are the learnable filter co-
efficients. (11) is an instance of our general operation (1), with a

2
[Simonovsky and Komodakis 2017; Veličković et al. 2017] can be considered instances

of [Monti et al. 2017a], with the difference that the weights are constructed employing

features from adjacent nodes instead of graph structure; [Atzmon et al. 2018] is also

similar except that the weighting function is hand-designed.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 • Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon

Aggregation Edge Function Learnable parameters

PointNet [Qi et al. 2017b] — hΘ(xi , xj) = hΘ(xi) Θ
PointNet++ [Qi et al. 2017c] max hΘ(xi , xj) = hΘ(xj) Θ
MoNet [Monti et al. 2017a]

∑
hθm,wn

(xi , xj) = θm · (xj ⊙ дwn (u(xi , xj))) wn ,θm
PCNN [Atzmon et al. 2018]

∑
hθm (xi , xj) = (θm · xj)д(u(xi , xj)) θm

Table 1. Comparison to existing methods. The per-point weight wi in [Atzmon et al. 2018] effectively is computed in the first layer and could be carried
onward as an extra feature; we omit this for simplicity.

Fig. 4. Structure of the feature spaces produced at different stages of our shape classification neural network architecture, visualized as the distance
between the red point to the rest of the points. For each set, Left: Euclidean distance in the input R3 space; Middle: Distance after the point cloud transform
stage, amounting to a global transformation of the shape; Right: Distance in the feature space of the last layer. Observe how in the feature space of deeper
layers semantically similar structures such as shelves of a bookshelf or legs of a table are brought close together, although they are distant in the original space.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Dynamic Graph CNN for Learning on Point Clouds • 1:7

particular edge function

hθm,wn
(xi , xj) = θm · (xj ⊙ дwn (u(xi , xj)))

and□ =
∑
. Again, their graph structure is fixed, andu is constructed

based on the degrees of nodes.

[Atzmon et al. 2018] can be seen as a special case of [Monti et al.

2017a] with д as predefined Gaussian functions. Removing learnable

parameters (w1, . . . ,wN) and constructing a dense graph from point

clouds, we have

x ′im =
∑
j :j ∈V

(θm · xj)д(u(xi , xj)), (12)

where u is the pairwise distance between xi and xj in Euclidean

space.

While MoNet and other graph CNNs assume a given fixed graph

on which convolution-like operations are applied, to our knowledge

our method is the first for which the graph changes from layer to

layer and even on the same input during training when learnable

parameters are updated. This way, our model not only learns how

to extract local geometric features, but also how to group points in a

point cloud. Figure 4 shows the distance in different feature spaces,

exemplifying that the distances in deeper layers carry semantic

information over long distances in the original embedding.

4 EVALUATION
In this section, we evaluate the models constructed using EdgeConv

for different tasks: classification, part segmentation, and semantic

segmentation. We also visualize experimental results to illustrate

key differences from previous work.

4.1 Classification
Data. We evaluate our model on the ModelNet40 [Wu et al. 2015]

classification task, consisting in predicting the category of a pre-

viously unseen shape. The dataset contains 12,311 meshed CAD

models from 40 categories. 9,843 models are used for training and

2,468 models are for testing. We follow verbatim the experimental

settings of Qi et al. [2017b]. For each model, 1,024 points are uni-

formly sampled from the mesh faces; the point cloud is rescaled to

fit into the unit sphere. Only the (x ,y, z) coordinates of the sam-

pled points are used, and the original meshes are discarded. During

the training procedure, we augment the data by randomly scaling

objects and perturbing the object and point locations.

Architecture. The network architecture used for the classification

task is shown in Figure 3 (top branch without spatial transformer

network). We use four EdgeConv layers to extract geometric fea-

tures. The four EdgeConv layers use three shared fully-connected

layers (64, 64, 128, 256). We recompute the graph based on the fea-

tures of each EdgeConv layer and use the new graph for next layer.

The number k of nearest neighbors is 20 for all EdgeConv layers (for

the last row in Table 2, k is 40). Shortcut connections are included

to extract multi-scale features and one shared fully-connected layer

(1024) to aggregate multi-scale features, where we concatenate fea-

tures from previous layers to get a 64+64+128+256=512 dimensional

point cloud. Then, a global max/sum pooling is used to get the

point cloud global feature, after which two fully-connected layers

(512, 256) are used to transform the global feature. Dropout with

keep probability of 0.5 is used in the last two fully-connected layers.

All layers include LeakyReLU and batch normalization. The number

k was chosen using a validation set. We split the training data to

80% for training and 20% for validation to search the best k . After
k is chosen, we retrain the model on the whole training data and

evaluate the model on the testing data. Other hyperparameters were

chosen in a similar ways.

Training. We use SGD with learning rate 0.1, and we reduce the

learning rate until 0.001 using cosine annealing [Loshchilov and

Hutter 2017]. The momentum for batch normalization is 0.9, and

we do not use batch normalization decay. The batch size is 32 and

the momentum is 0.9.

Results. Table 2 shows the results for the classification task. Our

model achieves the best results on this dataset. Our baseline using

a fixed graph determined by proximity in the input point cloud

is 1.0% better than PointNet++. An advanced version including

dynamical graph recomputation achieves the best results on this

dataset. All the experiments are performed with point clouds that

contain 1024 points except last row. We further test out model

with 2048 points. The k used for 2048 points is 40 to maintain the

same density. Note that PCNN [Atzmon et al. 2018] uses additional

augmentation techniques like randomly sampling 1024 points out

of 1200 points during both training and testing.

Mean Overall

Class Accuracy Accuracy

3DShapeNets [Wu et al. 2015] 77.3 84.7

VoxNet [Maturana and Scherer 2015] 83.0 85.9

Subvolume [Qi et al. 2016] 86.0 89.2

VRN (single view) [Brock et al. 2016] 88.98 -

VRN (multiple views) [Brock et al. 2016] 91.33 -

ECC [Simonovsky and Komodakis 2017] 83.2 87.4

PointNet [Qi et al. 2017b] 86.0 89.2

PointNet++ [Qi et al. 2017c] - 90.7

Kd-net [Klokov and Lempitsky 2017] - 90.6

PointCNN [Li et al. 2018a] 88.1 92.2

PCNN [Atzmon et al. 2018] - 92.3

Ours (baseline) 88.9 91.7

Ours 90.2 92.9

Ours (2048 points) 90.7 93.5

Table 2. Classification results on ModelNet40.

4.2 Model Complexity
We use the ModelNet40 [Wu et al. 2015] classification experiment

to compare the complexity of our model to previous state-of-the-art.

Table 3 shows that our model achieves the best tradeoff between the

model complexity (number of parameters), computational complex-

ity (measured as forward pass time), and the resulting classification

accuracy.

Our baseline model using the fixed k-NN graph outperforms the

previous state-of-the-art PointNet++ by 1.0% accuracy, at the same

time being 7 times faster. A more advanced version of our model

including a dynamically-updated graph computation outperforms

PointNet++, PCNN by 2.2% and 0.6% respectively, while being much

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 • Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon

Model size(MB) Time(ms) Accuracy(%)

PointNet (Baseline) [Qi et al. 2017b] 9.4 6.8 87.1

PointNet [Qi et al. 2017b] 40 16.6 89.2

PointNet++ [Qi et al. 2017c] 12 163.2 90.7

PCNN [Atzmon et al. 2018] 94 117.0 92.3

Ours (Baseline) 11 19.7 91.7

Ours 21 27.2 92.9

Table 3. Complexity, forward time, and accuracy of different models

more efficient. The number of points in each experiment is also 1024

in this section.

4.3 More Experiments on ModelNet40
We also experiment with various settings of our model on the Mod-

elNet40 [Wu et al. 2015] dataset. In particular, we analyze the effec-

tiveness of the different distance metrics, explicit usage of xi − xj ,
and more points.

Table 4 shows the results. “Centralization” denotes using con-

catenation of xi and xi − xj as the edge features rather than con-

catenating xi and xj . “Dynamic graph recomputation” denotes we

reconstruct the graph rather than using a fixed graph. Explicitly

centralizing each patch by using the concatenation of xi and xi −xj
leads to about 0.5% improvement for overall accuracy. By dynami-

cally updating graph, there is about 0.7% improvement, and Figure 4

also suggests that the model can extract semantically meanigful

features. Using more points further improves the overall accuracy

by 0.6%.

We also experiment with different numbersk of nearest neighbors

as shown in Table 5. For all experiments, the number of points

is still 1024. While we do not exhaustively experiment with all

possible k , we find with large k that the performance degenerates.

This confirms our hypothesis that for certain density, with large

k the Euclidean distance fails to approximate geodesic distance,

destroying the geometry of each patch.

We further evaluate the robustness of our model (trained on

1,024 points with k = 20) to point cloud density. We simulate the

environment that random input points drops out during testing.

Figure 5 shows that even half of points is dropped, the model still

achieves reasonable results. With fewer than 512 points, however,

performance degenerates dramatically.

CENT DYN MPOINTS Mean Class Accuracy(%) Overall Accuracy(%)

88.9 91.7

x 89.3 92.2

x x 90.2 92.9

x x x 90.7 93.5

Table 4. Effectiveness of different components. CENT denotes centraliza-
tion, DYN denotes dynamical graph recomputation, and MPOINTS denotes
experiments with 2048 points

.

Fig. 5. Left: Results of our model tested with random input dropout. The
model is trained with number of points being 1024 and k being 20. Right:
Point clouds with different number of points. The numbers of points are
shown below the bottom row.

Number of nearest neighbors (k) Mean Overall

Class Accuracy(%) Accuracy(%)

5 88.0 90.5

10 88.9 91.4

20 90.2 92.9

40 89.4 92.4

Table 5. Results of our model with different numbers of nearest neighbors.

4.4 Part Segmentation
Data. We extend our EdgeConv model architectures for part seg-

mentation task on ShapeNet part dataset [Yi et al. 2016]. For this

task, each point from a point cloud set is classified into one of a

few predefined part category labels. The dataset contains 16,881

3D shapes from 16 object categories, annotated with 50 parts in

total. 2,048 points are sampled from each training shape, and most

sampled point sets are labeled with less than six parts. We follow

the official train/validation/test split scheme as Chang et al. [2015]

in our experiment.

Architecture. The network architecture is illustrated in Figure 3

(bottom branch). After a spatial transformer network, three Edge-

Conv layers are used. A shared fully-connected layer (1024) aggre-
gates information from the previous layers. Shortcut connections

are used to include all the EdgeConv outputs as local feature de-

scriptors. At last, three shared fully-connected layers (256, 256, 128)
are used to transform the pointwise features. Batch-norm, dropout,

and ReLU are included in the similar fashion to our classification

network.

Training. The same training setting as in our classification task

is adopted. A distributed training scheme is further implemented

on two NVIDIA TITAN X GPUs to maintain the training batch size.

Results. We use Intersection-over-Union (IoU) on points to eval-

uate our model and compare with other benchmarks. We follow

the same evaluation scheme as PointNet: The IoU of a shape is

computed by averaging the IoUs of different parts occurring in that

shape, and the IoU of a category is obtained by averaging the IoUs

of all the shapes belonging to that category. The mean IoU (mIoU) is

finally calculated by averaging the IoUs of all the testing shapes. We

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Dynamic Graph CNN for Learning on Point Clouds • 1:9

Fig. 6. Our part segmentation testing results for tables, chairs and lamps.

compare our results with PointNet [Qi et al. 2017b], PointNet++ [Qi

et al. 2017c], Kd-Net [Klokov and Lempitsky 2017], LocalFeatureNet

[Shen et al. 2017], PCNN [Atzmon et al. 2018], and PointCNN [Li

et al. 2018a]. The evaluation results are shown in Table 6. We also

visually compare the results of our model and PointNet in Figure 7.

More examples are shown in Figure 6.

Intra-cloud distances. We next explore the relationships between

different point clouds captured using our features. As shown in

Figure 8, we take one red point from a source point cloud and

compute its distance in feature space to points in other point clouds

from the same category. An interesting finding is that although

points are from different sources, they are close to each other if they

are from semantically similar parts. We evaluate on the features

after the third layer of our segmentation model for this experiment.

Segmentation on partial data. Our model is robust to partial data.

We simulate the environment that part of the shape is dropped

from one of six sides (top, bottom, right, left, front and back) with

different percentages. The results are shown in Figure 9. On the left,

PointNet Ours Ground truth

Fig. 7. Compare part segmentation results. For each set, from left to right:
PointNet, ours and ground truth.

the mean IoU versus “keep ratio” is shown. On the right, the results

for an airplane model are visualized.

4.5 Indoor Scene Segmentation
Data. We evaluate our model on Stanford Large-Scale 3D Indoor

Spaces Dataset (S3DIS) [Armeni et al. 2016] for a semantic scene

segmentation task. This dataset includes 3D scan point clouds for 6

indoor areas including 272 rooms in total. Each point belongs to one

of 13 semantic categories—e.g. board, bookcase, chair, ceiling, and

beam—plus clutter. We follow the same setting as Qi et al. [2017b],

where each room is split into blocks with area 1m × 1m, and each

point is represented as a 9D vector (XYZ, RGB, and normalized

spatial coordinates). 4,096 points are sampled for each block during

training process, and all points are used for testing. We also use

the same 6-fold cross validation over the 6 areas, and the average

evaluation results are reported.

Themodel used for this task is similar to part segmentationmodel,

except that a probability distribution over semantic object classes is

generated for each input point and no categorical vector is used here.

We compare our model with both PointNet [Qi et al. 2017b] and

PointNet baseline, where additional point features (local point den-

sity, local curvature and normal) are used to construct handcrafted

features and then fed to an MLP classifier. We further compare our

work with [Engelmann et al. 2017] and PointCNN [Li et al. 2018a].

Engelmann et al. [2017] present network architectures to enlarge

the receptive field over the 3D scene. Two different approaches

are proposed in their work: MS+CU for multi-scale block features

with consolidation units; G+RCU for the grid-blocks with recurrent

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 • Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon

mean areo bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

. phone board

shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

Kd-Net 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

LocalFeatureNet 84.3 86.1 73.0 54.9 77.4 88.8 55.0 90.6 86.5 75.2 96.1 57.3 91.7 83.1 53.9 72.5 83.8

PCNN 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

PointCNN 86.1 84.1 86.45 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

Ours 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

Table 6. Part segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points.

Source points Other point clouds from the same category

Fig. 8. Visualize the Euclidean distance (yellow: near, blue: far) between
source points (red points in the left column) and multiple point clouds
from the same category in the feature space after the third EdgeConv layer.
Notice source points not only capture semantically similar structures in
the point clouds that they belong to, but also capture semantically similar
structures in other point clouds from the same category.

consolidation Units. We report evaluation results in Table 7, and

visually compare the results of PointNet and our model in Figure 10.

Fig. 9. Left: The mean IoU (%) improves when the ratio of kept points in-
creases. Points are dropped from one of six sides (top, bottom, left, right, front
and back) randomly during evaluation process. Right: Part segmentation
results on partial data. Points on each row are dropped from the same side.
The keep ratio is shown below the bottom row. Note that the segmentation
results of turbines are improved when more points are included.

Mean overall

IoU accuracy

PointNet (baseline) [Qi et al. 2017b] 20.1 53.2

PointNet [Qi et al. 2017b] 47.6 78.5

MS + CU(2) [Engelmann et al. 2017] 47.8 79.2

G + RCU [Engelmann et al. 2017] 49.7 81.1

PointCNN [Li et al. 2018a] 65.39 -

Ours 56.1 84.1

Table 7. 3D semantic segmentation results on S3DIS. MS+CU for multi-scale
block features with consolidation units; G+RCU for the grid-blocks with
recurrent consolidation Units.

5 DISCUSSION
In this work we propose a new operator for learning on point cloud

and show its performance on various tasks. Our model suggests

that local geometric features are important to 3D recognition tasks,

even after introducing machinery from deep learning.

While our architectures easily can be incorporated as-is into

existing pipelines for point cloud-based graphics, learning, and

vision, our experiments also indicate several avenues for future

research and extension. Some details of our implementation could be

revised and/or re-engineered to improve efficiency or scalability, e.g.

incorporating fast data structures rather than computing pairwise

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Dynamic Graph CNN for Learning on Point Clouds • 1:11

PointNet Ours Ground truth Real color

Fig. 10. Semantic segmentation results. From left to right: PointNet, ours, ground truth and point cloud with original color. Notice our model outputs smoother
segmentation results, for example, wall (cyan) in top two rows, chairs (red) and columns (magenta) in bottom two rows.

distances to evaluate k-nearest neighbors queries. We also could

consider higher-order relationships between larger tuples of points,

rather than considering them pairwise. Another possible extension

is to design a non-shared transformer network that works on each

local patch differently, adding flexibility to our model.

Our experiments suggest that intrinsic features can be equally

valuable if not more valuable than point coordinates; developing a

practical and theoretically-justified framework for balancing intrin-

sic and extrinsic considerations in a learning pipeline will require

insight from theory and practice in geometry processing. Given this,

we will consider applications of our techniques to more abstract

point clouds coming from applications like document retrieval and

image processing rather than 3D geometry; beyond broadening

the applicability of our technique, these experiments will provide

insight into the role of geometry in abstract data processing.

ACKNOWLEDGMENTS
The authors acknowledge the generous support of Army Research

Office grant W911NF-12-R-0011, of Air Force Office of Scientific

Research award FA9550-19-1-0319, of National Science Foundation

grant IIS-1838071, of ERC Consolidator grant No. 724228 (LEMAN),

from an Amazon Research Award, from the MIT-IBM Watson AI

Laboratory, from the Toyota-CSAIL Joint Research Center, from the

Skoltech-MIT Next Generation Program, and from Google Faculty

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 • Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon

Research Award. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors and

do not necessarily reflect the views of these organizations.

REFERENCES
Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer,

and Silvio Savarese. 2016. 3D Semantic Parsing of Large-Scale Indoor Spaces. In

Proc. CVPR.
Matan Atzmon, Haggai Maron, and Yaron Lipman. 2018. Point Convolutional Neural

Networks by Extension Operators. ACM Trans. Graph. 37, 4, Article 71 (July 2018),

12 pages. https://doi.org/10.1145/3197517.3201301

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The Wave Kernel

Signature: A Quantum Mechanical Approach to Shape Analysis. In Proc. ICCV
Workshops.

Serge Belongie, Jitendra Malik, and Jan Puzicha. 2001. Shape Context: A New Descriptor

for Shape Matching and Object Recognition. In Proc. NIPS.
Silvia Biasotti, Andrea Cerri, A Bronstein, and M Bronstein. 2016. Recent Trends, Ap-

plications, and Perspectives in 3D Shape Similarity assessment. Computer Graphics
Forum 35, 6 (2016), 87–119.

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. 2016.

Learning Shape Correspondence with Anisotropic Convolutional Neural Networks.

In Proc. NIPS.
Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J. Weston. 2016.

Generative andDiscriminative VoxelModelingwith Convolutional Neural Networks.

In Proc. NIPS.
Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.

2017. Geometric Deep Learning: Going beyond Euclidean Data. IEEE Signal Process-
ing Magazine 34, 4 (2017), 18–42.

Michael M Bronstein and Iasonas Kokkinos. 2010. Scale-invariant Heat Kernel Signa-

tures for Non-rigid Shape Recognition. In Proc. CVPR.
Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral Networks

and Locally Connected Networks on Graphs. arXiv:1312.6203 (2013).
Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. Shapenet:

An Information-rich 3D Model Repository. arXiv:1512.03012 (2015).
Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional

Neural Networks on Graphs with Fast Localized Spectral Filtering. In Proc. NIPS.
Francis Engelmann, Theodora Kontogianni, Alexander Hermans, and Bastian Leibe.

2017. Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds. In

Proc. CVPR.
Danielle Ezuz, Justin Solomon, Vladimir G Kim, and Mirela Ben-Chen. 2017. GWCNN:

A Metric Alignment Layer for Deep Shape Analysis. Computer Graphics Forum 36,

5 (2017), 49–57.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. 2017. A Point Set Generation Network

for 3D Object Reconstruction from a Single Image.. In Proc. CVPR.
Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. 2018. SplineCNN:

Fast Geometric Deep Learning with Continuous B-Spline Kernels. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.

2017. Neural Message Passing for Quantum Chemistry. arXiv:1704.01212 (2017).
Aleksey Golovinskiy, Vladimir G. Kim, and Thomas Funkhouser. 2009. Shape-based

Recognition of 3D Point Clouds in Urban Environments. In Proc. ICCV.
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In

Proc. NIPS.
Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. 2018. PCPNet:

Learning Local Shape Properties from Raw Point Clouds. Computer Graphics Forum
37, 2 (2018), 75–85. https://doi.org/10.1111/cgf.13343

Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei Wan. 2014.

3D Object Recognition in Cluttered Scenes with Local Surface Features: a Survey.

Trans. PAMI 36, 11 (2014), 2270–2287.
Oshri Halimi, Or Litany, Emanuele Rodolà, Alex Bronstein, and Ron Kimmel. 2018.

Self-supervised Learning of Dense Shape Correspondence. arXiv:1812.02415 (2018).
M. Henaff, J. Bruna, and Y. LeCun. 2015. Deep Convolutional Networks on Graph-

structured Data. arXiv:1506.05163 (2015).
Andrew E. Johnson and Martial Hebert. 1999. Using Spin Images for Efficient Object

Recognition in Cluttered 3D Scenes. Trans. PAMI 21, 5 (1999), 433–449.
Diederik P Kingma and Max Welling. 2013. Auto-encoding Variational Bayes.

arXiv:1312.6114 (2013).
Thomas N Kipf and Max Welling. 2017. Semi-supervised Classification with Graph

Convolutional Networks. (2017).

Roman Klokov and Victor Lempitsky. 2017. Escape from Cells: Deep Kd-Networks for

The Recognition of 3D Point Cloud Models. (2017).

Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. 2017.

Surface Networks. In Proc. CVPR.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Classification

with Deep Convolutional Neural Networks. In Proc. NIPS.
Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation Applied to Hand-

written ZIP Code Recognition. Neural computation 1, 4 (1989), 541–551.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. 2017. CayleyNets:

Graph Convolutional Neural Networks with Complex Rational Spectral Filters.

arXiv:1705.07664 (2017).
Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhutdinov.

2018b. Point Cloud GAN. arXiv:1810.05795 (2018).
Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. 2018a.

PointCNN: Convolution On X-Transformed Points. In Advances in Neural Infor-
mation Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 820–830. http:

//papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated graph

Sequence Neural Networks. In Proc. ICLR.
Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. 2018. Deep Continuous Fu-

sion for Multi-Sensor 3D Object Detection. In The European Conference on Computer
Vision (ECCV).

Haibin Ling and David W Jacobs. 2007. Shape Classification using the Inner-distance.

Trans. PAMI 29, 2 (2007), 286–299.
Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. 2017a. Deformable

Shape Completion with Graph Convolutional Autoencoders. arXiv:1712.00268
(2017).

Or Litany, Tal Remez, Emanuele Rodolà, Alex M Bronstein, and Michael M Bronstein.

2017b. Deep Functional Maps: Structured Prediction for Dense Shape Correspon-

dence. In Proc. ICCV.
I. Loshchilov and F. Hutter. 2017. SGDR: Stochastic Gradient Descent with Warm

Restarts. In International Conference on Learning Representations (ICLR) 2017 Confer-
ence Track.

Min Lu, Yulan Guo, Jun Zhang, Yanxin Ma, and Yinjie Lei. 2014. Recognizing Objects in

3D Point Clouds with Multi-scale Local Features. Sensors 14, 12 (2014), 24156–24173.
Siddharth Manay, Daniel Cremers, Byung-Woo Hong, Anthony J Yezzi, and Stefano

Soatto. 2006. Integral Invariants for Shape Matching. Trans. PAMI 28, 10 (2006),
1602–1618.

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,

Vladimir G Kim, and Yaron Lipman. 2017. Convolutional Neural Networks on

Surfaces via Seamless Toric Covers. In Proc. SIGGRAPH.
Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015.

Geodesic Convolutional Neural Networks on Riemannian Manifolds. In Proc. 3dRR.
Daniel Maturana and Sebastian Scherer. 2015. Voxnet: A 3D Convolutional Neural

Network for Real-time Object Recognition. In Proc. IROS.
Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and

Michael M Bronstein. 2017a. Geometric Deep Learning on Graphs and Manifolds

using Mixture Model CNNs. In Proc. CVPR.
F. Monti, M. M. Bronstein, and X. Bresson. 2017b. Geometric Matrix Completion with

Recurrent Multi-graph Neural Networks. In Proc. NIPS.
Federico Monti, Karl Otness, and Michael M Bronstein. 2018. MotifNet: A Motif-based

Graph Convolutional Network for Directed Graphs. arXiv:1802.01572 (2018).
Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas

Guibas. 2012. Functional Maps: A Flexible Representation of Maps between Shapes.

TOG 31, 4 (2012), 30.

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. 2017a. Frustum

PointNets for 3D Object Detection from RGB-D Data. arXiv:1711.08488 (2017).
Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017b. PointNet: Deep

Learning on Point Sets for 3D Classification and Segmentation. In Proc. CVPR.
Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J

Guibas. 2016. Volumetric and Multi-view CNNs for Object Classification on 3D

Data. In Proc. CVPR.
Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017c. PointNet++: Deep Hierar-

chical Feature Learning on Point Sets in a Metric Space. In Proc. NIPS.
Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J Black. 2018. Generating

3D faces using Convolutional Mesh Autoencoders. arXiv:1807.10267 (2018).

Raif M Rustamov. 2007. Laplace-Beltrami Eigenfunctions for Deformation Invariant

Shape Representation. In Proc. SGP.
Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast Point Feature His-

tograms (FPFH) for 3D Registration. In Proc. ICRA.
Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. 2008a.

Aligning Point Cloud Views using Persistent Feature Histograms. In Proc. IROS.
Radu Bogdan Rusu, Zoltan CsabaMarton, Nico Blodow, Mihai Dolha, andMichael Beetz.

2008b. Towards 3D Point Cloud Based Object Maps for Household Environments.

Robotics and Autonomous Systems Journal 56, 11 (30 November 2008), 927–941.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. 2009. The Graph Neural Network Model. IEEE Tran. Neural Networks
20, 1 (2009), 61–80.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3197517.3201301
https://doi.org/10.1111/cgf.13343
http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf
http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf

Dynamic Graph CNN for Learning on Point Clouds • 1:13

Syed Afaq Ali Shah, Mohammed Bennamoun, Farid Boussaid, and Amar A El-Sallam.

2013. 3D-Div: A novel Local Surface Descriptor for Feature Matching and Pairwise

Range Image Registration. In Proc. ICIP.
Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. 2017. Neighbors Do Help: Deeply

Exploiting Local Structures of Point Clouds. arXiv:1712.06760 (2017).
David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-

dergheynst. 2013. The Emerging Field of Signal Processing on Graphs: Extending

High-dimensional Data Analysis to Networks and Other Irregular Domains. IEEE
Signal Processing Magazine 30, 3 (2013), 83–98.

Martin Simonovsky and Nikos Komodakis. 2017. Dynamic Edge-Conditioned Filters in

Convolutional Neural Networks on Graphs. In Proc. CVPR.
Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep Learning 3D shape Surfaces

using Geometry Images. In Proc. ECCV.
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-

Hsuan Yang, and Jan Kautz. 2018. SPLATNet: Sparse Lattice Networks for Point

Cloud Processing. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2530–2539.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-

view Convolutional Neural Networks for 3D Shape Recognition. In Proc. CVPR.
Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A Concise and Provably

Informative Multi-scale Signature based on Heat Diffusion. Computer Graphics
Forum 28, 5 (2009), 1383–1392.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree Generating

Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs.

In Proc. ICCV.
Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2011. A Combined Texture-shape

Descriptor for Enhanced 3D Feature Matching. In Proc. ICIP.
Oliver Van Kaick, Hao Zhang, GhassanHamarneh, and Daniel Cohen-Or. 2011. A Survey

on Shape Correspondence. Computer Graphics Forum 30, 6 (2011), 1681–1707.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,

and Yoshua Bengio. 2017. Graph Attention Networks. arXiv:1710.10903 (2017).
Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun.

2018b. Deep Parametric Continuous Convolutional Neural Networks. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018a. Non-local

Neural Networks. CVPR (2018).

Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. 2016. Dense

Human Body Correspondences using Convolutional Networks. In Proc. CVPR.
Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,

and Jianxiong Xiao. 2015. 3D Shapenets: A Deep Representation for Volumetric

Shapes. In Proc. CVPR.
Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He.

2018. Feature Denoising for Improving Adversarial Robustness. arXiv preprint
arXiv:1812.03411 (2018).

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. 2018. FoldingNet: Point Cloud

Auto-Encoder via Deep Grid Deformation. In Proc. CVPR.
Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan Yan, Hao Su, ARCewu Lu, Qixing

Huang, Alla Sheffer, Leonidas Guibas, et al. 2016. A Scalable Active Framework for

Region Annotation in 3D Shape Collections. TOG 35, 6 (2016), 210.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta, Li Fei-Fei, and

Ali Farhadi. 2017. Target-driven Visual Navigation in Indoor Scenes using Deep

Reinforcement learning. In Proc. ICRA.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Our approach
	3.1 Edge Convolution
	3.2 Dynamic graph update
	3.3 Properties
	3.4 Comparison to existing methods

	4 Evaluation
	4.1 Classification
	4.2 Model Complexity
	4.3 More Experiments on ModelNet40
	4.4 Part Segmentation
	4.5 Indoor Scene Segmentation

	5 Discussion
	Acknowledgments
	References

