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Abstract
Many latent factors of variation interact to gen-
erate sensory data; for example, pose, morphol-
ogy and expression in face images. In this work,
we propose to learn manifold coordinates for the
relevant factors of variation and to model their
joint interaction. Many existing feature learning
algorithms focus on a single task and extract fea-
tures that are sensitive to the task-relevant factors
and invariant to all others. However, models that
just extract a single set of invariant features do
not exploit the relationships among the latent fac-
tors. To address this, we propose a higher-order
Boltzmann machine that incorporates multiplica-
tive interactions among groups of hidden units
that each learn to encode a distinct factor of vari-
ation. Furthermore, we propose correspondence-
based training strategies that allow effective dis-
entangling. Our model achieves state-of-the-art
emotion recognition and face verification perfor-
mance on the Toronto Face Database. We also
demonstrate disentangled features learned on the
CMU Multi-PIE dataset.

1. Introduction
A key challenge in understanding sensory data (e.g., image
and audio) is to tease apart many factors of variation that
combine to generate the observations (Bengio, 2009). For
example, pose, shape and illumination combine to generate
3D object images; morphology and expression combine to
generate face images. Many factors of variation exist for
other modalities, but here we focus on modeling images.

Most previous work focused on building (Lowe, 1999) or
learning (Kavukcuoglu et al., 2009; Ranzato et al., 2007;
Lee et al., 2011; Le et al., 2011; Huang et al., 2012b;a;
Sohn & Lee, 2012) invariant features that are unaffected
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Figure 1. Illustration of our approach for modeling pose and iden-
tity variations in face images. When fixing identity, traversing
along the corresponding “fiber” (denoted in red ellipse) changes
the pose. When fixing pose, traversing across the vertical cross-
section (shaded in blue rectangle) changes the identity. Our model
captures this via multiplicative interactions between pose and
identity coordinates to generate the image.

by nuisance information for the task at hand. However, we
argue that image understanding can benefit from retaining
information about all underlying factors of variation, be-
cause in many cases knowledge about one factor can im-
prove our estimates about the others. For example, a good
pose estimate may help to accurately infer the face mor-
phology, and vice versa. From a generative perspective,
this approach also supports additional queries involving la-
tent factors; e.g. “what is the most likely face image as
pose or expression vary given a fixed identity?”

When the input images are generated from multiple factors
of variation, they tend to lie on a complicated manifold,
which makes learning useful representations very challeng-
ing. We approach this problem by viewing each factor of
variation as forming a sub-manifold by itself, and modeling
the joint interaction among factors. For example, given face
images with different identities and viewpoints, we can en-
vision one sub-manifold for identity and another for view-

Anthony Bonner


Anthony Bonner

Anthony Bonner



Learning to Disentangle Factors of Variation with Manifold Interaction

point. As illustrated in Figure 1, when we consider face
images of a single person taken from different azimuth an-
gles (with fixed altitude), the trajectory of images will form
a ring-shaped fiber. Similarly, changing the identity while
fixing the angle traverses a high-dimensional sub-manifold
from one fiber to other.

Concretely, we use a higher-order Boltzmann machine to
model the distribution over image features and the latent
factors of variation. Further, we propose correspondence-
based training strategies that allow our model to effectively
disentangle the factors of variation. This means that each
group of hidden units is sensitive to changes in its cor-
responding factor of variation, and relatively invariant to
changes in the others. We refer to our model variants as
disentangling Boltzmann machines (disBMs). Our disBM
model achieves state-of-the-art emotion recognition and
face verification performance on the Toronto Face Database
(TFD), as well as strong performance in pose estimation
and face verification on CMU Multi-PIE.

2. Preliminaries
In this section, we briefly review the restricted Boltzmann
machine (RBM), a bipartite undirected graphical model
composed of D binary visible units1 v ∈ {0, 1}D and K
binary hidden units h ∈ {0, 1}K . The joint distribution and
the energy function are defined as follows:

P (v,h) =
1

Z
exp(−E(v,h)),

E(v,h) = −
D∑
i=1

K∑
k=1

viWikhk −
K∑

k=1

bkhk −
D∑
i=1

civi,

where Z is the partition function, Wik is a weight between
i-th visible and k-th hidden units, bk are hidden biases, and
ci are visible biases. In the RBM, the units in the same
layer are conditionally independent given the units in the
other layer. The conditional distributions are computed as:

P (vi = 1 | h) = σ(
∑
k

Wikhk + ci),

P (hk = 1 | v) = σ(
∑
i

Wikvi + bk),

where σ(x) = 1
1+exp(−x) is a logistic function. The RBM

can be trained to maximize the log-likelihood of data us-
ing stochastic gradient descent. Although the gradient is
intractable, we can approximate it using contrastive diver-
gence (CD) (Hinton, 2002).

3. Model description
The disBM is an undirected graphical model with higher-
order interactions between observations and multiple
groups of hidden units, as in Figure 2. Each group of hid-
den units can be viewed as manifold coordinates for a dis-

1The RBM can be extended to model the real-valued visible
units (Hinton & Salakhutdinov, 2006).
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Figure 2. An instance of our proposed model with two groups of
hidden units. We can optionally include label units (e.g., label
units e are connected to hidden units m).

tinct factor of variation. Our proposed model is shown in
Figure 2. For simplicity, we assume two groups of hidden
units h and m, although it is straightforward to add more
groups. If labels are available, they can be incorporated
with the e units (see Section 4.1).

3.1. Energy function
As shown in Figure 2, our model assumes 3-way multi-
plicative interaction between D visible units v ∈ {0, 1}D
and two groups of hidden units h ∈ {0, 1}K and m ∈
{0, 1}L. We define the energy function as:
E(v,m,h) =−

∑
f

(
∑
i

W v
ifvi)(

∑
j

Wm
jfmj)(

∑
k

Wh
kfhk)

−
∑
ij

Pm
ij vimj −

∑
ik

Ph
ikvihk (1)

We have used factorization of 3D weight tensor W ∈
RD×L×K into three weight matricesW v ∈ RD×F , Wm ∈
RL×F , Wh ∈ RK×F with F factors as

Wijk =

F∑
f=1

W v
ifW

m
jfW

h
kf (2)

to reduce the number of model parameters (Memisevic &
Hinton, 2010). We also include additive connections with
weight matrices Pm ∈ RD×L and Ph ∈ RD×K between
visible units and each group of hidden units. We omit the
bias terms for clarity of presentation. Although the hid-
den units are not conditionally independent given the visi-
ble units, units in each group are conditionally independent
given units in all other groups. The conditional distribu-
tions are as follows:2

P (vi = 1 | h,m) = σ(
∑
jk

Wijkmjhk

+
∑
j

Pm
ij mj +

∑
k

Ph
ikhk) (3)

P (mj = 1 | v,h) = σ(
∑
ik

Wijkvihk +
∑
i

Pm
ij vi) (4)

P (hk = 1 | v,m) = σ(
∑
ij

Wijkvimj +
∑
i

Ph
ikvi) (5)

2Wijk denotes factorized weights as in Equation (2).
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The conditional independence structure allows efficient 3-
way block Gibbs sampling.

3.2. Inference and learning
Inference. The exact posterior distribution is intractable
since h and m are not conditionally independent given
v. Instead, we use variational inference to approxi-
mate the true posterior with a fully factorized distribu-
tion Q(m,h) =

∏
j

∏
kQ(mj)Q(hk). By minimiz-

ing KL (Q(m,h)‖P (m,h | v)), we obtain the following
fixed-point equations:

ĥk = σ(
∑
ij

Wijkvim̂j +
∑
i

Ph
ikvi) (6)

m̂j = σ(
∑
ik

Wijkviĥk +
∑
i

Pm
ij vi) (7)

where ĥk = Q(hk = 1) and m̂j = Q(mj = 1). Initialized
with all 0’s, the mean-field update proceeds by alternately
updating ĥ and m̂ using Equation (6) and (7) until con-
vergence. We found that 10 iterations were enough in our
experiments.
Learning. We train the model to maximize the data
log-likelihood using stochastic gradient descent. The
gradient of the log-likelihood for parameters Θ =
{W v,Wm,Wh, Pm, Ph} can be computed as:

−EP (m,h|v)

[
∂E(v,m,h)

∂θ

]
+EP (v,m,h)

[
∂E(v,m,h)

∂θ

]
Unlike in the RBM case, both the first (i.e., data-dependent)
and the second (i.e., model-dependent) terms are in-
tractable. We can approximate the data-dependent term
with variational inference and the model-dependent term
with persistent CD (Tieleman, 2008) by running a 3-way
sampling using Equation (3),(4),(5). A similar approach
has been proposed for training general Boltzmann ma-
chines (Salakhutdinov & Hinton, 2009).

3.3. Computing gradients via backpropagation
When the training objective depends on hidden unit acti-
vations, such as correspondence (Section 4.2) or sparsity
(Lee et al., 2008; Hinton, 2010), the exact gradient can be
computed via backpropagation through the recurrent neu-
ral network (RNN) induced by mean-field inference (See
Figure 3). The forward propagation proceeds as:

ĥ
(t+1)
k = σ(

∑
ij

Wijkvim̂
(t)
j +

∑
i

Ph
ikvi) (8)

m̂
(t+1)
j = σ(

∑
ik

Wijkviĥ
(t)
k +

∑
i

Pm
ij vi) (9)

A similar strategy was rigorously developed by Stoyanov
et al. (2011) and was used to train deep Boltzmann ma-
chines (Goodfellow et al., 2013).

4. Training strategies for disentangling
Generative training of the disBM does not explicitly en-
courage disentangling, and generally did not yield well-
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Figure 3. Visualization of the RNN structure of our model. Ar-
rows show the direction of the forward propagation.

disentangled features in practice. However, we can achieve
better disentangling by exploiting correspondences be-
tween images (e.g. matching identity, expression or pose),
and by using labels.

4.1. Learning with partial labels
We can use labels to improve disentangling, even when
they are only provided for a subset of factors. Figure 2 il-
lustrates how label units e are connected to the correspond-
ing hidden units m but not to the other group. In this way,
we can make m sensitive to the variation related to e while
the other group of hidden units focus on other types of vari-
ation in the data. To accommodate labels, we augment the
energy function as:

Elabel(v,m,h, e) = E(v,m,h)−
∑
jl

mjUjlel (10)

subject to
∑

l el = 1.3 The posterior inference is in-
tractable, and we use variational inference resulting in the
following fixed-point equations:

ĥk = σ(
∑
ij

Wijkvim̂j +
∑
i

Ph
ikvi) (11)

m̂j = σ(
∑
ik

Wijkviĥk +
∑
i

Pm
ij vi +

∑
l

Ujlêl) (12)

êl =
exp(

∑
j Ujlm̂j)∑

l′ exp(
∑

j Ujl′m̂j)
(13)

The model is trained to maximize the hybrid objective
logP (v, e) + η logP (e|v) (Larochelle & Bengio, 2008).

4.2. Learning with correspondence
CLAMPING HIDDEN UNITS FOR PAIRS

If we know two data points v(1) and v(2) match in some
factor of variation, we can “clamp” the corresponding hid-
den units to be the same for both data points. For example,
given two images from the same person, we clamp the h
units so that they focus on modeling the common face mor-
phology while other hidden units explain the differences
such as pose or expression. To do clamping, we augment

3Although we restrict the label units to be multinomial, it is
straightforward to relax the representation into unrestricted binary
units when there are structured labels.
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the energy function as follows:

Eclamp(v(1),v(2),m(1),m(2),h)

= E(v(1),m(1),h) + E(v(2),m(2),h) (14)

Note that we can incorporate labels via Equation (10) when
available. The fixed-point equations are the same as before,
except that Equation (6) changes to reflect the contributions
from both v(1) and v(2):

ĥk = σ(
∑
ij

Wijkv
(1)
i m̂

(1)
j +

∑
i

Ph
ikv

(1)
i

+
∑
ij

Wijkv
(2)
i m̂

(2)
j +

∑
i

Ph
ikv

(2)
i ) (15)

The model is trained to maximize the joint log-likelihood
of data pairs logP (v(1),v(2)).

MANIFOLD-BASED TRAINING

In the manifold learning perspective, we want each group
of hidden units to be a useful embedding with respect to its
factor of variation. Specifically, corresponding data pairs
should be embedded nearby, while the non-corresponding
data pairs should be far apart. Clamping forces correspond-
ing pairs into exactly the same point within a sub-manifold,
which may be too strong of an assumption depending on
the nature of the correspondence. Furthermore, clamping
does not exploit knowledge of non-correspondence. In-
stead, we propose to learn a representation h such that

||h(1) − h(2)||22 ≈ 0 , if (v(1),v(2)) ∈ Dsim

||h(1) − h(3)||22 ≥ β , if (v(1),v(3)) ∈ Ddis

whereDsim is a set of corresponding data pairs andDdis is
a set of non-corresponding data pairs. Formally, the mani-
fold objective for h is written as:

||h(1) − h(2)||22 + max(0, β − ||h(1) − h(3)||2)2 (16)

This approach does not directly use label units, but la-
bels can be used to construct correspondence sets Dsim

and Ddis. The formulation is similar to the one proposed
by Hadsell et al. (2006). However, our goal is not di-
mensionality reduction and we consider multiple factors of
variation jointly. Furthermore, we can combine the mani-
fold objective together with the generative objective. Since
our model uses mean-field inference to compute the hidden
units, we compute gradients via RNN backpropagation as
discussed in Section 3.3.

5. Related Work
Manifold learning methods (Tenenbaum et al., 2000;
Roweis & Saul, 2000; Hadsell et al., 2006) model the
data by learning low-dimensional structures or embed-
dings. Existing manifold learning methods can learn intrin-
sically low-dimensional structures such as viewpoint man-
ifolds from face images of a single person, but it becomes

challenging to model complex high-dimensional manifolds
such as the space of face images from millions of peo-
ple. Deep learning has shown to be effective in learning
such high-dimensional data manifolds, as suggested by Ri-
fai et al. (2011). However, it remains a challenge to jointly
model multiple factors of variation and their interacting
manifolds.

Our work is related to multi-task learning (Caruana, 1997;
Argyriou et al., 2007) if one views each factor as a “task”
feature to be learned jointly. However, our approach con-
siders joint interaction among the factors, and benefits from
a synergy in which knowledge of one factor can help infer
about the others. In addition, our model is generative and
can answer higher-order queries involving the input and
multiple factors.

There are several related works that use higher-order in-
teractions between multiple latent variables. For example,
bilinear models (Tenenbaum & Freeman, 2000) were used
to separate style and content within face images (pose and
identity) and speech signals (vowels and speaker identity).
The tensor analyzer (TA) (Tang et al., 2013) extended fac-
tor analysis by introducing a factor loading tensor to model
the interaction among multiple groups of latent factor units,
and was applied to modeling lighting and face morphology.
Our approach is complementary to these, and is also capa-
ble of exploiting correspondence information.

The higher-order spike and slab RBM (ssRBM) (Des-
jardins et al., 2012) extends the ssRBM (Courville et al.,
2011) with higher-order interactions. Our motivation is
similar, but our model formulation is different and we pro-
pose novel training strategies that significantly improve the
disentangling. Finally, we show state-of-the-art perfor-
mance on several discriminative tasks on face images.

The factored gated Boltzmann machine (FGBM) (Memise-
vic & Hinton, 2010; Susskind et al., 2011) models the rela-
tion between data pairs (e.g. translation, rotation of images,
facial expression changes) via 3-way interactions. Both the
FGBM and disBM are variants of higher-order Boltzmann
machines, but the FGBM assumes two sets of visible units
interacting with one set of hidden units, whereas the disBM
assumes multiple sets of hidden units interacting with a sin-
gle set of visible units.

The point-wise gated Boltzmann machine (Sohn et al.,
2013) is an instance of a higher-order Boltzmann machine
that jointly learns and selects task-relevant features. Con-
tractive discriminative analysis (Rifai et al., 2012) also
learns groups of task-relevant and irrelevant hidden units
using a contractive penalty, but only uses additive interac-
tions between the input and each group of hidden units.
These models are complementary to ours in that they learn
to separate task-relevant from task-irrelevant features.
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Figure 4. Samples from flipped MNIST dataset.

Table 1. Test classification errors on flipped MNIST.

MODEL RBM DISBM

# HIDDEN UNITS 1, 000 2, 000 4, 000 1, 000

RECOGNITION
5.18 2.68 2.22 1.84

ERROR RATE

6. Experiments
We evaluated the performance of our proposed model on
several image databases:

• Flipped MNIST. For each digit of the MNIST
dataset, we randomly flipped all pixels (0’s to 1’s and
vice versa) with 50% probability. The dataset consists
of 50,000 training images, 10,000 validation images,
and 10,000 test images.

• Toronto Face Database (TFD) (Susskind et al.,
2010). Contains 112, 234 face images with 4, 178
emotion labels and 3, 874 identity labels. There are
seven possible emotion labels.

• CMU Multi-PIE (Gross et al., 2010). Contains
754, 200 high-resolution face images with variations
in pose, lighting, and expression. We manually
aligned and cropped the face images.4

6.1. Flipped MNIST Digits
To understand the role of multiplicative interactions in dis-
entangling, we constructed a variation of the MNIST dig-
its (LeCun & Cortes, 1998) by flipping the binary pixel
values. For half of the digit images, we converted 0’s to
1’s and vice versa. Examples are shown in Figure 4. The
factors in the dataset are the flip mode (0 or 1) and the digit
shape. We investigate whether it helps to decompose the
posterior into a single flip unit and appearance units that
interact multiplicatively to generate the image.

We evaluated the digit recognition performance using our
disBM compared to the standard RBM. We trained linear
SVMs on RBM hidden unit and disBM appearance unit ac-
tivations for classification.

In Table 1, the disBM achieves significantly lower error
rates than RBMs of each size. We hypothesize that the
disBM can learn more compact representations since it

4We annotated two or three fiducial points (e.g., the eyes, nose,
and mouth corners) and computed the 2-D similarity transform
that best fits them to the predefined anchor locations, which are
different for each pose. Then, we warped the image accordingly,
and cropped the major facial region with a fixed 4:3 rectangular
box. We resized the cropped grayscaled images into 48× 48.

doesn’t need to learn separate features for each flip mode.

Predicting the flip mode is easy,5 and as expected the RBMs
achieved 0% error. On the other hand, the disBM ap-
pearance units only achieved a random-guessing perfor-
mance (50.8% accuracy), suggesting that appearance and
flip mode were disentangled.

6.2. Reasoning about factors of variation
A good generative model that can disentangle factors of
variation should be able to traverse the manifold of one
factor while fixing the states of the others. For the case of
face images, the model should be able to generate examples
with different pose or expression while fixing the identity.
It should also be able to interpolate within a sub-manifold
(e.g. across pose) and transfer the pose or expression of one
person to others. Bengio et al. (2013) showed that linear in-
terpolation across deep representations can traverse closer
to the image manifold compared to shallow representations
such as pixels or single-layer models. We would like our
model to have these properties with respect to each factor
of variation separately.

To verify that our model has these properties, we con-
structed a 2-layer deep belief network (DBN), where the
first layer is a Gaussian RBM with tiled overlapping recep-
tive fields similar to those used by Ranzato et al. (2011)
and the second layer is our proposed disBM. For TFD, our
model has identity-related hidden units h and expression-
related hidden units m. For Multi-PIE, our model has
identity-related units h and pose-related units which we
will also denote m. For some control experiments we also
use label units e, corresponding to one of seven emotion
labels in TFD and one of 15 pose labels in Multi-PIE.

We first examined how well the disBM traverses the pose
or expression manifolds while fixing identity. Given an in-
put image v we perform posterior inference to compute h
and m. Then we fixed the pose or emotion label units e
to the target and performed Gibbs sampling between v and
m. Example results are shown in Figure 5(a) and 5(b).
Each row shows input image and its generated samples af-
ter traversing to the specific target emotion or pose. The
identity of the input face image is well preserved across the
rows while expressing the correct emotion or pose.

We also performed experiments on pose and expression
transfer. The task is to transfer the pose or expression of
one image onto the person in a second image. Equiva-
lently, the identity of the second image is transferred to the
first image. To do this, we infer h and m for both im-
ages. Using the pose or expression units m from the first
and identity units h from the second image, we compute
the expect input v|h,m. We visualize the samples in Fig-

5One solution is to simply use the ratio between the number
of pixels of 0 and 1 in each digit image.
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(a) Expression manifold traversal on TFD

(b) Pose manifold traversal on Multi-PIE
Figure 5. Visualization of (a) expression and (b) pose manifold
traversal. Each row shows samples of varying expressions or pose
with same identity as in input (leftmost).

ure 6(a) and 6(b).

6.3. Discriminative performance
To measure the usefulness of our features and the degree of
disentangling, we apply our model to emotion recognition,
pose estimation and face verification on TFD and Multi-
PIE. For experiments on TFD, we built a 2-layer model
whose first layer is constructed with convolutional features
extracted using the filters trained with OMP-1 followed by
4×4 max pooling (Coates & Ng, 2011). We used the same
model in Section 6.2 for the tasks on Multi-PIE.

We carried out control experiments of our proposed train-
ing strategies and provide summary results in Table 2 and 3.
We report the performance of pose estimation and face
verification for Multi-PIE, and emotion recognition and
face verification for TFD. For pose estimation and emo-
tion recognition, we trained a linear SVM and reported the
percent accuracy. For face verification, we used the cosine
similarity as a score for the image pair and report the AU-
ROC. Both numbers are averaged over 5 folds.

We observed that the naive training without any regular-
ization gets mediocre performance on both datasets. By
adding pose or emotion labels, we see improvement in pose
estimation and emotion recognition as expected, but also

(a) Expr. transfer. (b) Pose transfer.
Figure 6. Identity units from left column are transferred to (a) ex-
pression units and (b) pose units from middle column. Recon-
structions shown in right columns.

Table 4. Performance comparison of discriminative tasks on
Multi-PIE. RBM stands for the second layer RBM features trained
on the first layer RBM features.

MODEL POSE
ESTIMATION

FACE
VERIFICATION

RBM 93.06± 0.33 0.615± 0.002
DISBM 98.20± 0.12 0.975± 0.002

slightly better verification performance on both datasets.
In addition, we observed a modest degree of disentangling
(e.g., ID units performed poorly on pose estimation). The
clamping method for ID units between corresponding im-
age pairs showed substantially improved face verification
results on both datasets. Combined with labels connected
to the pose or expression units, the pose estimation and
emotion recognition performance were improved. Finally,
the best performance is achieved using manifold-based reg-
ularization, showing not only better absolute performance
but also better disentangling. For example, while the ex-
pression units showed the best results for emotion recogni-
tion, the ID units were least informative for emotion recog-
nition and vice versa. This suggests that good disentan-
gling is not only useful from a generative perspective but
also helpful for learning discriminative features.

We provide a performance comparison to the baseline and
other existing models. Table 4 shows a comparison to a
standard (second layer) RBM baseline using the same first
layer features as our disBM on Multi-PIE. We note that
the face verification on Multi-PIE is challenging due to
the extreme pose variations. However, our disentangled
ID features surpass this baseline by a wide margin. In Ta-
ble 5, we compare the performance of our model to other
existing works on TFD. The disBM features trained with
manifold objectives achieved state-of-the-art performance
in emotion recognition and face verification on TFD.

To highlight the benefit of higher-order interactions, we
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Table 2. Control experiments of our method on Multi-PIE, with naive generative training, clamping identity-related units (ID), using
labels for pose-related units (Pose) and using the manifold-based regularization on both groups of units.

MODEL POSE UNITS
FOR POSE EST.

POSE UNITS FOR
VERIFICATION

ID UNITS FOR
POSE EST.

ID UNITS FOR
VERIFICATION

NAIVE 96.60 ± 0.23 0.583 ± 0.004 95.79 ± 0.37 0.640 ± 0.005
LABELS (POSE) 98.07 ± 0.12 0.485 ± 0.005 86.55 ± 0.23 0.656 ± 0.004
CLAMP (ID) 97.18 ± 0.15 0.509 ± 0.005 57.37 ± 0.45 0.922 ± 0.003
LABELS (POSE) + CLAMP (ID) 97.68 ± 0.17 0.504 ± 0.006 49.08 ± 0.50 0.934 ± 0.002
MANIFOLD (BOTH) 98.20 ± 0.12 0.469 ± 0.005 8.68 ± 0.38 0.975 ± 0.002

Table 3. Control experiments of our method on TFD, with naive generative training, clamping identity-related units (ID), using labels
for expression-related units (Expr) and using the manifold-based regularization on both groups of units.

MODEL EXPR. UNITS FOR
EMOTION REC.

EXPR. UNITS FOR
VERIFICATION

ID UNITS FOR
EMOTION REC.

ID UNITS FOR
VERIFICATION

NAIVE 79.50 ± 2.17 0.835 ± 0.018 79.81 ± 1.94 0.878 ± 0.012
LABELS (EXPR) 83.55 ± 1.63 0.829 ± 0.021 78.26 ± 2.58 0.917 ± 0.006
CLAMP (ID) 81.30 ± 1.47 0.803 ± 0.013 59.47 ± 2.17 0.978 ± 0.025
LABELS (EXPR) + CLAMP (ID) 82.97 ± 1.85 0.799 ± 0.013 59.55 ± 3.04 0.978 ± 0.024
MANIFOLD (BOTH) 85.43 ± 2.54 0.513 ± 0.011 43.27 ± 7.45 0.951 ± 0.025

Table 5. Performance comparison of discriminative tasks on TFD.
RBM stands for the second layer RBM features trained on the first
layer OMP features.

MODEL EMOTION
REC.

FACE
VERIFICATION

RBM 81.84± 0.86 0.889± 0.012
DISBM 85.43 ± 2.54 0.951± 0.025

RIFAI ET AL. (2012) 85.00± 0.47 −
RANZATO ET AL. (2007) 82.4 −
SUSSKIND ET AL. (2011) − 0.951

performed additional control experiments on Multi-PIE
with more factors of variation, including pose, illumina-
tion and jittering. We evaluated the performance of the
disBM and its 2-way counterpart by setting the higher-
order weights to 0, where both are trained using the mani-
fold objective. The summary results in face verification and
pose estimation are given in Table 6. When the data have
few modes of variation, we found that the 2-way model
still shows good pose estimation and face verification per-
formance. However, the higher-order interactions provide
increasing benefit with the growth in modes of variation,
i.e., joint configurations of pose, lighting or other factors.
Such a benefit can be verified in the pose transfer task as
well. In Figure 8, we visualize the pose transfer results of 2-
way and (2+3)-way disBM models. The (2+3)-way model
(fourth column) predicts the pose with given identity well,
whereas the 2-way model (third column) produces signifi-
cantly worse qualitative results, showing overlapping face
artifacts and ambiguous identity.

6.4. Invariance and sensitivity analysis
We computed a similarity matrix by randomly selecting 10
identities (that had at least 7 distinct expressions) at a time,

Table 6. Comparison of face verification AUC (top) and pose es-
timation % accuracy (bottom) between 2-way and (2+3)-way
disBM with increasingly many factors of variation (e.g., pose, jit-
tering, illumination) on Multi-PIE.

MODEL 2-WAY (2+3)-WAY

POSE 0.971± 0.002 0.975± 0.002
POSE + JITTER 0.871± 0.005 0.903± 0.006
POSE + JITTER

0.773± 0.004 0.822± 0.003+ ILLUMINATION

POSE 97.73± 0.20 98.20± 0.12
POSE + JITTER 82.58± 0.53 83.68± 0.69
POSE + JITTER

76.42± 1.09 80.34± 1.29+ ILLUMINATION

computing the cosine similarity for all pairs across all IDs
and expressions. Then we averaged this feature similarity
matrix over 100 trials. In Figure 7, we show average cosine
similarity of several features across expression and identity
variation. In ID-major order, the similarity matrix consists
of 7 × 7-sized blocks; for each pair of IDs we compute
similarity for all pairs among 7 different emotions. In Expr-
major order, the similarity matrix consists of 10× 10-sized
blocks; for each pair of emotions we compute similarity for
all pairs among 10 different IDs.

The ID features show a clear block-diagonal structure in
ID-major order, indicating that they maintain similarity
across changes in emotion but not across identity. In
Expr-major order, our Expr features show similar struc-
ture, although there are apparent off-diagonal similarities
for (anger, disgust) and (afraid, surprised) emotion labels.
This makes sense because those emotions often have sim-
ilar facial expressions. For the RBM features we see only
a faint block diagonal and a strong single band diagonal
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B) RBM features, Expr-major order

Anger

A) Sample faces C) Expr features, Expr-major order D) ID features, ID-major order

AfraidHappy
Sad Surprise

Neutral
Disgust

Anger
AfraidHappy

Sad Surprise
Neutral

Disgust
Anger

AfraidHappy
Sad Surprise

Neutral
Disgust

Figure 7. A) A sample of several identities with each of the 7 emotions in TFD. We drew 100 such samples and averaged the results. B)
Similarity matrix using RBM features. C) Using our expression-related features (Expr). D) Using our identity-related features (ID).

Figure 8. Comparison of pose transfer results between 2-way and
(2+3)-way disBM models on Multi-PIE. The task is pose transfer
from faces in the second column onto the face in the first column.

corresponding to same-ID, same-expression pairs.

To see whether our disBM features can be both invariant
and sensitive to changes in different factors of variation, we
generated test set image pairs (1) with the same identity, but
different pose, and (2) with different identity, but the same
pose. Then we measured the average absolute difference
in activation within pose units and within ID units. For
every unit k and image pair (v(1),v(2)), we compute the
average |h(1)k −h

(2)
k |. Figure 9 shows that ID units are more

sensitive to change in ID than to pose, and pose units are
likewise more sensitive to pose change than ID change.

7. Conclusion
We introduced a new method of learning deep representa-
tions via disentangling factors of variation. We evaluated
several strategies for training higher-order Boltzmann ma-
chines to model interacting manifolds such as pose, expres-
sion and identity in face images. We demonstrated that
our model learns disentangled representations, achieving
strong performance in generative and discriminative tasks.
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