Published as a conference paper at ICLR 2019

VARIATIONAL AUTOENCODER
WITH ARBITRARY CONDITIONING

Oleg Ivanov Michael Figurnov Dmitry Vetrov

Samsung Al Center Moscow National Research University Samsung-HSE Laboratory,

Moscow, Russia Higher School of Economics * National Research University

tigvarts@gmail.com Moscow, Russia Higher School of Economics
michael@figurnov.ru Samsung Al Center Moscow

Moscow, Russia
vetrovd@yandex.ru

ABSTRACT

We propose a single neural probabilistic model based on variational autoencoder that can
be conditioned on an arbitrary subset of observed features and then sample the remaining
features in “one shot”. The features may be both real-valued and categorical. Training
of the model is performed by stochastic variational Bayes. The experimental evaluation
on synthetic data, as well as feature imputation and image inpainting problems, shows the
effectiveness of the proposed approach and diversity of the generated samples.

1 INTRODUCTION

In past years, a number of generative probabilistic models based on neural networks have been proposed. The
most popular approaches include variational autoencoder (Kingma & Welling, 2013) (VAE) and generative
adversarial net (Goodfellow et al., 2014) (GANs). They learn a distribution over objects p(z) and allow
sampling from this distribution.

In many cases, we are interested in learning a conditional distribution p(x|y). For instance, if = is an image
of a face, y could be the characteristics describing the face (are glasses present or not; length of hair, etc.)
Conditional variational autoencoder (Sohn et al., 2015) and conditional generative adversarial nets (Mirza
& Osindero, [2014) are popular methods for this problem.

In this paper, we consider the problem of learning all conditional distributions of the form p(z |z 1),
where U is the set of all features and I is its arbitrary subset. This problem generalizes both learning the
joint distribution p(x) and learning the conditional distribution p(x|y). To tackle this problem, we propose a
Variational Autoencoder with Arbitrary Conditioning (VAEAC) model. It is a latent variable model similar
to VAE, but allows conditioning on an arbitrary subset of the features. The conditioning features affect the
prior on the latent Gaussian variables which are used to generate unobserved features. The model is trained
using stochastic gradient variational Bayes (Kingma & Welling} 2013)).

We consider two most natural applications of the proposed model. The first one is feature imputation where
the goal is to restore the missing features given the observed ones. The imputed values may be valuable by
themselves or may improve the performance of other machine learning algorithms which process the dataset.
Another application is image inpainting in which the goal is to fill in an unobserved part of an image with
an artificial content in a realistic way. This can be used for removing unnecessary objects from the images
or, vice versa, for complementing the partially closed or corrupted object.

* Author is in DeepMind now.

Published as a conference paper at ICLR 2019

The experimental evaluation shows that the proposed model successfully samples from the conditional dis-
tributions. The distribution over samples is close to the true conditional distribution. This property is very
important when the true distribution has several modes. The model is shown to be effective in feature
imputation problem which helps to increase the quality of subsequent discriminative models on different
problems from UCI datasets collection (Lichman, 2013). We demonstrate that model can generate diverse
and realistic image inpaintings on MNIST (LeCun et al., [1998)), Omniglot (Lake et al.| |2015) and CelebA
(Liu et al., 2015) datasets, and works even better than the current state of the art inpainting techniques in
terms of peak signal to noise ratio (PSNR).

The paper is organized as follows. In section[2] we review the related works. In section [3|we briefly describe
variational autoencoders and conditional variational autoencoders. In section ff] we define the problem, de-
scribe the VAEAC model and its training procedure. In section [5| we evaluate VAEAC. Section [6] concludes
the paper. Appendix contains additional explanations, theoretical analysis, and experiments for VAEAC.

2 RELATED WORK

Universal Marginalizer (Douglas et al.| 2017) is a model based on a feed-forward neural network which
approximates marginals of unobserved features conditioned on observable values. A related idea of an
autoregressive model of joint probability was previously proposed in (Germain et al.|(2015) and |Uria et al.
(2016)). The description of the model and comparison with VAEAC are available in section @

Yoon et al.[(2018)) propose a GANs-based model called GAIN which solves the same problem as VAEAC.
In contrast to VAEAC, GAIN does not use unobserved data during training, which makes it easier to apply to
the missing features imputation problem. Nevertheless, it turns into a disadvantage when the fully-observed
training data is available but the missingness rate at the testing stage is high. For example, in inpainting
setting GAIN cannot learn the conditional distribution over MNIST digits given one horizontal line of the
image while VAEAC can (see appendix [D.4). The comparison of VAEAC and GAIN on the missing feature
imputation problem is given in section[5.1]and appendix

Rezende et al.| (2014) [Appendix F], Sohl-Dickstein et al.| (2015), |Goyal et al.| (2017), and |Bordes et al.
(2017) propose to fill missing data with noise and run Markov chain with a learned transition operator. The
stationary distribution of such chains approximates the true conditional distribution of the unobserved fea-
tures. | Bachman & Precup| (2015) consider missing feature imputation in terms of Markov decision process
and propose LSTM-based sequential decision making model to solve it. Nevertheless, these methods are
computationally expensive at the test time and require fully-observed training data.

Image inpainting is a classic computer vision problem. Most of the earlier methods rely on local and texture
information or hand-crafted problem-specific features (Bertalmio et al.,|2000). In past years multiple neural
network based approaches have been proposed.

Pathak et al.| (2016)), |Yeh et al.| (2016) and [Yang et al.| (2017) use different kinds and combinations of ad-
versarial, reconstruction, texture and other losses. |Li et al.| (2017) focuses on face inpainting and uses two
adversarial losses and one semantic parsing loss to train the generative model. In|Yeh et al|(2017) GANs
are first trained on the whole training dataset. The inpainting is an optimization procedure that finds the
latent variables that explain the observed features best. Then, the obtained latents are passed through the
generative model to restore the unobserved portion of the image. We can say that VAEAC is a similar model
which uses prior network to find a proper latents instead of solving the optimization problem.

All described methods aim to produce a single realistic inpainting, while VAEAC is capable of sampling
diverse inpaintings. Additionally, |Yeh et al.|(2016)), [Yang et al.| (2017) and [Yeh et al.|(2017)) have high test-
time computational complexity of inpainting, because they require an optimization problem to be solved.
On the other hand, VAEAC is a “single-shot” method with a low computational cost.

Published as a conference paper at ICLR 2019

3 BACKGROUND

3.1 VARIATIONAL AUTOENCODER

Variational autoencoder (Kingma & Welling, 2013)) (VAE) is a directed generative model with latent vari-
ables. The generative process in variational autoencoder is as follows: first, a latent variable z is generated
from the prior distribution p(z), and then the data x is generated from the generative distribution py(x|z),
where 0 are the generative model’s parameters. This process induces the distribution pg(z) = E,(.)pe(2|2).
The distribution pg(z|z) is modeled by a neural network with parameters 6. p(z) is a standard Gaussian
distribution.

The parameters 6 are tuned by maximizing the likelihood of the training data points {x;}; from the true
data distribution pg(x). In general, this optimization problem is challenging due to intractable posterior
inference. However, a variational lower bound can be optimized efficiently using backpropagation and
stochastic gradient descent:

po(x, 2)
] —E log PR) 4 p
ogpo(z) = Eq, (z|z) log EP) + Dkw(gs(2|2)|Ip(2|z, 0))

> Eq,(z12) log po(z]2) — Dxr(ge(2]2)[|p(2)) = Lvar(z;0,¢) (1)

Here g, (z|z) is a proposal distribution parameterized by neural network with parameters ¢ that approxi-
mates the posterior p(z|x,). Usually this distribution is Gaussian with a diagonal covariance matrix. The
closer ¢4 (z|z) to p(z|x, 0), the tighter variational lower bound Ly 4 (6, ¢). To compute the gradient of the
variational lower bound with respect to ¢, reparameterization trick is used: z = py(z) + coy(x) where
e ~ N(0,1) and iy and o4 are deterministic functions parameterized by neural networks. So the gradient
can be estimated using Monte-Carlo method for the first term and computing the second term analytically:

OLy ap(w;0, 9 0
W = Eeon(0.) g 108 2o (116 (2) + €09(2)) — 57 Dicr. (s (212) [p(2))

So Ly ag(0, ¢) can be optimized using stochastic gradient ascent with respect to ¢ and 6.

3.2 CONDITIONAL VARIATIONAL AUTOENCODER

Conditional variational autoencoder (Sohn et al.l 2015) (CVAE) approximates the conditional distribution
pa(z|y). It outperforms deterministic models when the distribution pg(z|y) is multi-modal (diverse s are
probable for the given y). For example, assume that x is a real-valued image. Then, a deterministic regression
model with mean squared error loss would predict the average blurry value for z. On the other hand, CVAE
learns the distribution of z, from which one can sample diverse and realistic objects.

Variational lower bound for CVAE can be derived similarly to VAE by conditioning all considered distribu-
tions on y:

LC’VAE(:E7 Y; 9, wa (b) = Eqd,(z\z,y) IOgPG(ﬂzy y) - DKL(Q¢(Z|‘T? y)Hp’lP(2|y)) S logpe,ib(xly) (3)

Similarly to VAE, this objective is optimized using the reparameterization trick. Note that the prior distribu-
tion py(z]y) is conditioned on y and is modeled by a neural network with parameters 1. Thus, CVAE uses
three trainable neural networks, while VAE only uses two.

Also authors propose such modifications of CVAE as Gaussian stochastic neural network and hybrid model.
These modifications can be applied to our model as well. Nevertheless, we don’t use them, because of their
disadvantage which is described in appendix [C|

Published as a conference paper at ICLR 2019

4 VARIATIONAL AUTOENCODER WITH ARBITRARY CONDITIONING

4.1 PROBLEM STATEMENT

Consider a distribution p4(x) over a D-dimensional vector = with real or categorical components. The
components of the vector are called features.

Let binary vector b € {0,1}” be the binary mask of unobserved features of the object. Then we describe
the vector of unobserved features as 2, = {x;.5,—1 }. For example, T(0,1,1,0,1) = (z2,x3,x5). Using this
notation we denote x1_; as a vector of observed features.

Our goal is to build a model of the conditional distribution py; o (zs|1-p, b) = pa(xs|z1-s, b) for an arbitrary
b, where 1 and 6 are parameters that are used in our model at the testing stage.

However, the true distribution p4(xp|x1—p, b) is intractable without strong assumptions about p,(x). There-
fore, our model py, g(xp|21—p, b) has to be more precise for some b and less precise for others. To formalize
our requirements about the accuracy of our model we introduce the distribution p(b) over different unob-
served feature masks. The distribution p(b) is arbitrary and may be defined by the user depending on the
problem. Generally it should have full support over {0, 1} so that py, ¢(zp|x1_p, b) can evaluate arbitrary
conditioning. Nevertheless, it is not necessary if the model is used for specific kinds of conditioning (as we
do in section[5.2).

Using p(b) we can introduce the following log-likelihood objective function for the model:

max Ep,) Epp) log py,o(xp]T1-5,) 4)

The special cases of the objective (@) are variational autoencoder (b; = 1Vi € {1,..., D}) and conditional
variational autoencoder (b is constant).

4.2 MODEL DESCRIPTION

The generative process of our model is similar to the generative process of CVAE: for each ob-
ject firstly we generate z ~ py(z|x1_p,b) using prior network, and then sample unobserved features
xp ~ po(xp|z, x1-p,b) using generative network. This process induces the following model distribution
over unobserved features:

Pyo(Tp]r1-0,0) = Eop) (2121 s ,b)P0(Tb|2, 11,) %)

We use z € R and Gaussian distribution py over z, with parameters from a neural network with
weights 11 py(z|z1-p,b,9) = N (2|py (@10, b),ai(ml_b, b)I). The real-valued components of distri-
bution py(xp|2, x1-p, b) are defined likewise. Each categorical component ¢ of distribution py(z;|z, x1—p, b)
is parameterized by a function w; ¢(z, z1_p, b), whose outputs are logits of probabilities for each category:
x; ~ Cat[Softmax(w; ¢(2,x1-p,b))]. Therefore the components of the latent vector z are conditionally
independent given x; _; and b, and the components of x; are conditionally independent given z, x1_; and b.

The variables z; and x;_; have variable length that depends on b. So in order to use architectures such as
multi-layer perceptron and convolutional neural network we consider x1_;, = x o (1 — b) where o is an
element-wise product. So in implementation x;_; has fixed length. The output of the generative network
also has a fixed length, but we use only unobserved components to compute likelihood.

The theoretical analysis of the model is available in appendix [B.I]

Published as a conference paper at ICLR 2019

4.3 LEARNING VARIATIONAL AUTOENCODER WITH ARBITRARY CONDITIONING

4.3.1 VARIATIONAL LOWER BOUND
We can derive a lower bound for log py ¢ (zp|x1-p, b) as for variational autoencoder:
Py.o(Tp, 2|211,b)

44 (2|2, b)
> Eq, (2)2,5) log Do (7|2, 715, b) — Dxr(qe (2|2, b)||[py(2]21-8,0)) = Lvapac(z,b;0,1,) (6)

log py,0(xb|1-5,b) = Eq, (2]a,p) l0g + Dxr(qe (2], b)|[py,0(2]z, b))

Therefore we have the following variational lower bound optimization problem:

glf)é Epy(e)Epw) Lv apac(z,b;0,9, ¢) 7

We use fully-factorized Gaussian proposal distribution g4 which allows us to perform reparameterization
trick and compute KL divergence analytically in order to optimize (7).

4.3.2 PRIOR IN LATENT SPACE

During the optimization of objective (7) the parameters 1, and o, of the prior distribution of z may tend
to infinity, since there is no penalty for large values of those parameters. We usually observe the growth
of ||z||2 during training, though it is slow enough. To prevent potential numerical instabilities, we put a
Normal-Gamma prior on the parameters of the prior distribution to prevent the divergence. Formally, we
redefine py, (2|21, b) as follows:

Py (2, iy 0|21, b) = N (2|, 05)N (11]0, 0) Gamma(o 2, o) ®)

Vs
202
rameter o, is chosen to be large (10*) and o, is taken to be a small positive number (10~%). This distribution
is close to uniform near zero, so it doesn’t affect the learning process significantly.

As a result, the regularizers — and o, (log(oy) — oy) are added to the model log-likelihood. Hyperpa-

4.3.3 MISSING FEATURES

The optimization objective (7)) requires all features of each object at the training stage: some of the features
will be observed variables at the input of the model and other will be unobserved features used to evaluate the
model. Nevertheless, in some problem settings the training data contains missing features too. We propose
the following slight modification of the problem (7)) in order to cover such problems as well.

The missing values cannot be observed so x; = w = b; = 1, where w describes the missing value in the
data. In order to meet this requirement, we redefine mask distribution as conditioned on x: p(b) turns into
p(blz) in @) and (7). In the reconstruction loss (5) we simply omit the missing features, i. e. marginalize
them out:

logpo(wp|z,@1-5,0) = > logpe(wi|z, z1-4,b) €))
i:bi=1,2;7w

The proposal network must be able to determine which features came from real object and which are just
missing. So we use additional missing features mask which is fed to proposal network together with unob-
served features mask b and object x.

The proposed modifications are evaluated in section

Published as a conference paper at ICLR 2019

Table 1: NRMSE (for continuous datasets) or PFC (for categorical ones) of imputations. Less is better.

Method / Dataset WhiteWine Yeast Mushroom Zoo Phishing

MICE 0.964 £0.007 1.01£0.01 0.334+£0.002 0.19+£0.03 0.422 £ 0.006
MissForest 0.878 £0.009 1.02+£0.06 0.249+0.006 0.16+0.02 0.422+£ 0.009
GAIN 0.97 £ 0.02 0.99+£0.03 0.271+£0.003 0.20£0.02 0.427 £0.010
VAEAC 0.850 £ 0.007 0.94+0.01 0.244+0.002 0.16+0.02 0.394 £ 0.006

5 EXPERIMENTS

In this section we validate the performance of VAEAC using several real-world datasets. In the first set
of experiments we evaluate VAEAC missing features imputation performance using various UCI datasets
(Lichman, [2013)). We compare imputations from our model with imputations from such classical methods as
MICE (Buuren & Groothuis-Oudshoorn,2010) and MissForest (Stekhoven & Biihlmannl [201 1)) and recently
proposed GANs-based method GAIN (Yoon et al.l|2018)). In the second set of experiments we use VAEAC
to solve image inpainting problem. We show inpainitngs generated by VAEAC and compare our model with
models from papers|Pathak et al.[(2016)), Yeh et al.|(2017) and|Li et al.|(2017) in terms of peak signal-to-noise
ratio (PSNR) of obtained inpaintings on CelebA dataset (Liu et al.,[2015) . And finally, we evaluate VAEAC
against the competing method called Universal Marginalizer (Douglas et al.l 2017). Additional experiments
can be found in appendices [C] and D] The code is available at https://github.com/tigvarts/
vaeacl

5.1 MISSING FEATURES IMPUTATION

The datasets with missing features are widespread. Consider a dataset with D-dimensional objects where
each feature may be missing (which we denote by x; = w) and their target values y. The majority of
discriminative methods do not support missing values in the objects. The procedure of filling in the missing
features values is called missing features imputation.

In this section we evaluate the quality of imputations produced by VAEAC. For evaluation we use datasets
from UCI repository (Lichman, |2013)). Before training we drop randomly 50% of values both in train and test
set. After that we impute missing features using MICE (Buuren & Groothuis-Oudshoorn,|2010), MissForest
(Stekhoven & Biihlmann, [2011)), GAIN (Yoon et al., 2018) and VAEAC trained on the observed data. The
details of GAIN implementation are described in appendix [A.4]

Our model learns the distribution of the imputations, so it is able to sample from this distribution. We replace
each object with missing features by n = 10 objects with sampled imputations, so the size of the dataset
increases by n times. This procedure is called missing features multiple imputation. MICE and GAIN are
also capable of multiple imputation (we use n = 10 for them in experiments as well), but MissForest is not.

For more details about the experimental setup see appendices[A. T} [A.2] and[A.4]

In table [1| we report NRMSE (i.e. RMSE normalized by the standard deviation of each feature and then
averaged over all features) of imputations for continuous datasets and proportion of falsely classified (PFC)
for categorical ones. For multiple imputation methods we average imputations of continuous variables and
take most frequent imputation for categorical ones for each object.

We also learn linear or logistic regression and report the regression or classification performance after ap-
plying imputations of different methods in table 2] For multiple imputation methods we average predictions
for continuous targets and take most frequent prediction for categorical ones for each object in test set.

https://github.com/tigvarts/vaeac
https://github.com/tigvarts/vaeac

Published as a conference paper at ICLR 2019

Table 2: R2-score (for continuous targets) or accuracy (for categorical ones) of post-imputation regression
or classification. Higher is better.

Method / Dataset ~ WhiteWine Yeast Mushroom Zoo Phishing

MICE 0.13+0.02 0.41+0.02 0.92+0.01 0.78£0.05 0.75+0.02
MissForest 0.17+0.01 042+£0.02 0.972£0.003 0.71+0.07 0.73+0.02
GAIN 0.11£0.01 0.39+0.06 0.969+0.005 0.67+0.06 0.74+0.03
VAEAC 0.17+0.01 043+0.01 0.983+0.002 0.8+0.1 0.74+0.02

As can be seen from the tables [T] and 2] VAEAC can learn joint data distribution and use it for missing
feature imputation. The imputations are competitive with current state of the art imputation methods in
terms of RMSE, PFC, post-imputation regression R2-score and classification accuracy. Nevertheless, we
don’t claim that our method is state of the art in missing features imputation; for some datasets MICE or
MissForest outperform it. The additional experiments can be found in appendix

5.2 IMAGE INPAINTING

The image inpainting problem has a number of different formulations. The formulation of our interest is as
follows: some of the pixels of an image are unobserved and we want to restore them in a natural way. Unlike
the majority of papers, we want to restore not just one most probable inpainting, but the distribution over all
possible inpaintings from which we can sample. This distribution is extremely multi-modal because often
there is a lot of different possible ways to inpaint the image.

Unlike the previous subsection, here we have uncorrupted images without missing features in the training
set, so p(b|xz) = p(b).

As we show in section |2 state of the art results use different adversarial losses to achieve more sharp and
realistic samples. VAEAC can be adapted to the image inpainting problem by using a combination of those
adversarial losses as a part of reconstruction loss pg(z |z, £1—p, b). Nevertheless, such construction is out of
scope for this research, so we leave it for the future work. In the current work we show that the model can
generate both diverse and realistic inpaintings.

In figures[I] 2] [3] and ff] we visualize image inpaintings produced by VAEAC on binarized MNIST (LeCun
et al.,|1998)), Omniglot (Lake et al., 2015) and CelebA (Liu et al., [2015). The details of learning procedure
and description of datasets are available in appendixes[A.I|and[A.3]

To the best of our knowledge, the most modern inpainting papers don’t consider the diverse inpainting
problem, where the goal is to build diverse image inpaintings, so there is no straightforward way to compare
with these models. Nevertheless, we compute peak signal-to-noise ratio (PSNR) for one random inpainting
from VAEAC and the best PSNR among 10 random inpaintings from VAEAC. One inpainting might not
be similar to the original image, so we also measure how good the inpainting which is most similar to the
original image reconstructs it. We compare these two metrics computed for certain masks with the PSNRs
for the same masks on CelebA from papers|Yeh et al.| (2017) and |Li et al.|(2017). The results are available
in tables Bland [

We observe that for the majority of proposed masks our model outperforms the competing methods in terms
of PSNR even with one sample, and for the rest (where the inpaintings are significantly diverse) the best
PSNR over 10 inpaintings is larger than the same PSNR of the competing models. Even if PSNR does
not reflect completely the visual quality of images and tends to encourage blurry VAE samples instead of
realistic GANs samples, the results show that VAEAC is able to solve inpainting problem comparably to the
state of the art methods. The disadvantage of VAEAC compared to|Yeh et al.|(2017) and|Li et al.| (2017) (but

Published as a conference paper at ICLR 2019

Table 3: PSNR of inpaintings for different masks for Context Encoder (Pathak et al., 2016), model from
“Semantic Image Inpainting with Deep Generative Models” (Yeh et al.,2017) and VAEAC. Higher is better.

Method/Masks Center Pattern Random Half
Context EncoderH 21.3 19.2 20.6 15.5
SIIDGM ! 19.4 17.4 22.8 13.7

VAEAC, 1 sample 22.1 21.4 29.3 14.9
VAEAC, 10 samples ~ 23.7 233 29.3 17.4

Table 4: PSNR of inpaintings for different masks for Context Encoder (Pathak et al., 2016), model from
“Generative Face Completion” (Li et al.| 2017)) and VAEAC. Higher is better.

Method/Masks 01 02 03 04 05 06
Context EncoderE] 186 184 179 190 19.1 19.3
GFC ? 200 19.8 188 19.7 19.5 20.2

VAEAC, 1 sample 20.8 21.0 195 203 203 21.0
VAEAC, 10 samples 22.0 222 20.8 21.7 21.8 222

not [Pathak et al|(2016)) is that it needs the distribution over masks at the training stage to be similar to the
distribution over them at the test stage. However, it is not a very strict limitation for the practical usage.

5.3 UNIVERSAL MARGINALIZER

Universal Marginalizer (Douglas et al.,[2017) (UM) is a model which uses a single neural network to estimate
the marginal distributions over the unobserved features. So it optimizes the following objective:

D

mgmxIEwdi(x)Epr(b) Z b; log po(x;|x1—p,) (10)
i=1
For given mask b we fix a permutation of its unobserved components: (i1, iz, . . ., i[5), Where [b] is a number

of unobserved components. Using the learned model and the permutation we can generate objects from joint
distribution and estimate their probability using chain rule.

|| J

log po(wy|z1-5,0) = Y logpe(wi, |2, _s2i=1,, b= D eir) (an
1

1

™~
Il

j=1
For example, pg (71, T4, 5|2, T3) = po(w4|T2, T3)pe (71|22, T3, Ta)Po(T5|T1, T2, T3, T4).
Conditional sampling or conditional likelihood estimation for one object requires |b| requests to UM to com-
pute po(z;|z1-p,b). Each request is a forward pass through the neural network. In the case of conditional

sampling those requests even cannot be paralleled because the input of the next request contains the output
of the previous one.

We propose a slight modification of the original UM training procedure which allows learning UM efficiently
for any kind of masks including those considered in this paper. The details of the modification are described

in appendix [B.3]

IThe results are from the paper (Yeh et al.,|2017)
The results are from the paper (Li et al.} 2017)

Published as a conference paper at ICLR 2019

=NnnnEnnnnnn CiEsisisiswie e
R 3| 2|3(4(3(3|2| 23> 2 W | ~T| 7| 77| 7] ik
B2\ f1212|7|27]2]7]917]
= 3|313|5/33|3(8|5]5|5]
W ¢|6]6|6|6|6]6] 6|56 6
--Avnnnnanann
THBREEEECIAAEIS
o= 217121112|715]7|7]9|3] E!II@II@-II@
ThHGZEREHAGEE NEEORNEEEELE
rHunnonnnnnn | OREECRREEEREE

Figure 1: MNIST inpaintings. Figure 2: Omniglot inpaintings.

a0

5>
g
i

3o b B
o e]

\
8
DL
HolDdToe

nennnnns
CIERIIEICIE |

Figure 3: CelebA inpaintings. Flgure 4: CelebA inpaintings with masks from (Yeh
|2017).

Left: input. The gray pixels are unobserved. Middle: samples from VAEAC. Right: ground truth.

Published as a conference paper at ICLR 2019

Table 5: VAEAC and UM comparison on MNIST.

Method VAEAC UM
Negative log-likelihood 61 41
Training time (30 epochs) Smin 47s 3min 14s
Test time (100 samples generation) 0.7ms 1s

The results of using this modification of UM are provided in table[5] We can say that the relation between
VAEAC and UM is similar to the relation between VAE and Pixel CNN. The second one is much slower
at the testing stage, but it easily takes into account local dependencies in data while the first one is faster
but assumes conditional independence of the outputs. Nevertheless, there are a number of cases where
UM cannot learn the distribution well while VAEAC can. For example, when the data is real-valued and
marginal distributions have many local optima, there is no straightforward parametrization which allows UM
to approximate them, and, therefore also the conditioned joint distribution. An example of such distribution
and more illustrations for comparison of VAEAC and UM are available in appendix [D.5]

6 CONCLUSION

In this paper we consider the problem of simultaneous learning of all conditional distributions for a vector.
This problem has a number of different special cases with practical applications. We propose neural network
based probabilistic model for distribution conditioning learning with Gaussian latent variables. This model is
scalable and efficient in inference and learning. We propose several tricks to improve optimization and give
recommendations about hyperparameters choice. The model is successfully applied to feature imputation
and inpainting tasks. The experimental results show that the model is competitive with state of the art
methods for both missing features imputation and image inpainting problems.

REFERENCES

Philip Bachman and Doina Precup. Data generation as sequential decision making. In Advances in Neural
Information Processing Systems, pp. 3249-3257, 2015.

Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image inpainting. In Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’00, pp. 417424, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. ISBN 1-
58113-208-5.

Florian Bordes, Sina Honari, and Pascal Vincent. Learning to generate samples from noise through infusion
training. In International Conference on Learning Representations, 2017.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

S van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in r.
Journal of statistical software, pp. 1-68, 2010.

Laura Douglas, Iliyan Zarov, Konstantinos Gourgoulias, Chris Lucas, Chris Hart, Adam Baker, Maneesh
Sahani, Yura Perov, and Saurabh Johri. A universal marginalizer for amortized inference in generative
models. arXiv preprint arXiv:1711.00695, 2017.

10

anthonybonner
Highlight

anthonybonner
Highlight

Published as a conference paper at ICLR 2019

Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. Made: Masked autoencoder for distri-
bution estimation. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Confer-
ence on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 881-889, Lille,
France, 07-09 Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/germainl5.
htmll

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pp. 2672-2680, 2014.

Anirudh Goyal Alias Parth Goyal, Nan Ke, Surya Ganguli, and Yoshua Bengio. Variational walkback:
Learning a transition operator as a stochastic recurrent net. In Advances in Neural Information Processing
Systems, pp. 4392-4402, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332-1338, 2015.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits, 1998.

Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. Generative face completion. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), volume 1, pp. 3, 2017.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoencoders. In In-
ternational Conference on Learning Representations, 2016. URL http://arxiv.org/abs/1511.
05644.

Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using very deep convolutional encoder-
decoder networks with symmetric skip connections. In Advances in neural information processing sys-
tems, pp. 2802-2810, 2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784, 2014.

Deepak Pathak, Philipp Krihenbiihl, Jeff Donahue, Trevor Darrell, and Alexei Efros. Context encoders:
Feature learning by inpainting. In Computer Vision and Pattern Recognition (CVPR), 2016.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. In International Conference on Machine Learning, pp. 1278—
1286, 2014.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted interven-
tion, pp. 234-241. Springer, 2015.

11

http://proceedings.mlr.press/v37/germain15.html
http://proceedings.mlr.press/v37/germain15.html
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1511.05644
anthonybonner
Highlight

anthonybonner
Highlight

anthonybonner
Highlight

anthonybonner
Highlight

Published as a conference paper at ICLR 2019

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Re-
search, pp. 22562265, Lille, France, 07-09 Jul 2015. PMLR. URL http://proceedings.mlr.
press/v37/sohl-dicksteinl5.htmll

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep condi-
tional generative models. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 28, pp. 3483-3491. Curran Associates, Inc., 2015.

Casper Kaae Sgnderby, Tapani Raiko, Lars Maalge, Sgren Kaae Sgnderby, and Ole Winther. Ladder varia-
tional autoencoders. In Advances in neural information processing systems, pp. 3738-3746, 2016.

Daniel J Stekhoven and Peter Bithlmann. Missforest - non-parametric missing value imputation for mixed-
type data. Bioinformatics, 28(1):112—118, 2011.

Benigno Uria, Marc-Alexandre C6té, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural autoregres-
sive distribution estimation. The Journal of Machine Learning Research, 17(1):7184-7220, 2016.

C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li. High-resolution image inpainting using multi-
scale neural patch synthesis. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4076-4084, July 2017. doi: 10.1109/CVPR.2017.434.

Raymond Yeh, Chen Chen, Teck-Yian Lim, Mark Hasegawa-Johnson, and Minh N. Do. Semantic image
inpainting with perceptual and contextual losses. CoRR, abs/1607.07539, 2016.

Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G Schwing, Mark Hasegawa-Johnson, and Minh N
Do. Semantic image inpainting with deep generative models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5485-5493, 2017.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing data imputation using generative
adversarial nets. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5689-5698,
Stockholmsmssan, Stockholm Sweden, 10-15 Jul 2018. PMLR. URL http://proceedings.mlr.
press/v80/yoonl8a.htmll

APPENDIX

A EXPERIMENTAL DETAILS

A.1 NEURAL NETWORK ARCHITECTURES

In all experiments we use optimization method Adam (Kingma & Bal,[2014), skip-connections between prior
network and generative network inspired by (Mao et al., 2016), (Sgnderby et al., 2016) and (Ronneberger
et al.L|2015), and convolutional neural networks based on ResNet blocks (He et al.,[2016).

Without skip-connections all information for decoder goes through the latent variables. In image inpainting
we found skip-connections very useful in both terms of log-likelihood improvement and the image realism,
because latent variables are responsible for the global information only while the local information passes
through skip-connections. Therefore the border between image and inpainting becomes less conspicuous.

The main idea of neural networks architecture is reflected in figure 3}

12

http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v80/yoon18a.html
http://proceedings.mlr.press/v80/yoon18a.html

Published as a conference paper at ICLR 2019

Reconstruction

/ loss

Fully Connected ResNet Blocks

%% x,7|z Xib»

% pq; Z|x1 b)

Sklp connections
Prior network Generative network

Figure 5: Neural network architecture for inpainting.

The number of hidden layers, their widths and structure may be different.

The neural networks we used for image inpainting have He-Uniform initialization of convolutional ResNet
blocks, and the skip-connections are implemented using concatenation, not addition. The proposal network
structure is exactly the same as the prior network except skip-connections.

Also one could use much simpler fully-connected networks with one hidden layer as a proposal, prior and
generative networks in VAEAC and still obtain nice inpaintings on MNIST.

A.2 MISSING FEATURES IMPUTATION

We split the dataset into train and test set with size ratio 3:1. Before training we drop randomly 50% of
values both in train and test set. We repeat each experiment 5 times with different train-test splits and
dropped features and then average results and compute their standard deviation.

As we show in appendix [B.2] the better results can be achieved when the model learns the concatenation of
objects features x and targets y. So we treat y as an additional feature that is always unobserved during the
testing time.

To train our model we use distribution p(b;|x) in which p(b;|z; = w) = 1 and p(b;|x) = 0.2 otherwise.
Also for VAEAC trainig we normalize real-valued features, fix 0y = 1 in the generative model of VAEAC
in order to optimize RMSE, and use 25% of training data as validation set to select the best model among all
epochs of training.

For the test set, the classifier or regressor is applied to each of the n imputed objects and the predictions are
combined. For regression problems we report R2-score of combined predictions, so we use averaging as a
combination method. For classification problem we report accuracy, and therefore choose the mode. We
consider the workflow where the imputed values of y are not fed to the classifier or regressor to make a fair
comparison of feature imputation quality.

13

Published as a conference paper at ICLR 2019

Table 6: Generative Face Completion (Li et al.,[2017) masks. Image size is 128x128.

Mask Meaning T1 Tz Y1 Y2
o1 Left half of the face 33 70 52 115
02 Right half of the face 57 70 95 115

o3 Two eyes 29 98 52 73
04 Lefteye 29 66 52 73
05 Right eye 61 99 52 73

06 Lower half of the face 40 87 86 123

NRMSE or PEC for dataset is computed as an average of NRMSE or PFC of all features of this dataset.
NRMSE of a feature is just RMSE of imputations divided by the standard deviation of this feature. PFC of
a feature is a proportion of imputations which are incorrect.

A.3 IMAGE INPAINTING DATASETS AND MASKS

MNIST is a dataset of 60000 train and 10000 test grayscale images of digits from O to 9 of size 28x28.
We binarize all images in the dataset. For MNIST we consider Bernoulli log-likelihood as the reconstruction
loss: log pg(xp|z, x1-p,b) = Zi:bizl log Bernoulli(x;|pg ; (2, x1-p, b)) where pg ;(z, £1_p, b) is an output
of the generative neural network. We use 16 latent variables. In the mask for this dataset the observed pixels
form a three pixels wide horizontal line which position is distributed uniformly.

Omniglot is a dataset of 19280 train and 13180 test black-and-white images of different alphabets symbols
of size 105x105. As in previous section, the brightness of each pixel is treated as a Bernoulli probability of
it to be 1. The mask we use is a random rectangular which is described below. We use 64 latent variables.
We train model for 50 epochs and choose best model according to IWAE log-likelihood estimation on the
validation set after each epoch.

CelebA is a dataset of 162770 train, 19867 validation and 19962 test color images of faces of celebrities
of size 178x218. Before learning we normalize the channels in dataset. We use logarithm of fully-factorized
Gaussian distribution as reconstruction loss. The mask we use is a random rectangular which is describe
below. We use 32 latent variables.

Rectangular mask is the common shape of unobserved region in image inpainting. We use such mask for
Omniglot and Celeba. We sample the corner points of rectangles uniprobably on the image, but reject those
rectangles which area is less than a quarter of the image area.

In|Li et al.| (2017) six different masks O1-O6 are used on the testing stage. We reconstruct the positions
of masks from the illustrations in the paper and give their coordinates in table [6] The visualizations of the
masks are available in figure[T0]

At the training stage we used a rectangle mask with uniprobable random corners. We reject masks with
width or height less than 16pt. We use 64 latent variables and take the best model over 50 epochs based on
the validation IWAE log-likelihood estimation. We can obtain slightly higher PSNR values than reported in
table []if use only masks O1-O6 at the training stage.

In|Yeh et al. (2017) four types of masks are used. Center mask is just an unobserved 32x32 square in the
center of 64x64 image. Half mask mean that one of upper, lower, left or right half of the image is unobserved.
All these types of a half are equiprobable. Random mask means that we use pixelwise-independent Bernoulli

14

Published as a conference paper at ICLR 2019

distribution with probability 0.8 to form a mask of unobserved pixels. Pattern mask is proposed in [Pathak
et al.[(2016). As we deduced from the codeE], the generation process is follows: firstly we generate 600x600
one-channel image with uniform distribution over pixels, then bicubically interpolate it to image of size
10000x10000, and then apply Heaviside step function H (z — 0.25) (i. e. all points with value less than 0.25
are considered as unobserved). To sample a mask we sample a random position in this 10000x10000 binary
image and crop 64x64 mask. If less than 20% or more than 30% of pixel are unobserved, than the mask is
rejected and the position is sampled again. In comparison with this paper in section [5.2] we use the same
distribution over masks at training and testing stages. We use VAEAC with 64 latent variables and take the
best model over 50 epochs based on the validation IWAE log-likelihood estimation.

A.4 GAIN IMPLEMENTATION DETAILS

For missing feature imputation we reimplemented GAIN in PyTorch based on the paper (Yoon et al.l 2018])
and the available TensorFlow source code for image inpainting El

For categorical features we use one-hot encoding. We observe in experiments that it works better in terms of
NRMSE and PFC than processing categorical features in GAIN as continuous ones and then rounding them
to the nearest category.

For categorical features we also use reconstruction loss Ly (z;, x}) = —ﬁ Elfill‘ z; jlog(z] ;). |Xi| is
the number of categories of the ¢-th feature, and x; ; is the j-th component of one-hot encoding of the feature
x;. Such L, enforces equal contribution of each categorical feature into the whole reconstruction loss.

We use one more modification of Lys(x,2’) for binary and categorical features. Cross-entropy loss in L s
penalizes incorrect reconstructions of categorical and binary features much more than incorrect reconstruc-
tions for continuous ones. To avoid such imbalance we mixed L2 and cross-entropy reconstruction losses
for binary and categorical features with weights 0.8 and 0.2 respectively:

e Xl — &))2, if 2y s categorical
Lhy(zi,2h) = 0.2 Ly (24, 25) +0.8 - { 1] ZJI:; (.CUW . JUZ.J) , if ; is categorica
(x; — 24)?, if ; is binary

(12)
We observe in experiments that this modification also works better in terms of NRMSE and PFC than the
original model.

We use validation set which contains 5% of the observed features for the best model selection (hyper-
parameter is the number of iterations).

In the original GAIN paper authors propose to wuse cross-validation for hyper-parameter
a € {0.1,05,1, 2, 10}. We observe that using « = 10 and a hint h = bom + 0.5(1 — b)
where vector b is sampled from Bernoulli distribution with p = 0.01 provides better results in terms of
NRMSE and PFC than the original model with every a € {0.1,0.5,1,2,10}. Such hint distribution makes
model theoretically inconsistent but works well in practice (see table[7).

Table [/| shows that our modifications provide consistently not worse or even better imputations than the
original GAIN (in terms of NRMSE and PFC, on the considered datasets). So in this paper for the missing
feature imputation problem we report the results of our modification of GAIN.

Shttps://github.com/pathak22/context-encoder/blob/master/train_random.lua#
L273
“https://github.com/jsyoon0823/GAIN

15

https://github.com/pathak22/context-encoder/blob/master/train_random.lua#L273
https://github.com/pathak22/context-encoder/blob/master/train_random.lua#L273

Published as a conference paper at ICLR 2019

Table 7: NRMSE (for continuous datasets) or PFC (for categorical ones) of imputations for different GAIN
modifications. Less is better. “Our modification” includes the reconstruction loss L, (I2Z)), Bernoulli dis-
tribution over b in the hint generation procedure, and fixed a = 10. Other columns refers original GAIN
without these modifications and with different values of c.

Dataset Our modification a=10 a=2 a=1 a=05 a=0.1
Boston 0.78 + 0.03 0.87 4 0.02 1.0+£0.1 1.0£0.1 1.02 £+ 0.05 1.6 £0.2
Breast 0.67 + 0.01 0.80 4 0.05 1.00 £ 0.05 1.10 £ 0.07 1.19 £ 0.05 1.52 + 0.06
Concrete 0.96 + 0.01 0.98 4+ 0.02 1.02 £ 0.02 1.13 £+ 0.06 1.17 £ 0.04 1.3+0.1
Diabetes 0.911 + 0.009 0.93 +£0.03 1.05 4 0.04 1.07 +£0.07 1.21 +0.07 1.6 +0.1
Digits 0.79 4+ 0.02 0.88 £0.01 1.05 4 0.02 1.13 4 0.02 1.24 4 0.08 1.44+0.2
Glass 1.06 + 0.05 1.04 £ 0.05 1.19 + 0.06 1.4+0.2 1.6 +0.1 1.81 £0.10
Iris 0.72 + 0.04 0.73 4+ 0.06 0.83 4 0.08 0.97 & 0.09 1.2+0.2 1.3+0.2
Mushroom 0.271 + 0.003 0.404 £0.004 0.52+0.05 0.55 4+ 0.01 0.56+£0.03 0.64 + 0.06
Orthopedic 0.91+0.03 0.91 +0.08 1.140.1 1.240.1 1.34 40.08 1.6 +0.2
Phishing 0.427 £ 0.010 0.52 4 0.02 0.54+0.02 0.543+0.010 0.56+0.01 0.57+0.04
WallRobot 0.907 £+ 0.005 0.924 +£0.005 0.9334+0.008 0.95 =+ 0.01 1.00 £ 0.02 1.26 + 0.04
WhiteWine 0.97 + 0.02 1.02 £ 0.04 1.240.1 1.3+0.1 1.6 £0.1 1.86 £ 0.08
Yeast 0.99 + 0.03 1.3+0.2 1.6 £0.1 1.83 £+ 0.09 1.940.1 2.440.4
Z.00 0.20 + 0.02 0.24 4+ 0.05 0.35 4 0.06 0.36+£0.03 0.43+0.04 0.433 +0.004
B THEORY

B.1 VAEAC UNIVERSALITY

The theoretical guarantees that VAEAC can model arbitrary distribution are based on the same guarantees
for Condtitional Variational Autoencoder (CVAE). We prove below that if CVAE can model each of the
conditional distributions p(zp|z1—), then VAEAC can model all of them.

We can imagine 2° CVAEs learned each for the certain mask. Because neural networks are universal ap-
proximators, VAEAC networks could model the union of CVAE networks, so that VAEAC network performs
transformation defined by the same network of the corresponding to the given mask CVAE.

Py, vAEAC(2|T1-p,b) = py.ovap,1-b(z|T1-p) VI, b

po,v apac(Tb|2, 21-4,0) = po.cvap,1-p(Ts|2, T1-6) V2, 2,b
So if CVAE models any distribution p(x|y), VAEAC also do.

The guarantees for CVAE in the case of continuous variables are based on the point that every smooth dis-
tribution can be approximated with a large enough mixture of Gaussians, which is a special case of CVAE’s
generative model. These guarantees can be extended on the case of categorical-continuous variables also.
Actually, there are distributions over categorical variables which CVAE with Gaussian prior and proposal
distributions cannot learn. Nevertheless, this kind of limitation is not fundamental and is caused by poor
proposal distribution family.

B.2 WHY VAEAC NEEDS TARGET VALUES FOR MISSING FEATURES IMPUTATION?

Consider a dataset with D-dimensional objects where each feature may be missing (which we denote by
x; = w) and their target values y. In this section we show that the better results are achieved when our
model learns the concatenation of objects features x and targets y. The example that shows the necessity of
it is following. Consider a dataset where x; = 1, 2 ~ N (z2]y, 1), pa(y = 0) = p(y = 5) = 0.5. In this

16

Published as a conference paper at ICLR 2019

case pg(z2|ry = 1) = 0.5N(22]0,1) 4+ 0.5N (2:2]5,1). We can see that generating data from pg(z2|z1)
may only confuse the classifier, because with probability 0.5 it generates zo ~ AN (0,1) for y = 5 and
xzo ~ N(5,1) for y = 0. On the other hand, pg(x2|z1,y) = N(x2|y,1). Filling gaps using pa(x2|z1,y)
may only improve classifier or regressor by giving it some information from the joint distribution pg(x, y)
and thus simplifying the dependence to be learned at the training time. So we treat y as an additional feature
that is always unobserved during the testing time.

B.3 UNIVERSAL MARGINALIZER: TRAINING PROCEDURE MODIFICATION

The problem authors did not address in the original paper is the relation between the distribution of un-
observed components p(b) at the testing stage and the distribution of masks in the requests to UM p(b).
The distribution over masks p(b) induces the distribution p(b), and in the most cases p(b) # p(b). The
distribution p(b) also depends on the permutations (i1, 42, ...,) that we use to generate objects.

We observed in experiments, that UM must be trained using unobserved mask distribution p(b). For example,
if all masks from p(b) have a fixed number of unobserved components (e. g., %), then UM will never
see an example of mask with 1,2, ..., % — 1 unobserved components, which is necessary to generate a
sample conditioned on g components. That leads to drastically low likelihood estimate for the test set and
unrealistic samples.

We developed an easy generative process for p(b) for arbitrary p(b) if the permutation of unobserved compo-
nents (i1, 1z, .. .,1) is chosen randomly and equiprobably: firstly we generate by ~ p(b), u ~ U0, 1], then
by ~ (Bernoulli(u))? and b = by o b;. More complicated generative process exists for a sorted permutation
where ij_l < ij V] :2< 7 < |b|

In experiments we use uniform distribution over the permutations.

C (GAUSSIAN STOCHASTIC NEURAL NETWORK

Gaussian stochastic neural network and hybrid model are originally proposed in the paper on
Conditional VAE (Sohn et al.l [2015). The motivation authors mention in the paper is as follows. During
training the proposal distribution g4 (z|x, y) is used to generate the latent variables z, while during the testing
stage the prior py, (z]y) is used. KL divergence tries to close the gap between two distributions but, according
to authors, it is not enough. To overcome the issue authors propose to use a hybrid model (I4), a weighted
mixture of variational lower bound (3] and a single-sample Monte-Carlo estimation of log-likelihood (T3).
The model corresponding to the second term is called Gaussian Stochastic Neural Network (T3), because
it is a feed-forward neural network with a single Gaussian stochastic layer in the middle. Also GSNN is a
special case of CVAE where g4 (2|2, y) = py(2]y).

LGSNN(xay;eaw) :Epw(z\y) IOgPG(‘T|Z7y) (13)
L($7y;07¢a¢) :aLCVAE(xvy;gywvd))'i_ (]— —CV)LGSNN(CU,ZJ;QMM, a € [07 1] (14)

Authors report that hybrid model and GSNN outperform CVAE in terms of segmentation accuracy on the
majority of datasets.

We can also add that this technique seems to soften the “holes problem” (Makhzani et al.l [2016). In
Makhzani et al.|(2016) authors observe that vectors z from prior distribution may be different enough from
all vectors z from the proposal distribution at the training stage, so the generator network may be confused
at the testing stage. Due to this problem CVAE can have good reconstructions of y given z ~ ¢4 (z|z,y),
while samples of y given z ~ py,(z|x) are not realistic.

17

Published as a conference paper at ICLR 2019

The same trick is applicable to our model as well:
Lasnn(w,0;0,9) =By (21z,_,.0) log po(T]2, 14, b) (15)
L(bevoﬂ/%‘b) = OZLVAEAC(x,b;aﬂ/},QS) + (1 7a)LGSNN(I7b;977/})7 (OAS [07 1] (16)

In order to reflect the difference between sampling z from prior and proposal distributions, authors of CVAE
use two methods of log-likelihood estimation:

S
log pa,y (z]y) ~ Z (zlzi,y), 2~ py(zly) (17
1 po ()2, y)po (zily)
log po, (xly) ~log 5 Y DI 2~ gp(2lz,y) (18)
S qy(zilz,y)

The first estimator is called Monte-Carlo estimator and the second one is called Importance Sampling esti-
mator (also known as IWAE). They are asymptotically equivalent, but in practice the Monte-Carlo estimator
requires much more samples to obtain the same accuracy of estimation. Small S leads to underestimation of
the log-likelihood for both Monte-Carlo and Importance Sampling (Burda et al.,|2015)), but for Monte-Carlo
the underestimation is expressed much stronger.

We perform an additional study of GSNN and hybrid model and show that they have drawbacks when the
target distribution p(x|y) is has multiple different local maximums.

C.1 THEORETICAL STUDY

In this section we show why GSNN cannot learn distributions with several different modes and leads to a
blurry image samples.

For the simplicity of the notation we consider hybrid model for a standard VAE:

po(x|2)py (2

La;6,,0) = 0By g o PP (s ogpetel) 09)
q0(2|2)

The hybrid model for VAEAC can be obtained from by replacing x with x;, and conditioning all

distributions on z1_; and b. The validity of the further equations and conclusions remains for VAEAC after

this replacement.

Consider now a categorical latent variable z which can take one of K values. Let = be a random variable

with true distribution pg(z) to be modeled. Consider the following true data distribution: pg(z = ;) = &

K
fori € {1,2,..., K} and some values x1, Zs,...,Zxk. So the true distribution has K different equiprob-
able modes. Suppose the generator network N Ny which models mapping from z to some vector of pa-
rameters v, = NNg(z). Thus, we define generative distribution as some function of these parameters:

po(x|z) = f(z,v,). Therefore, the parameters 6 are just the set of vy, va, ..., V.

For the simplicity of the model we assume py,(z) = +. Taking into account py(z) = +, we obtain optimal

K bl
q(z = ilz) = % Using and the above formulas for g4, p, and py we obtain the following

optimization problem:

ZK Z fane) o, FEev)g ZK faon| o
max — og P —) log f(xi,v;
e B | S T) s

18

Published as a conference paper at ICLR 2019

Table 8: Negative log-likelihood estimation of a hybrid model on the synthetic data. IS-S refers to Impor-
tance Sampling log-likelihood estimation with S samples for each object (I8). MC-S refers to Monte-Carlo
log-likelihood estimation with .S samples for each object (T7).

VAEAC weight IS-10 MC-10

a=1 0.22 85
a=0.99 0.35 11
a=0.9 0.62 1.7

It is easy to show that is equivalent to the following optimization problem:

K Zjl(zl f(l'z,’l)]) K

1
o, X Z alog#+(l—a)zglogf(xi,vj) 21

i=1 j=1

It is clear from that when o = 1 the log-likelihood of the initial model is optimized. On the other hand,

. . . K : 9
when a = 0 the optimal point is v = vy = --- = vg = argmax, y;_,log f(x;,v), i. e. z doesn’t
influence the generative process, and for each z generator produces the same v which maximizes likelihood
estimation of the generative model f(z, v) for the given dataset of x’s. For Bernoulli and Gaussian generative
distributions f such v is just average of all modes x1, xs,...,xx. That explains why further we observe
blurry images when using GSNN model.

The same conclusion holds for for continuous latent variables instead of categorical. Given K different
modes in true data distribution, VAE uses proposal network to separate prior distribution into K components
(i. e. regions in the latent space), so that each region corresponds to one mode. On the other hand, in GSNN
z is sampled independently on the mode which is to be reconstructed from it, so for each z the generator
have to produce parameters suitable for all modes.

From this point of view, there is no difference between VAE and VAEAC. If the true conditional distribution
has several different modes, then VAEAC can fit them all, while GSNN learns their average. If true condi-
tional distribution has one mode, GSNN and VAEAC are equal, and GSNN may even learn faster because it
has less parameters.

Hybrid model is a trade-off between VAEAC and GSNN: the closer « to zero, the more blurry and closer
to the average is the distribution of the model. The exact dependence of the model distribution on « can be
derived analytically for the simple data distributions or evaluated experimentally. We perform such experi-
mental evaluation in the next sections.

C.2 SYNTHETIC DATA

In this section we show that VAEAC is capable of learning a complex multimodal distribution of synthetic
data while GSNN and hybrid model are not. Let # € R? and p(b; = 1) = p(by = 1) = 0.5. pg(z) =
%Z?:l N (2| i %I) where f1; ~ N'(p4/0,1). The distribution p(z) is plotted in ﬁgure@ The dataset
contains 100000 points sampled from py(z). We use multi-layer perceptron with four ReLU layers of size
400-200-100-50, 25-dimensional Gaussian latent variables.

For different mixture coefficients o we visualize samples from the learned distributions py o(z1,22),
Pu0(z1]x2), and py g(x2|z1). The observed features for the conditional distributions are generated from
the marginal distributions p(z2) and p(x;) respectively.

We see in table [§| and in figure [/ that even with very small weight GSNN prevents model from learning
distributions with several local optimas. GSNN also increases Monte-Carlo log-likelihood estimation with

19

Published as a conference paper at ICLR 2019

X1 unknown: X2 unknown:
X2 ~ p(x2) X1~ p(x1) X1, X2 unknown:
X1~ Py,6(x1]x2) X2~ Py,6(X2lx1) X1, X2 ~ Py,6(x1, X2)
1| . 1{% 1 {9
a1 oo R - ¥
04 04 04 Lo
r's » X2
2.00 o1 + —14 “ & 14 h ¢
150 B X S R I
1.25
1.00 1 1% : e S
0.75 . g ¢ g
0.50 a=0.99 | o] ’ ' o] w;# W
0.25 ¢ b X2
BE- 2R PR INE S
10 1 10 1 10 1
Figure 6: Probability density function of S g | ' ﬁ § e
synthetic data distribution. 00 0l . o LA f o] ,,“%3? M
v HES any ' (Ao 358
-1 ‘w -1 ‘;. -1 *P‘
—‘1 6 1 -1 6 1 -1 0 1
X1 X1 X1

e N e S R Y
I
o
o
o
o)
o
o
o)
o
o)
o
e R e S e Y

(a) VAEAC (b) GSNN

Figure 8: MNIST inpaintings.
Left: input. The gray pixels are unobserved. Middle: samples from the model. Right: ground truth.

a few samples and decreases much more precise Importance Sampling log-likelihood estimation. When
a = 0.9 the whole distribution structure is lost.

We see that using o # 1 ruins multimodality of the restored distribution, so we highly recommend to use
a = 1oratleast o =~ 1.

20

Published as a conference paper at ICLR 2019

Table 9: Average negative log-likelihood of inpaintings for 1000 objects. IS-S refers to Importance Sampling
log-likelihood estimation with S samples for each object (I8). MC-S refers to Monte-Carlo log-likelihood
estimation with S samples for each object (T7). Naive Bayes is a baseline method which assumes pixels and
colors independence.

Method MNIST Omniglot CelebA

VAEAC 1S-107 61+1 275+ 17 34035 + 1609
VAEAC MC-10* 9444 14524+ 109 41513 £ 2163
VAEAC MC-10%2 156 +£1 2203 £150 53904 + 3121
GSNN MC-10* 141 £7 1199+£62 53427 £+ 2208
GSNN MC-102 141+£1 1200+£62 53486 4+ 2210
Naive Bayes 205 2490 269480

-804
—100 +

—120

~140 A /

’ —— VAEAC
VAE

Log-likelihood, IWAE-5000

Epoch

Figure 9: Convergence of VAE and VAEAC on MNIST dataset.

C.3 COMPARISON ON THE IMAGE INPAINTING PROBLEM

In figure[§] we can see that the inpaintings produced by GSNN are smooth, blurry and not diverse compared
with VAEAC.

Table 0] shows that VAEAC learns distribution over inpaintings better than GSNN in terms of test log-
likelihood. Nevertheless, Monte-Carlo estimations with a small number of samples sometimes are better for
GSNN, which means less local modes in the learned distribution and more blurriness in the samples.

D ADDITIONAL EXPERIMENTS

D.1 CONVERGENCE SPEED

In figure 0] one can see that VAEAC has similar convergence speed to VAE in terms of iterations on MNIST
dataset. In our experiments we observed the same behaviour for other datasets. Each iteration of VAEAC is
about 1.5 times slower than VAE due to usage of three networks instead of two.

21

Published as a conference paper at ICLR 2019

Table 10: NRMSE (for continuous datasets) or PFC (for categorical ones) of imputations. Less is better.

Dataset MICE MissForest GAIN VAEAC GSNN NN
Boston 0.69 & 0.02 0.58 4+ 0.02 0.78 4+ 0.03 0.71 4 0.02 0.70 £ 0.01 0.69 & 0.01
Breast 0.58+0.02 0.515+0.008 0.67+0.01 0.55 + 0.02 0.55 + 0.02 0.52 + 0.02
Concrete 0.850 £ 0.007 0.78 +0.01 0.96 & 0.01 0.84 4 0.02 0.85 4 0.01 243
Diabetes 0.80 4+ 0.01 0.84 £0.02 0.911 + 0.009 0.90 4 0.03 0.91 £0.03 0.90 4 0.02
Digits 0.69 + 0.02 0.61 + 0.02 0.79 £ 0.02 0.69 + 0.02 0.69 + 0.02 0.67 £ 0.02
Glass 0.91 + 0.02 0.83 +0.04 1.06 4 0.05 0.91 + 0.04 0.91 +0.05 0.87 +£0.04
Iris 0.59 4+ 0.02 0.62 4 0.04 0.72 4 0.04 0.64 4 0.04 0.62 4 0.04 0.61 4+ 0.02
Mushroom 0.334 +£0.002 0.249 +0.006 ~ 0.271 +0.003 0.241 +£0.002 0.2412 4 0.0009 0.239 + 0.001
Orthopedic 0.76 + 0.02 0.79 +0.03 0.91 £ 0.03 0.80 + 0.03 0.81+0.03 0.81 + 0.02
Phishing 0.422 £0.006 0.4224+0.009 0.4274+0.010 0.397 +£0.010 0.392 4 0.009 0.41 4 0.01
WallRobot 0.885 4+ 0.003 0.640 + 0.003 0.907 & 0.005 0.78 4 0.01 0.776 £ 0.007 0.757 £ 0.005
WhiteWine 0.964 +0.007 0.878 + 0.009 0.97 4+ 0.02 0.850 + 0.005 0.848 + 0.007 0.85+ 0.01
Yeast 0.98 £ 0.02 1.00 4 0.02 0.99 + 0.03 0.95 + 0.01 0.958 + 0.007 0.97 +£0.03
700 0.194+0.03 0.16 4 0.02 0.20 4 0.02 0.16 + 0.02 0.17 4+ 0.02 0.16 +0.01

Table 11: R2-score (for continuous targets) or accuracy (for categorical ones) of post-imputation regression
or classification. Higher is better.

Dataset MICE MissForest GAIN VAEAC GSNN NN
Boston 0.57 +0.08 0.6 +0.1 0.50 £0.10 0.54+0.1 0.5+0.1 0.50 + 0.09
Breast 0.96 + 0.02 0.95 + 0.02 0.94 +0.01 0.95 + 0.02 0.96 + 0.02 0.95 + 0.02
Concrete 0.35 +0.05 0.33 +0.04 0.28 + 0.06 0.30 + 0.08 0.32+0.05 0+1
Diabetes 0.37 +0.06 0.34 + 0.06 0.34+0.03 0.34 +0.04 0.33 +£0.04 0.27 + 0.06
Digits 0.86+0.02 0.887 + 0.008 0.83 +0.03 0.892 + 0.010 0.895+0.010 0.912 4+ 0.010
Glass 0.44 +0.08 0.53+0.05 0.37+£0.05 0.49 £+ 0.09 0.47 +0.09 0.48 +0.09
Iris 0.81 4+ 0.02 0.84 + 0.02 0.66 & 0.06 0.84 +0.05 0.82 4 0.06 0.73 £ 0.09
Mushroom 0.92 +0.01 0.972+£0.003 0.969 +£0.005 0.987 4+ 0.001 0.986 4+ 0.002 0.989 + 0.003
Orthopedic 0.71 + 0.02 0.72 4+ 0.03 0.60 & 0.03 0.71 £0.02 0.70 4 0.04 0.61 £ 0.04
Phishing 0.75+0.02 0.73+0.03 0.74 +0.03 0.75 £ 0.01 0.74 +0.04 0.73 £0.02
WallRobot 0.554+0.01 0.697 + 0.005 0.56 + 0.01 0.62 4 0.02 0.62 4 0.01 0.64 4 0.02
WhiteWine 0.13 +0.02 0.17 4+ 0.01 0.11 £ 0.01 0.18 £ 0.02 0.17 4+ 0.01 0.15 + 0.03
Yeast 0.42 4+ 0.02 0.41 4+ 0.02 0.39 4+ 0.06 0.42 +0.01 0.425 + 0.010 0.33+0.03
700 0.78 4+ 0.06 0.71 £+ 0.08 0.67 + 0.06 0.77 + 0.09 0.84+0.1 0.83 +0.08

D.2 MISSING FEATURES IMPUTATION

We evaluate the quality of imputations on different datasets (mostly from UCI (Lichman, [2013)). The
evaluation is performed for VAEAC, GSNN and NN (neural network; can be considered as a special case
of GSNN where py(z|x1_p,b) is delta-function; produces single imputation). We compare these methods
with MICE (Buuren & Groothuis-Oudshoorn,[2010), MissForest (Stekhoven & Biihlmann,2011)), and GAIN
(Yoon et al.,[2018)).

We see that for some datasets MICE and MissForest outperform VAEAC, GSNN and NN. The reason is that
for some datasets random forest is more natural structure than neural network.

The results also show that VAEAC, GSNN and NN show similar imputation performance in terms of
NRMSE, PFC, post-imputation R2-score and accuracy. Given the result from appendix [C] we can take
this as a weak evidence that the distribution of imputations has only one local maximum for datasets from
(Lichman, 2013).

22

Published as a conference paper at ICLR 2019

Figure 10: CelebA inpaintings with masks from (Li et al., 2017).
. Right: ground truth.

Left: input. The gray pixels are unobserved. Middle: samples from VAEA

D.3 FACE INPAINTINGS

In figure[T0] we provide samples of VAEAC on the CelebA dataset for the masks from 2017).

D.4 GAIN FOR IMAGE INPAINTING

GAIN (Yoon et all, 2018) doesnt use unobserved data during training, which makes it easier to apply to
the missing features imputation problem. Nevertheless, it turns into a disadvantage when the fully-observed
training data is available but the missingness rate at the testing stage is high.

We consider the horizontal line mask for MNIST which is described in appendix [A:3] We use the released
GAIN code E] with a different mask generator. The inpaintings from VAEAC which uses the unobserved
pixels during training are available in figure[I] The inpaintings from GAIN which ignores unobserved pixels
are provided in figure[T1] As can be seen in figure [T} GAIN fails to learn conditional distribution for given
mask distribution p(b).

Nevertheless, we don’t claim that GAIN is not suitable for image inpainting. As it was shown in the supple-
mentary of (Yoon et al.,|2018)) and in the corresponding code, GAIN is able to learn conditional distributions
when p(b) is pixel-wise independent Bernoulli distribution with probability 0.5.

Shttps://github.com/jsyoon0823/GAIN

Published as a conference paper at ICLR 2019

T NN
g T O
el]
= el el el el 2
—-RRRRRH

Figure 11: MNIST inpaintings from GAIN.
Left: input. The gray pixels are unobserved. Middle: samples from the model. Right: ground truth.

"Illlnlﬂlﬂﬂﬂ
el
Ed
3|3
H
7|
H
7|
HE
a

(a) VAEAC (b) UM

L[/ {

(

W
W)
o
v

Y
%

e
=

\J
[[

[

B

o
o

~ [S W[N]~
™
-~

N
oo

ERYNIEIRIESERY
ESNEN
[[o[er ||
~ AW~ e
1
|
|
e
~|
NEMON N

(I
-
N e
™~

I
Y

[~ [MNS [wso~
Q{)

ENNENEHNINE
~[RX s [+ NN [[~
ERNEENEINEEN
~ue (O~ [ewN W)
~[x]w @)

[~ e €2 e | a1~ [0]~
[~ [0 [~ e [N
7] [~ U] O
~ a2~ e)

Hﬂﬂﬂﬂﬂﬁﬁﬂ

|
i
~~

Figure 12: MNIST inpaintings.
Left: input. The gray pixels are unobserved. Middle: samples from the model. Right: ground truth.
D.5 UNIVERSAL MARGINALIZER: ILLUSTRATIONS

In figure|12| we provide samples of Universal Marginalizer (UM) and VAEAC for the same inputs.

Consider the case when UM marginal distributions are parametrized with Gaussians. The most simple
example of a distribution, which UM cannot learn but VAEAC can, is given in figure[T3]

24

Published as a conference paper at ICLR 2019

2.00

1.75 5 2 -

1.50 *ﬁ

1.25 T :

1.00 X2 o4 3 X2 o

0.75 T

0.50 5

0.25 -2 A y -2 A b 8

0.00 T T T T T T
-2 0 2 -2 0 2

X1 X1
(a) True distribution (b) VAEAC, log-likelihood: -1.2 (c) UM, log-likelihood: -5.2

Figure 13: Distribution learning: VAEAC vs UM.

25

	Introduction
	Related Work
	Background
	Variational Autoencoder
	Conditional Variational Autoencoder

	Variational Autoencoder with Arbitrary Conditioning
	Problem Statement
	Model Description
	Learning Variational Autoencoder with Arbitrary Conditioning
	Variational Lower Bound
	Prior In Latent Space
	Missing Features

	Experiments
	Missing Features Imputation
	Image Inpainting
	Universal Marginalizer

	Conclusion
	Experimental Details
	Neural Network Architectures
	Missing Features Imputation
	Image Inpainting Datasets and Masks
	GAIN Implementation Details

	Theory
	VAEAC Universality
	Why VAEAC Needs Target Values for Missing Features Imputation?
	Universal Marginalizer: Training Procedure Modification

	Gaussian Stochastic Neural Network
	Theoretical Study
	Synthetic Data
	Comparison on the Image Inpainting Problem

	Additional Experiments
	Convergence Speed
	Missing Features Imputation
	Face Inpaintings
	GAIN for Image Inpainting
	Universal Marginalizer: Illustrations

