
Non-local Neural Networks

Xiaolong Wang1,2∗ Ross Girshick2 Abhinav Gupta1 Kaiming He2

1Carnegie Mellon University 2Facebook AI Research

Abstract
Both convolutional and recurrent operations are building

blocks that process one local neighborhood at a time. In
this paper, we present non-local operations as a generic
family of building blocks for capturing long-range depen-
dencies. Inspired by the classical non-local means method
[4] in computer vision, our non-local operation computes
the response at a position as a weighted sum of the features
at all positions. This building block can be plugged into
many computer vision architectures. On the task of video
classification, even without any bells and whistles, our non-
local models can compete or outperform current competition
winners on both Kinetics and Charades datasets. In static
image recognition, our non-local models improve object de-
tection/segmentation and pose estimation on the COCO suite
of tasks. Code is available at https://github.com/
facebookresearch/video-nonlocal-net.

1. Introduction
Capturing long-range dependencies is of central impor-

tance in deep neural networks. For sequential data (e.g.,
in speech, language), recurrent operations [38, 23] are the
dominant solution to long-range dependency modeling. For
image data, long-distance dependencies are modeled by the
large receptive fields formed by deep stacks of convolutional
operations [14, 30].

Convolutional and recurrent operations both process a
local neighborhood, either in space or time; thus long-range
dependencies can only be captured when these operations
are applied repeatedly, propagating signals progressively
through the data. Repeating local operations has several
limitations. First, it is computationally inefficient. Second,
it causes optimization difficulties that need to be carefully
addressed [23, 21]. Finally, these challenges make multi-
hop dependency modeling, e.g., when messages need to be
delivered back and forth between distant positions, difficult.

In this paper, we present non-local operations as an ef-
ficient, simple, and generic component for capturing long-
range dependencies with deep neural networks. Our pro-
posed non-local operation is a generalization of the classical
non-local mean operation [4] in computer vision. Intuitively,
∗Work done during an internship at Facebook AI Research.

xi

xj

Figure 1. A spacetime non-local operation in our network trained
for video classification in Kinetics. A position xi’s response is
computed by the weighted average of the features of all positions
xj (only the highest weighted ones are shown here). In this example
computed by our model, note how it relates the ball in the first frame
to the ball in the last two frames. More examples are in Figure 3.

a non-local operation computes the response at a position
as a weighted sum of the features at all positions in the in-
put feature maps (Figure 1). The set of positions can be in
space, time, or spacetime, implying that our operations are
applicable for image, sequence, and video problems.

There are several advantages of using non-local opera-
tions: (a) In contrast to the progressive behavior of recurrent
and convolutional operations, non-local operations capture
long-range dependencies directly by computing interactions
between any two positions, regardless of their positional dis-
tance; (b) As we show in experiments, non-local operations
are efficient and achieve their best results even with only
a few layers (e.g., 5); (c) Finally, our non-local operations
maintain the variable input sizes and can be easily combined
with other operations (e.g., convolutions as we will use).

We showcase the effectiveness of non-local operations in
the application of video classification. In videos, long-range
interactions occur between distant pixels in space as well as
time. A single non-local block, which is our basic unit, can
directly capture these spacetime dependencies in a feedfor-
ward fashion. With a few non-local blocks, our architecures
called non-local neural networks are more accurate for video
classification than 2D and 3D convolutional networks [48]
(including the inflated variant [7]). In addition, non-local
neural networks are more computationally economical than
their 3D convolutional counterparts. Comprehensive abla-
tion studies are presented on the Kinetics [27] and Charades
[44] datasets. Using RGB only and without any bells and
whistles (e.g., optical flow, multi-scale testing), our method
achieves results on par with or better than the latest competi-
tions winners on both datasets.

1

ar
X

iv
:1

71
1.

07
97

1v
3 

 [
cs

.C
V

] 
 1

3 
A

pr
 2

01
8

https://github.com/facebookresearch/video-nonlocal-net
https://github.com/facebookresearch/video-nonlocal-net
anthonybonner
Highlight

anthonybonner
Highlight

anthonybonner
Highlight



To demonstrate the generality of non-local operations,
we further present object detection/segmentation and pose
estimation experiments on the COCO dataset [33]. On top of
the strong Mask R-CNN baseline [19], our non-local blocks
can increase accuracy on all three tasks at a small extra
computational cost. Together with the evidence on videos,
these image experiments show that non-local operations are
generally useful and can become a basic building block in
designing deep neural networks.

2. Related Work
Non-local image processing. Non-local means [4] is a clas-
sical filtering algorithm that computes a weighted mean of
all pixels in an image. It allows distant pixels to contribute to
the filtered response at a location based on patch appearance
similarity. This non-local filtering idea was later developed
into BM3D (block-matching 3D) [10], which performs filter-
ing on a group of similar, but non-local, patches. BM3D is
a solid image denoising baseline even compared with deep
neural networks [5]. Block matching was used with neural
networks for image denoising [6, 31]. Non-local match-
ing is also the essence of successful texture synthesis [12],
super-resolution [16], and inpainting [1] algorithms.
Graphical models. Long-range dependencies can be mod-
eled by graphical models such as conditional random fields
(CRF) [29, 28]. In the context of deep neural networks, a
CRF can be exploited to post-process semantic segmenta-
tion predictions of a network [9]. The iterative mean-field
inference of CRF can be turned into a recurrent network
and trained [56, 42, 8, 18, 34]. In contrast, our method is a
simpler feedforward block for computing non-local filtering.
Unlike these methods that were developed for segmentation,
our general-purpose component is applied for classification
and detection. These methods and ours are also related to a
more abstract model called graph neural networks [41].
Feedforward modeling for sequences. Recently there
emerged a trend of using feedforward (i.e., non-recurrent)
networks for modeling sequences in speech and language
[36, 54, 15]. In these methods, long-term dependencies
are captured by the large receptive fields contributed by
very deep 1-D convolutions. These feedforward models are
amenable to parallelized implementations and can be more
efficient than widely used recurrent models.
Self-attention. Our work is related to the recent self-
attention [49] method for machine translation. A self-
attention module computes the response at a position in
a sequence (e.g., a sentence) by attending to all positions
and taking their weighted average in an embedding space.
As we will discuss in the next, self-attention can be viewed
as a form of the non-local mean [4], and in this sense our
work bridges self-attention for machine translation to the
more general class of non-local filtering operations that are
applicable to image and video problems in computer vision.

Interaction networks. Interaction Networks (IN) [2, 52]
were proposed recently for modeling physical systems. They
operate on graphs of objects involved in pairwise interactions.
Hoshen [24] presented the more efficient Vertex Attention
IN (VAIN) in the context of multi-agent predictive modeling.
Another variant, named Relation Networks [40], computes a
function on the feature embeddings at all pairs of positions
in its input. Our method also processes all pairs, as we will
explain (f(xi,xj) in Eq.(1)). While our non-local networks
are connected to these approaches, our experiments indicate
that the non-locality of the model, which is orthogonal to
the ideas of attention/interaction/relation (e.g., a network
can attend to a local region), is the key to their empirical
success. Non-local modeling, a long-time crucial element of
image processing (e.g., [12, 4]), has been largely overlooked
in recent neural networks for computer vision.

Video classification architectures. A natural solution to
video classification is to combine the success of CNNs for
images and RNNs for sequences [55, 11]. In contrast, feed-
forward models are achieved by 3D convolutions (C3D)
[26, 48] in spacetime, and the 3D filters can be formed by
“inflating” [13, 7] pre-trained 2D filters. In addition to end-
to-end modeling on raw video inputs, it has been found that
optical flow [45] and trajectories [50, 51] can be helpful.
Both flow and trajectories are off-the-shelf modules that
may find long-range, non-local dependency. A systematic
comparison of video architectures can be found in [7].

3. Non-local Neural Networks
We first give a general definition of non-local operations

and then we provide several specific instantiations of it.

3.1. Formulation

Following the non-local mean operation [4], we define a
generic non-local operation in deep neural networks as:

yi =
1

C(x)
∑
∀j

f(xi,xj)g(xj). (1)

Here i is the index of an output position (in space, time, or
spacetime) whose response is to be computed and j is the
index that enumerates all possible positions. x is the input
signal (image, sequence, video; often their features) and y
is the output signal of the same size as x. A pairwise func-
tion f computes a scalar (representing relationship such as
affinity) between i and all j. The unary function g computes
a representation of the input signal at the position j. The
response is normalized by a factor C(x).

The non-local behavior in Eq.(1) is due to the fact that
all positions (∀j) are considered in the operation. As a
comparison, a convolutional operation sums up the weighted
input in a local neighborhood (e.g., i− 1 ≤ j ≤ i+ 1 in a
1D case with kernel size 3), and a recurrent operation at time

anthonybonner
Highlight



i is often based only on the current and the latest time steps
(e.g., j = i or i− 1).

The non-local operation is also different from a fully-
connected (fc) layer. Eq.(1) computes responses based on
relationships between different locations, whereas fc uses
learned weights. In other words, the relationship between xj
and xi is not a function of the input data in fc, unlike in non-
local layers. Furthermore, our formulation in Eq.(1) supports
inputs of variable sizes, and maintains the corresponding
size in the output. On the contrary, an fc layer requires a
fixed-size input/output and loses positional correspondence
(e.g., that from xi to yi at the position i).

A non-local operation is a flexible building block and can
be easily used together with convolutional/recurrent layers.
It can be added into the earlier part of deep neural networks,
unlike fc layers that are often used in the end. This allows us
to build a richer hierarchy that combines both non-local and
local information.

3.2. Instantiations
Next we describe several versions of f and g. Interest-

ingly, we will show by experiments (Table 2a) that our non-
local models are not sensitive to these choices, indicating
that the generic non-local behavior is the main reason for the
observed improvements.

For simplicity, we only consider g in the form of a linear
embedding: g(xj) = Wgxj , where Wg is a weight matrix
to be learned. This is implemented as, e.g., 1×1 convolution
in space or 1×1×1 convolution in spacetime.

Next we discuss choices for the pairwise function f .

Gaussian. Following the non-local mean [4] and bilateral
filters [47], a natural choice of f is the Gaussian function. In
this paper we consider:

f(xi,xj) = ex
T
i xj . (2)

Here xTi xj is dot-product similarity. Euclidean distance as
used in [4, 47] is also applicable, but dot product is more
implementation-friendly in modern deep learning platforms.
The normalization factor is set as C(x) =

∑
∀j f(xi,xj).

Embedded Gaussian. A simple extension of the Gaussian
function is to compute similarity in an embedding space. In
this paper we consider:

f(xi,xj) = eθ(xi)
Tφ(xj). (3)

Here θ(xi) = Wθxi and φ(xj) = Wφxj are two embed-
dings. As above, we set C(x) =

∑
∀j f(xi,xj).

We note that the self-attention module [49] recently pre-
sented for machine translation is a special case of non-local
operations in the embedded Gaussian version. This can be
seen from the fact that for a given i, 1

C(x)f(xi,xj) becomes
the softmax computation along the dimension j. So we have

θ: 1×1×1 φ: 1×1×1 g: 1×1×1

1×1×1

softmax

z

T×H×W×1024

T×H×W×512 T×H×W×512 T×H×W×512

THW×512 512×THW

THW×THW

THW×512

THW×512

T×H×W×512

T×H×W×1024

x
Figure 2. A spacetime non-local block. The feature maps are
shown as the shape of their tensors, e.g., T×H×W×1024 for
1024 channels (proper reshaping is performed when noted). “⊗”
denotes matrix multiplication, and “⊕” denotes element-wise sum.
The softmax operation is performed on each row. The blue boxes de-
note 1×1×1 convolutions. Here we show the embedded Gaussian
version, with a bottleneck of 512 channels. The vanilla Gaussian
version can be done by removing θ and φ, and the dot-product
version can be done by replacing softmax with scaling by 1/N .

y = softmax(xTWT
θ Wφx)g(x), which is the self-attention

form in [49]. As such, our work provides insight by relating
this recent self-attention model to the classic computer vision
method of non-local means [4], and extends the sequential
self-attention network in [49] to a generic space/spacetime
non-local network for image/video recognition in computer
vision.

Despite the relation to [49], we show that the attentional
behavior (due to softmax) is not essential in the applications
we study. To show this, we describe two alternative versions
of non-local operations next.

Dot product. f can be defined as a dot-product similarity:

f(xi,xj) = θ(xi)
Tφ(xj). (4)

Here we adopt the embedded version. In this case, we set the
normalization factor as C(x) = N , whereN is the number of
positions in x, rather than the sum of f , because it simplifies
gradient computation. A normalization like this is necessary
because the input can have variable size.

The main difference between the dot product and embed-
ded Gaussian versions is the presence of softmax, which
plays the role of an activation function.

Concatenation. Concatenation is used by the pairwise func-
tion in Relation Networks [40] for visual reasoning. We also
evaluate a concatenation form of f :

f(xi,xj) = ReLU(wT
f [θ(xi), φ(xj)]). (5)

Here [·, ·] denotes concatenation and wf is a weight vector
that projects the concatenated vector to a scalar. As above,
we set C(x) = N . In this case, we adopt ReLU [35] in f .

anthonybonner
Highlight

anthonybonner
Highlight

anthonybonner
Highlight



The above several variants demonstrate the flexibility
of our generic non-local operation. We believe alternative
versions are possible and may improve results.

3.3. Non-local Block

We wrap the non-local operation in Eq.(1) into a non-local
block that can be incorporated into many existing architec-
tures. We define a non-local block as:

zi =Wzyi + xi, (6)

where yi is given in Eq.(1) and “+xi” denotes a residual
connection [21]. The residual connection allows us to insert
a new non-local block into any pre-trained model, without
breaking its initial behavior (e.g., ifWz is initialized as zero).
An example non-local block is illustrated in Figure 2. The
pairwise computation in Eq.(2), (3), or (4) can be simply
done by matrix multiplication as shown in Figure 2; the
concatenation version in (5) is straightforward.

The pairwise computation of a non-local block is
lightweight when it is used in high-level, sub-sampled fea-
ture maps. For example, typical values in Figure 2 are
T = 4, H = W = 14 or 7. The pairwise computation
as done by matrix multiplication is comparable to a typical
convolutional layer in standard networks. We further adopt
the following implementations that make it more efficient.

Implementation of Non-local Blocks. We set the number
of channels represented by Wg, Wθ, and Wφ to be half of
the number of channels in x. This follows the bottleneck
design of [21] and reduces the computation of a block by
about a half. The weight matrix Wz in Eq.(6) computes a
position-wise embedding on yi, matching the number of
channels to that of x. See Figure 2.

A subsampling trick can be used to further re-
duce computation. We modify Eq.(1) as: yi =

1
C(x̂)

∑
∀j f(xi, x̂j)g(x̂j), where x̂ is a subsampled version

of x (e.g., by pooling). We perform this in the spatial do-
main, which can reduce the amount of pairwise computation
by 1/4. This trick does not alter the non-local behavior, but
only makes the computation sparser. This can be done by
adding a max pooling layer after φ and g in Figure 2.

We use these efficient modifications for all non-local
blocks studied in this paper.

4. Video Classification Models
To understand the behavior of non-local networks, we

conduct comprehensive ablation experiments on video clas-
sification tasks. First we describe our baseline network archi-
tectures for this task, and then extend them into 3D ConvNets
[48, 7] and our proposed non-local nets.

2D ConvNet baseline (C2D). To isolate the temporal ef-
fects of our non-local nets vs. 3D ConvNets, we construct

layer output size
conv1 7×7, 64, stride 2, 2, 2 16×112×112
pool1 3×3×3 max, stride 2, 2, 2 8×56×56

res2

 1×1, 64
3×3, 64
1×1, 256

×3 8×56×56

pool2 3×1×1 max, stride 2, 1, 1 4×56×56

res3

 1×1, 128
3×3, 128
1×1, 512

×4 4×28×28

res4

 1×1, 256
3×3, 256

1×1, 1024

×6 4×14×14

res5

 1×1, 512
3×3, 512

1×1, 2048

×3 4×7×7

global average pool, fc 1×1×1

Table 1. Our baseline ResNet-50 C2D model for video. The di-
mensions of 3D output maps and filter kernels are in T×H×W (2D
kernels in H×W), with the number of channels following. The
input is 32×224×224. Residual blocks are shown in brackets.

a simple 2D baseline architecture in which the temporal
dimension is trivially addressed (i.e., only by pooling).

Table 1 shows our C2D baseline under a ResNet-50 back-
bone. The input video clip has 32 frames each with 224×224
pixels. All convolutions in Table 1 are in essence 2D ker-
nels that process the input frame-by-frame (implemented as
1×k×k kernels). This model can be directly initialized from
the ResNet weights pre-trained on ImageNet. A ResNet-101
counterpart is built in the same way.

The only operation involving the temporal domain are
the pooling layers. In other words, this baseline simply
aggregates temporal information.

Inflated 3D ConvNet (I3D). As done in [13, 7], one can
turn the C2D model in Table 1 into a 3D convolutional
counterpart by “inflating” the kernels. For example, a 2D
k×k kernel can be inflated as a 3D t×k×k kernel that spans
t frames. This kernel can be initialized from 2D models (pre-
trained on ImageNet): each of the t planes in the t×k×k
kernel is initialized by the pre-trained k×k weights, rescaled
by 1/t. If a video consists of a single static frame repeated
in time, this initialization produces the same results as the
2D pre-trained model run on a static frame.

We study two cases of inflations: we either inflate the
3×3 kernel in a residual block to 3×3×3 (similar to [7]), or
the first 1×1 kernel in a residual block to 3×1×1 (similar to
[13]). We denote these as I3D3×3×3 and I3D3×1×1. As 3D
convolutions are computationally intensive, we only inflate
one kernel for every 2 residual blocks; inflating more layers
shows diminishing return. We inflate conv1 to 5×7×7.

The authors of [7] have shown that I3D models are more
accurate than their CNN+LSTM counterparts.

Non-local network. We insert non-local blocks into C2D or
I3D to turn them into non-local nets. We investigate adding
1, 5, or 10 non-local blocks; the implementation details are
described in the next section in context.



Figure 3. Examples of the behavior of a non-local block in res3 computed by a 5-block non-local model trained on Kinetics. These examples
are from held-out validation videos. The starting point of arrows represents one xi, and the ending points represent xj . The 20 highest
weighted arrows for each xi are visualized. The 4 frames are from a 32-frame input, shown with a stride of 8 frames. These visualizations
show how the model finds related clues to support its prediction.

4.1. Implementation Details

Training. Our models are pre-trained on ImageNet [39].
Unless specified, we fine-tune our models using 32-frame
input clips. These clips are formed by randomly cropping out
64 consecutive frames from the original full-length video and
then dropping every other frame. The spatial size is 224×224
pixels, randomly cropped from a scaled video whose shorter
side is randomly sampled in [256, 320] pixels, following [46].
We train on an 8-GPU machine and each GPU has 8 clips in a
mini-batch (so in total with a mini-batch size of 64 clips). We
train our models for 400k iterations in total, starting with a
learning rate of 0.01 and reducing it by a factor of 10 at every
150k iterations (see also Figure 4). We use a momentum
of 0.9 and a weight decay of 0.0001. We adopt dropout
[22] after the global pooling layer, with a dropout ratio of
0.5. We fine-tune our models with BatchNorm (BN) [25]
enabled when it is applied. This is in contrast to common
practice [21] of fine-tuning ResNets, where BN was frozen.
We have found that enabling BN in our application reduces
overfitting.

We adopt the method in [20] to initialize the weight layers
introduced in the non-local blocks. We add a BN layer right
after the last 1×1×1 layer that representsWz; we do not add

BN to other layers in a non-local block. The scale parameter
of this BN layer is initialized as zero, following [17]. This
ensures that the initial state of the entire non-local block is an
identity mapping, so it can be inserted into any pre-trained
networks while maintaining its initial behavior.

Inference. Following [46] we perform spatially fully-
convolutional inference on videos whose shorter side is
rescaled to 256. For the temporal domain, in our practice we
sample 10 clips evenly from a full-length video and compute
the softmax scores on them individually. The final prediction
is the averaged softmax scores of all clips.

5. Experiments on Video Classification
We perform comprehensive studies on the challenging

Kinetics dataset [27]. We also report results on the Charades
dataset [44] to show the generality of our models.

5.1. Experiments on Kinetics

Kinetics [27] contains ∼246k training videos and 20k
validation videos. It is a classification task involving 400
human action categories. We train all models on the training
set and test on the validation set.



model, R50 top-1 top-5
C2D baseline 71.8 89.7
Gaussian 72.5 90.2
Gaussian, embed 72.7 90.5
dot-product 72.9 90.3
concatenation 72.8 90.5

(a) Instantiations: 1 non-local block
of different types is added into the C2D
baseline. All entries are with ResNet-
50.

model, R50 top-1 top-5
baseline 71.8 89.7

res2 72.7 90.3
res3 72.9 90.4
res4 72.7 90.5
res5 72.3 90.1

(b) Stages: 1 non-local block is
added into different stages. All
entries are with ResNet-50.

model top-1 top-5

R50

baseline 71.8 89.7
1-block 72.7 90.5
5-block 73.8 91.0

10-block 74.3 91.2

R101

baseline 73.1 91.0
1-block 74.3 91.3
5-block 75.1 91.7

10-block 75.1 91.6

(c) Deeper non-local models: we
compare 1, 5, and 10 non-local blocks
added to the C2D baseline. We show
ResNet-50 (top) and ResNet-101 (bot-
tom) results.

model top-1 top-5

R50

baseline 71.8 89.7
space-only 72.9 90.8
time-only 73.1 90.5
spacetime 73.8 91.0

R101

baseline 73.1 91.0
space-only 74.4 91.3
time-only 74.4 90.5
spacetime 75.1 91.7

(d) Space vs. time vs. spacetime: we
compare non-local operations applied
along space, time, and spacetime dimen-
sions respectively. 5 non-local blocks
are used.

model, R101 params FLOPs top-1 top-5
C2D baseline 1× 1× 73.1 91.0
I3D3×3×3 1.5× 1.8× 74.1 91.2
I3D3×1×1 1.2× 1.5× 74.4 91.1
NL C2D, 5-block 1.2× 1.2× 75.1 91.7

(e) Non-local vs. 3D Conv: A 5-block non-local C2D
vs. inflated 3D ConvNet (I3D) [7]. All entries are with
ResNet-101. The numbers of parameters and FLOPs are
relative to the C2D baseline (43.2M and 34.2B).

model top-1 top-5

R50
C2D baseline 71.8 89.7
I3D 73.3 90.7
NL I3D 74.9 91.6

R101
C2D baseline 73.1 91.0
I3D 74.4 91.1
NL I3D 76.0 92.1

(f) Non-local 3D ConvNet: 5 non-local
blocks are added on top of our best I3D mod-
els. These results show that non-local opera-
tions are complementary to 3D convolutions.

model top-1 top-5

R50
C2D baseline 73.8 91.2
I3D 74.9 91.7
NL I3D 76.5 92.6

R101
C2D baseline 75.3 91.8
I3D 76.4 92.7
NL I3D 77.7 93.3

(g) Longer clips: we fine-tune and test the
models in Table 2f on the 128-frame clips.
The gains of our non-local operations are con-
sistent.

Table 2. Ablations on Kinetics action classification. We show top-1 and top-5 classification accuracy (%).

0 50 100 150 200 250 300 350 400
iterations (K)

25

30

35

40

45

50

55

60

er
ro

r (
%

)

C2D baseline (train)
C2D baseline (val)
NL C2D, 5-block (train)
NL C2D, 5-block (val)

Figure 4. Curves of the training procedure on Kinetics for the
ResNet-50 C2D baseline (blue) vs. non-local C2D with 5 blocks
(red). We show the top-1 training error (dash) and validation error
(solid). The validation error is computed in the same way as the
training error (so it is 1-clip testing with the same random jittering
at training time); the final results are in Table 2c (R50, 5-block).

Figure 4 shows the curves of the training procedure of a
ResNet-50 C2D baseline vs. a non-local C2D with 5 blocks
(more details in the following). Our non-local C2D model
is consistently better than the C2D baseline throughout the
training procedure, in both training and validation error.

Figure 1 and Figure 3 visualize several examples of the
behavior of a non-local block computed by our models. Our
network can learn to find meaningful relational clues regard-
less of the distance in space and time.

Table 2 shows the ablation results, analyzed as follows:

Instantiations. Table 2a compares different types of a sin-
gle non-local block added to the C2D baseline (right before
the last residual block of res4). Even adding one non-local
block can lead to ∼1% improvement over the baseline.

Interestingly, the embedded Gaussian, dot-product, and
concatenation versions perform similarly, up to some random
variations (72.7 to 72.9). As discussed in Sec. 3.2, the non-
local operations with Gaussian kernels become similar to the
self-attention module [49]. However, our experiments show
that the attentional (softmax) behavior of this module is not
the key to the improvement in our applications; instead, it is
more likely that the non-local behavior is important, and it
is insensitive to the instantiations.

In the rest of this paper, we use the embedded Gaussian
version by default. This version is easier to visualize as its
softmax scores are in the range of [0, 1].

Which stage to add non-local blocks? Table 2b compares
a single non-local block added to different stages of ResNet.
The block is added to right before the last residual block of a
stage. The improvement of a non-local block on res2, res3, or
res4 is similar, and on res5 is slightly smaller. One possible
explanation is that res5 has a small spatial size (7×7) and it
is insufficient to provide precise spatial information. More
evidence of a non-local block exploiting spatial information
will be investigated in Table 2d.



model backbone modality top-1 val top-5 val top-1 test top-5 test avg test†

I3D in [7] Inception RGB 72.1 90.3 71.1 89.3 80.2
2-Stream I3D in [7] Inception RGB + flow 75.7 92.0 74.2 91.3 82.8
RGB baseline in [3] Inception-ResNet-v2 RGB 73.0 90.9 - - -
3-stream late fusion [3] Inception-ResNet-v2 RGB + flow + audio 74.9 91.6 - - -
3-stream LSTM [3] Inception-ResNet-v2 RGB + flow + audio 77.1 93.2 - - -
3-stream SATT [3] Inception-ResNet-v2 RGB + flow + audio 77.7 93.2 - - -

NL I3D [ours]
ResNet-50 RGB 76.5 92.6 - - -
ResNet-101 RGB 77.7 93.3 - - 83.8

Table 3. Comparisons with state-of-the-art results in Kinetics, reported on the val and test sets. We include the Kinetics 2017 competition
winner’s results [3], but their best results exploited audio signals (marked in gray) so were not vision-only solutions. †: “avg” is the average
of top-1 and top-5 accuracy; individual top-1 or top-5 numbers are not available from the test server at the time of submitting this manuscript.

Going deeper with non-local blocks. Table 2c shows the
results of more non-local blocks. We add 1 block (to res4), 5
blocks (3 to res4 and 2 to res3, to every other residual block),
and 10 blocks (to every residual block in res3 and res4) in
ResNet-50; in ResNet-101 we add them to the corresponding
residual blocks. Table 2c shows that more non-local blocks
in general lead to better results. We argue that multiple
non-local blocks can perform long-range multi-hop commu-
nication. Messages can be delivered back and forth between
distant positions in spacetime, which is hard to do via local
models.

It is noteworthy that the improvement of non-local blocks
is not just because they add depth to the baseline model.
To see this, we note that in Table 2c the non-local 5-block
ResNet-50 model has 73.8 accuracy, higher than the deeper
ResNet-101 baseline’s 73.1. However, the 5-block ResNet-
50 has only ∼70% parameters and ∼80% FLOPs of the
ResNet-101 baseline, and is also shallower. This compari-
son shows that the improvement due to non-local blocks is
complementary to going deeper in standard ways.

We have also tried to add standard residual blocks, instead
of non-local blocks, to the baseline models. The accuracy
is not increased. This again shows that the improvement of
non-local blocks is not just because they add depth.

Non-local in spacetime. Our method can naturally handle
spacetime signals. This is a nice property: related objects
in a video can present at distant space and long-term time
interval, and their dependency can be captured by our model.

In Table 2d we study the effect of non-local blocks applied
along space, time, or spacetime. For example, in the space-
only version, the non-local dependency only happens within
the same frame: i.e., in Eq.(1) it only sums over the index j
in the same frame of the index i. The time-only version can
be set up similarly. Table 2d shows that both the space-only
and time-only versions improve over the C2D baseline, but
are inferior to the spacetime version.

Non-local net vs. 3D ConvNet. Table 2e compares our non-
local C2D version with the inflated 3D ConvNets. Non-local
operations and 3D convolutions can be seen as two ways of
extending C2D to the temporal dimensions.

Table 2e also compares the number of parameters and
FLOPs, relative to the baseline. Our non-local C2D model
is more accurate than the I3D counterpart (e.g., 75.1 vs.
74.4), while having a smaller number of FLOPs (1.2× vs.
1.5×). This comparison shows that our method can be more
effective than 3D convolutions when used alone.

Non-local 3D ConvNet. Despite the above comparison,
non-local operations and 3D convolutions can model dif-
ferent aspects of the problem: 3D convolutions can capture
local dependency. Table 2f shows the results of inserting 5
non-local blocks into the I3D3×1×1 models. These non-local
I3D (NL I3D) models improve over their I3D counterparts
(+1.6 point accuracy), showing that non-local operations and
3D convolutions are complementary.

Longer sequences. Finally we investigate the generality
of our models on longer input videos. We use input clips
consisting of 128 consecutive frames without subsampling.
The sequences throughout all layers in the networks are thus
4× longer compared to the 32-frame counterparts. To fit
this model into memory, we reduce the mini-batch size to 2
clips per GPU. As a result of using small mini-batches, we
freeze all BN layers in this case. We initialize this model
from the corresponding models trained with 32-frame inputs.
We fine-tune on 128-frame inputs using the same number of
iterations as the 32-frame case (though the mini-batch size is
now smaller), starting with a learning rate of 0.0025. Other
implementation details are the same as before.

Table 2g shows the results of 128-frame clips. Comparing
with the 32-frame counterparts in Table 2f, all models have
better results on longer inputs. We also find that our NL I3D
can maintain its gain over the I3D counterparts, showing that
our models work well on longer sequences.

Comparisons with state-of-the-art results. Table 3 shows
the results from the I3D authors [7] and from the Kinetics
2017 competition winner [3]. We note that these are compar-
isons of systems which can differ in many aspects. Never-
theless, our method surpasses all the existing RGB or RGB +
flow based methods by a good margin. Without using optical
flow and without any bells and whistles, our method is on par
with the heavily engineered results of the 2017 competition
winner.



model modality train/val trainval/test
2-Stream [43] RGB + flow 18.6 -
2-Stream +LSTM [43] RGB + flow 17.8 -
Asyn-TF [43] RGB + flow 22.4 -
I3D [7] RGB 32.9 34.4
I3D [ours] RGB 35.5 37.2
NL I3D [ours] RGB 37.5 39.5

Table 4. Classification mAP (%) in the Charades dataset [44], on
the train/val split and the trainval/test split. Our results are based
on ResNet-101. Our NL I3D uses 5 non-local blocks.

5.2. Experiments on Charades
Charades [44] is a video dataset with ∼8k training, ∼1.8k

validation, and ∼2k testing videos. It is a multi-label classifi-
cation task with 157 action categories. We use a per-category
sigmoid output to handle the multi-label property.

We initialize our models pre-trained on Kinetics (128-
frame). The mini-batch size is set to 1 clip per GPU. We train
our models for 200k iterations, starting from a learning rate
of 0.00125 and reducing it by 10 every 75k iterations. We use
a jittering strategy similar to that in Kinetics to determine the
location of the 224×224 cropping window, but we rescale
the video such that this cropping window outputs 288×288
pixels, on which we fine-tune our network. We test on a
single scale of 320 pixels.

Table 4 shows the comparisons with the previous results
on Charades. The result of [7] is the 2017 competition
winner in Charades, which was also fine-tuned from models
pre-trained in Kinetics. Our I3D baseline is higher than
previous results. As a controlled comparison, our non-local
net improves over our I3D baseline by 2.3% on the test set.

6. Extension: Experiments on COCO
We also investigate our models on static image recog-

nition. We experiment on the Mask R-CNN baseline [19]
for COCO [33] object detection/segmentation and human
pose estimation (keypoint detection). The models are trained
on COCO train2017 (i.e., trainval35k in 2014) and
tested on val2017 (i.e., minival in 2014).

Object detection and instance segmentation. We modify
the Mask R-CNN backbone by adding one non-local block
(right before the last residual block of res4). All models
are fine-tuned from ImageNet pre-training. We evaluate on
a standard baseline of ResNet-50/101 and a high baseline
of ResNeXt-152 (X152) [53]. Unlike the original paper
[19] that adopted stage-wise training regarding RPN, we use
an improved implementation with end-to-end joint training
similar to [37], which leads to higher baselines than [19].

Table 5 shows the box and mask AP on COCO. We see
that a single non-local block improves all R50/101 and X152
baselines, on all metrics involving detection and segmenta-
tion. APbox is increased by ∼1 point in all cases (e.g., +1.3
point in R101). Our non-local block is complementary to
increasing the model capacity, even when the model is up-

method APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

R50
baseline 38.0 59.6 41.0 34.6 56.4 36.5
+1 NL 39.0 61.1 41.9 35.5 58.0 37.4

R101
baseline 39.5 61.4 42.9 36.0 58.1 38.3
+1 NL 40.8 63.1 44.5 37.1 59.9 39.2

X152
baseline 44.1 66.4 48.4 39.7 63.2 42.2
+1 NL 45.0 67.8 48.9 40.3 64.4 42.8

Table 5. Adding 1 non-local block to Mask R-CNN for COCO
object detection and instance segmentation. The backbone is
ResNet-50/101 or ResNeXt-152 [53], both with FPN [32].

model APkp APkp
50 APkp

75

R101 baseline 65.1 86.8 70.4
NL, +4 in head 66.0 87.1 71.7
NL, +4 in head, +1 in backbone 66.5 87.3 72.8

Table 6. Adding non-local blocks to Mask R-CNN for COCO
keypoint detection. The backbone is ResNet-101 with FPN [32].

graded from R50/101 to X152. This comparison suggests
that non-local dependency has not been sufficiently captured
by existing models despite increased depth/capacity.

In addition, the above gain is at a very small cost. The
single non-local block only adds <5% computation to the
baseline model. We also have tried to use more non-local
blocks to the backbone, but found diminishing return.

Keypoint detection. Next we evaluate non-local blocks in
Mask R-CNN for keypoint detection. In [19], Mask R-CNN
used a stack of 8 convolutional layers for predicting the
keypoints as 1-hot masks. These layers are local operations
and may overlook the dependency among keypoints across
long distance. Motivated by this, we insert 4 non-local blocks
into the keypoint head (after every 2 convolutional layers).

Table 6 shows the results on COCO. On a strong baseline
of R101, adding 4 non-local blocks to the keypoint head
leads to a ∼1 point increase of keypoint AP. If we add one
extra non-local block to the backbone as done for object
detection, we observe an in total 1.4 points increase of key-
point AP over the baseline. In particular, we see that the
stricter criterion of AP75 is boosted by 2.4 points, suggesting
a stronger localization performance.

7. Conclusion
We presented a new class of neural networks which cap-

ture long-range dependencies via non-local operations. Our
non-local blocks can be combined with any existing archi-
tectures. We show the significance of non-local modeling
for the tasks of video classification, object detection and
segmentation, and pose estimation. On all tasks, a simple
addition of non-local blocks provides solid improvement
over baselines. We hope non-local layers will become an
important component of future network architectures.
Acknowledgement: This work was partially supported by ONR MURI
N000141612007, Sloan, Okawa Fellowship to AG and NVIDIA Fellowship
to XW. We would also like to thank Haoqi Fan, Du Tran, Heng Wang,
Georgia Gkioxari and Piotr Dollar for many helpful discussions.



References
[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman.

Patchmatch: A randomized correspondence algorithm for
structural image editing. In Proceedings of SIGGRAPH, ACM
Transactions on Graphics, 2009. 2

[2] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. In-
teraction networks for learning about objects, relations and
physics. In Neural Information Processing Systems (NIPS),
2016. 2

[3] Y. Bian, C. Gan, X. Liu, F. Li, X. Long, Y. Li, H. Qi, J. Zhou,
S. Wen, and Y. Lin. Revisiting the effectiveness of off-the-
shelf temporal modeling approaches for large-scale video
classification. arXiv:1708.03805, 2017. 7

[4] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm
for image denoising. In Computer Vision and Pattern Recog-
nition (CVPR), 2005. 1, 2, 3

[5] H. C. Burger, C. J. Schuler, and S. Harmeling. Image de-
noising: Can plain neural networks compete with BM3D? In
Computer Vision and Pattern Recognition (CVPR), 2012. 2

[6] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denois-
ing with multi-layer perceptrons, part 2: training trade-offs
and analysis of their mechanisms. arXiv:1211.1552, 2012. 2

[7] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In Computer Vision and
Pattern Recognition (CVPR), 2017. 1, 2, 4, 6, 7, 8

[8] S. Chandra, N. Usunier, and I. Kokkinos. Dense and low-rank
Gaussian CRFs using deep embeddings. In International
Conference on Computer Vision (ICCV), 2017. 2

[9] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Semantic image segmentation with deep convolutional
nets and fully connected CRFs. arXiv:1412.7062, 2014. 2

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-
age denoising by sparse 3-d transform-domain collaborative
filtering. Transactions on Image Processing (TIP), 2007. 2

[11] J. Donahue, L. Anne Hendricks, S. Guadarrama,
M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell.
Long-term recurrent convolutional networks for visual
recognition and description. In Computer Vision and Pattern
Recognition (CVPR), 2015. 2

[12] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In International Conference on Com-
puter Vision (ICCV), 1999. 2

[13] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal
residual networks for video action recognition. In Neural
Information Processing Systems (NIPS), 2016. 2, 4

[14] K. Fukushima and S. Miyake. Neocognitron: A self-
organizing neural network model for a mechanism of visual
pattern recognition. In Competition and cooperation in neural
nets. Springer, 1982. 1

[15] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N.
Dauphin. Convolutional sequence to sequence learning. In
International Conference on Machine Learning (ICML), 2017.
2

[16] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a
single image. In Computer Vision and Pattern Recognition
(CVPR), 2009. 2

[17] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv:1706.02677,
2017. 5

[18] A. Harley, K. Derpanis, and I. Kokkinos. Segmentation-
aware convolutional networks using local attention masks. In
International Conference on Computer Vision (ICCV), 2017.
2

[19] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN.
In International Conference on Computer Vision (ICCV),
2017. 2, 8

[20] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In International Conference on Computer Vi-
sion (ICCV), 2015. 5

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Computer Vision and Pattern
Recognition (CVPR), 2016. 1, 4, 5

[22] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. arXiv:1207.0580, 2012.
5

[23] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 1997. 1

[24] Y. Hoshen. Multi-agent predictive modeling with attentional
commnets. In Neural Information Processing Systems (NIPS),
2017. 2

[25] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning (ICML),
2015. 5

[26] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural
networks for human action recognition. In International
Conference on Machine Learning (ICML), 2010. 2

[27] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-
jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al.
The kinetics human action video dataset. arXiv:1705.06950,
2017. 1, 5

[28] P. Krähenbühl and V. Koltun. Efficient inference in fully
connected crfs with gaussian edge potentials. In Neural Infor-
mation Processing Systems (NIPS), 2011. 2

[29] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional
random fields: Probabilistic models for segmenting and label-
ing sequence data. In International Conference on Machine
Learning (ICML), 2001. 2

[30] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural computa-
tion, 1989. 1

[31] S. Lefkimmiatis. Non-local color image denoising with
convolutional neural networks. In Computer Vision and Pat-
tern Recognition (CVPR), 2017. 2

[32] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
In Computer Vision and Pattern Recognition (CVPR), 2017.
8

anthonybonner
Highlight



[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-
mon objects in context. In European Conference on Computer
Vision (ECCV). 2014. 2, 8

[34] S. Liu, S. De Mello, J. Gu, G. Zhong, M.-H. Yang, and
J. Kautz. Learning affinity via spatial propagation networks.
In Neural Information Processing Systems (NIPS), 2017. 2

[35] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In International Conference
on Machine Learning (ICML), 2010. 3

[36] A. Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv:1609.03499, 2016. 2

[37] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:
Towards real-time object detection with region proposal net-
works. Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2017. 8

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Nature, 1986. 1

[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV),
2015. 5

[40] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pas-
canu, P. Battaglia, and T. Lillicrap. A simple neural network
module for relational reasoning. In Neural Information Pro-
cessing Systems (NIPS), 2017. 2, 3

[41] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 2009. 2

[42] A. G. Schwing and R. Urtasun. Fully connected deep struc-
tured networks. arXiv preprint arXiv:1503.02351, 2015. 2

[43] G. A. Sigurdsson, S. Divvala, A. Farhadi, and A. Gupta. Asyn-
chronous temporal fields for action recognition. In Computer
Vision and Pattern Recognition (CVPR), 2017. 8

[44] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,
and A. Gupta. Hollywood in homes: Crowdsourcing data
collection for activity understanding. In European Conference
on Computer Vision (ECCV), 2016. 1, 5, 8

[45] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Neural Informa-
tion Processing Systems (NIPS), 2014. 2

[46] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In International
Conference on Learning Representations (ICLR), 2015. 5

[47] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In International Conference on Computer Vi-
sion (ICCV), 1998. 3

[48] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. In International Conference on Computer Vision
(ICCV), 2015. 1, 2, 4

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need. In Neural Information Processing Systems (NIPS),
2017. 2, 3, 6

[50] H. Wang and C. Schmid. Action recognition with improved
trajectories. In International Conference on Computer Vision
(ICCV), 2013. 2

[51] L. Wang, Y. Qiao, and X. Tang. Action recognition with
trajectory-pooled deep-convolutional descriptors. In Com-
puter Vision and Pattern Recognition (CVPR), 2015. 2

[52] N. Watters, A. Tacchetti, T. Weber, R. Pascanu, P. Battaglia,
and D. Zoran. Visual interaction networks. In Neural Infor-
mation Processing Systems (NIPS), 2017. 2

[53] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggre-
gated residual transformations for deep neural networks. In
Computer Vision and Pattern Recognition (CVPR), 2017. 8

[54] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stol-
cke, D. Yu, and G. Zweig. The Microsoft 2016 Conversational
Speech Recognition System. In International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2017. 2

[55] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-
pets: Deep networks for video classification. In Computer
Vision and Pattern Recognition (CVPR), 2015. 2

[56] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional ran-
dom fields as recurrent neural networks. In International
Conference on Computer Vision (ICCV), 2015. 2




