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Abstract

In recent years, substantial progress has been achieved
in learning-based reconstruction of 3D objects. At the same
time, generative models were proposed that can generate
highly realistic images. However, despite this success in
these closely related tasks, texture reconstruction of 3D ob-
jects has received little attention from the research commu-
nity and state-of-the-art methods are either limited to com-
parably low resolution or constrained experimental setups.
A major reason for these limitations is that common repre-
sentations of texture are inefficient or hard to interface for
modern deep learning techniques. In this paper, we pro-
pose Texture Fields, a novel texture representation which is
based on regressing a continuous 3D function parameter-
ized with a neural network. Our approach circumvents lim-
iting factors like shape discretization and parameterization,
as the proposed texture representation is independent of the
shape representation of the 3D object. We show that Texture
Fields are able to represent high frequency texture and nat-
urally blend with modern deep learning techniques. Exper-
imentally, we find that Texture Fields compare favorably to
state-of-the-art methods for conditional texture reconstruc-
tion of 3D objects and enable learning of probabilistic gen-
erative models for texturing unseen 3D models. We believe
that Texture Fields will become an important building block
for the next generation of generative 3D models.

1. Introduction
3D reconstruction is one of the grand goals of computer

vision. Recently, the vision community has witnessed im-
pressive progress in reconstruction tasks like single image
3D reconstruction [6, 7, 11, 21, 38] and generating 3D ob-
jects [4, 28, 40] using learning-based techniques which re-
solve ambiguities by incorporating prior knowledge. How-
ever, previous work on learning-based 3D reconstruction
has mainly focused on the problem of reconstructing geom-
etry. In contrast, texture reconstruction of 3D objects has
received less attention from the research community.
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Figure 1: Texture Fields take a 3D shape and (optionally) a
single 2D image of an object as input and learn a continuous
function tθ which maps any 3D point p to a color value c,
enabling the prediction of accurately textured 3D models.

Previous approaches for texture reconstruction from sin-
gle images differ in how texture information is represented.
Several recent works [34, 37] have proposed volumetric
voxel representations for colored 3D reconstruction. Unfor-
tunately, however, due to the computational cost of voxel
representations, which grows cubically with the resolution,
the voxelizations are limited to rather low resolutions (usu-
ally 323 or 643) and hence cannot represent high frequency
details. An alternative representation of texture consists of
a 2D texture atlas and a parameterized mesh using a UV-
mapping that maps a point on the shape manifold to a pixel
in the texture atlas. However, current approaches based on
mesh representations usually assume known topology and a
predefined template mesh which limits these approaches to
specific object categories such as birds [15] or faces [31].
Predicting texture in the general case for arbitrary shapes
without template mesh remains an unsolved problem.

Contributions: The main limiting factor of the afore-
mentioned methods is their texture representation which
either does not allow for high resolution reconstruction
or strongly relies on task-specific shape parameterizations,
limiting generality of these methods. An ideal texture rep-
resentation, in contrast, should be independent of the shape
representations (voxels, point cloud, mesh, etc.) and able to
represent high frequency detail. Towards this goal, we pro-
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pose Texture Fields as a novel representation of texture. Our
key idea is to learn a continuous function for representing
texture information in 3D space, see Fig. 1. By parameteriz-
ing this function through a deep neural network we are able
to integrate this representation into a deep learning pipeline
for 3D texture reconstruction that can be trained end-to-end.

Our experiments on various 3D object categories demon-
strate that Texture Fields are able to predict high frequency
texture information from a single image. We combine our
approach with a state-of-the-art 3D reconstruction method
[21], yielding a method which jointly reconstructs both the
3D shape and the texture of an object. Besides conditional
experiments, we also extend our novel texture representa-
tion to the generative setting and show preliminary results
for texture synthesis given a 3D shape model and a latent
texture code. We conduct experiments on texture transfer
between different objects as well as interpolations in the
latent texture space which demonstrate that our generative
model learns a useful representation of texture.

2. Related Work
We now briefly discuss the most related works on single

image 3D reconstruction, generative image modeling using
3D knowledge and continuous representation learning.

2.1. Single Image Reconstruction

In recent years, 3D reconstruction of shapes from single
images has made great progress [6, 7, 11, 21, 38].

Voxels: Tulsiani et al. [37] proposed a voxel-based tex-
ture representations for learning colored 3D reconstruc-
tion based on ray consistency and multi-view supervision.
More recently, Sun et al. [34] combined 2D-to-3D appear-
ance flow estimation and voxel color regression for learning
to reconstruct colored voxelizations in a supervised fash-
ion. Unfortunately, however, voxel-based representations
are severely limited in resolution due to computational and
memory constraints. In contrast, our continuous approach
does not require discretization and thus results in more de-
tails compared to voxel-based representations as we show
in our experimental evaluation in Section 4.

Point Clouds: In recent years, novel view synthesis
[27, 41] has been used for reconstructing colored point
clouds from single images [23, 35]. By combining novel
view synthesis and depth estimation, the method proposed
in [35] reprojects the predicted image into a colored point
cloud. In [23], point clouds are reconstructed from a set of
novel views using multi-view stereo algorithms. Unfortu-
nately, point-cloud based representations are sparse. While
dense mesh representation can be extracted from point
clouds, the reconstructed shapes typically do not match the
quality of state-of-the-art 3D reconstruction approaches and
inferring the missing texture information requires additional

post-processing steps. In contrary, our approach allows for
inferring appearance for any location in 3D space and can
be used in combination with arbitrary shape representations.

Meshes: Mesh-based approaches rely on category-specific
template models and rigid texture parameterizations [15,
31]. In contrast, our reconstruction approach can represent
texture for arbitrary meshes without requiring a UV texture
map of a category-specific template model. Note that de-
termining a proper UV-mapping for arbitrary mesh models
is a non-trivial problem which is typically solved with var-
ious heuristics for atlas generation. The advantage of our
approach is that we circumvent mesh parameterization by
disentangling the texture from the shape representation.

2.2. Generative Models

Recent work has shown that image generation methods
[3,9,16,17,20,26] can be improved by exploiting 3D knowl-
edge about the generated shapes [1, 2, 42]. Alhaija et al. [2]
propose a model which learns to translate intrinsic prop-
erties (depth, normals, material) into RGB images. Zhu
et al. [42] learn to predict 3D geometry as well as texture
information in 2D images by disentangling shape, texture
and pose in an unsupervised setting. In contrast to those
image-based approaches, we directly predict the texture for
the entire object in 3D.

2.3. Continuous Representations

Recently, parameterized continuous functions gained
popularity for 3D shape reconstruction. Several works
[6,21,24] proposed to formulate 3D reconstruction as learn-
ing a continuous occupancy function or a signed-distance
field in 3D space, parameterized via a neural network. Fur-
thermore, in [8], a continuous function for color values was
used for generating 2D images. In this work, we extend
the concept of learning a representation in function space to
reconstruct and generate texture information of 3D objects.

3. Method

This section describes the proposed Texture Field repre-
sentation and demonstrates how it can be applied to condi-
tional and unconditional texture synthesis tasks.

3.1. Texture Fields

Recent approaches to 3D reconstruction [6,21,24] repre-
sent 3D shapes as continuous functions of occupancy prob-
ability or surface distance. In contrast to point-, voxel- or
mesh-based representations, these approaches do not rely
on a fixed discretization and thus form an ideal basis for
representing appearance information. We explore this idea
by embedding surface texture as a continuous function in
3D space. In combination with state-of-the-art 3D recon-
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Figure 2: Model Overview. Colored arrows show alternative pathways representing the Conditional, GAN and VAE model.
The blue and red boxes denote trainable components of our model which are parameterized through neural networks, respec-
tively. The 3D shape of the object is encoded into a fixed-length vector representation s. Additionally, we render a depth map
D from a randomly chosen viewpoint and obtain the corresponding 3D points pi by unprojecting all N image pixels ui into
3D. The reconstruction loss minimizes the difference between the pixel colors predicted by the Texture Field ĉi = tθ(pi, s, z)
and the ground truth pixel colors ci. For training a Conditional model, the latent variable z encodes information about the
input image. In the unconditional case (i.e., for the GAN and VAE), z is sampled from a Gaussian distribution.

struction techniques this allows us to reconstruct a textured
3D model from a single 2D image.

Let t(·) denote a function which maps a 3D point p ∈ R3

to a color value c ∈ R3 hence representing texture informa-
tion by means of a 3D vector field:

t : R3 → R3 (1)

By parameterizing the function t as a neural network tθ with
learnable parameters θ, we reduce the problem to a simple
regression task. However, the problem of texture generation
remains ill-posed without any further constraints. Thus, in
order to inform tθ about the input shape of the object, we
condition tθ on a shape embedding s ∈ S . This helps
the Texture Field to guide its predictions towards the ob-
ject surface and allows for exploiting contextual geometric
information such as surface discontinuities which are often
aligned with image edges. As input shape, we explore 3D
CAD models as well as image-based 3D reconstructions us-
ing neural networks [21] in this paper.

Unfortunately, even given the input 3D shape, there still
exists a variety of plausible texture explanations. Consider
cars, for instance, where the 3D geometry alone does nei-
ther determine the color, nor the exact shape of the windows
or headlights. However, we may further constrain the task
by providing information about the object appearance.

More specifically, we condition tθ on an additional 2D
image taken from an arbitrary viewpoint. Note that an im-
age provides only partial appearance information as it only

depicts the object from a single perspective. Furthermore,
we encode the image into a viewpoint-invariant global fea-
ture representation z ∈ Z . Thus, our approach does not
assume the camera extrinsics wrt. the object to be known
and therefore is able to texture untextured 3D shapes using
images “in the wild”. Importantly, the input image need not
depict an object of the exact same shape as the 3D model.
This would be a strong restriction in practice as often only
an approximate shape can be retrieved from a single image.

In summary, we define a Texture Field as a mapping from
3D point p, shape embedding s and condition z to color c:

tθ : R3 × S × Z → R3 (2)

In the following, we will consider both the conditional case
as well as the unconditional case. For the unconditional
case, we exploit probabilistic generative networks [9, 19],
capturing ambiguity in a random latent code z.

Model: An overview over our Texture Field model is
shown in Fig. 2. Colored arrows indicate alternative path-
ways representing the Conditional, GAN and VAE model.
Blue and red boxes denote the trainable components of our
model which are parameterized by neural networks whose
parameters are trained jointly. We now provide details on
each of the components of our model.

Shape Encoder: To inform the Texture Field tθ about
the 3D shape of the object, we uniformly sample 3D points
from the input shape (typically provided in form of a train-
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gular mesh) and pass the resulting point cloud to a Point-
Net encoder [25], adopting the network architecture of [21].
This results in a fixed-dimensional shape embedding s.

Image Encoder: For the conditional case (red arrows
in Fig. 2), we additionally extract appearance information
from an input image. More specifically, we encode the in-
put image into a fixed-dimensional latent code z using a
standard pre-trained residual network [12] with 18 layers.

Texture Field: Given the input shape s and the condi-
tion z, our proposed Texture Field model is able to predict
a color value ci for any 3D point pi. Thus, it would be
possible to directly color every point on the 3D mesh. Un-
fortunately, mesh-based appearance representations require
additional UV-mappings for representing texture. We there-
fore train our texture model in 2D image space which pro-
vides a regular and hence efficient representation1.

Towards this goal, we render depth maps D and corre-
sponding color images X from arbitrary viewpoints using
OpenGL. The color at pixel ui and depth di is predicted as

ĉi = tθ
(
diRK−1ui + t, s, z

)
(3)

where i denotes the index for pixels with finite depth values
i ∈ {1, . . . , N} and N refers to the number of foreground
pixels in the image (i.e., pixels where the object is visible).
Here, the camera intrinsics and extrinsics are denoted by
K ∈ R3×3 and (R ∈ R3×3, t ∈ R3), respectively, and pixel
ui is represented in homogeneous coordinates. For training
our model, we compare the predicted color ĉi to the color
of the corresponding pixel ci in the rendered image X.

3.2. Training

This sections describes how we train our conditional and
unconditional models. See Fig. 2 for a visual illustration.

Conditional Setting: In the conditional case, we input an
embedding z of the input image to our network2. We train
tθ(p, s, z) in a supervised setting by minimizing the `1-loss
between the predicted image X̂ and the rendered image X:

Lcond =
1

B

B∑
b=1

Nb∑
i=1

‖tθ(pbi, sb, zb)− cbi‖1 (4)

Here, B represents the mini-batch size. Each element of the
mini batch represents an image with Nb foreground pixels
(i.e., pixels where the object is visible). Note that the shape
encoding sb and the input encoding zb implicitly depend on
the parameters of the shape and image encoder networks,

1Note that this does not restrict our model in any way. At test time, our
model can be evaluated for arbitrary 3D points.

2It is important to note that the input image and the images X used for
supervising the model during training need not be the same as we learn a
viewpoint-invariant representation z.

respectively. We train the parameters of all three networks
(shape encoder, image encoder, Texture Field) jointly.

Unconditional Generative Model: In the unconditional
setting we are only given the 3D shape as input but no
additional information about the appearance of the object.
As mentioned above, this is a highly ill-posed task with
many valid explanations. We therefore utilize probabilis-
tic generative models which capture the ambiguity in the
output using a latent code z sampled from a Gaussian dis-
tribution (see green and blue models in Fig. 2). In partic-
ular, we adapt two recent deep latent variable models to
our setting: a generative adversarial networks (GAN) [9]
and a variational auto-encoder (VAE) [19]. Both models
have been applied to a variety of image-based tasks in the
past [9, 10, 16, 19, 26, 29] and are thus ideally suited in the
context of our image-based loss formulation.

Let us first consider adversarial training. The prob-
lem of learning a generative model for texture informa-
tion given a 3D shape can be tackled using a conditional
GAN [22] where the generator is conditioned on the 3D
shape. The generator is represented as a Texture Field
tθ : R3 × S × Z → R3 which maps the latent code z
for every given 3D location pi conditioned on the shape
embedding s to an RGB image:

X̂ = Gθ(zb|Db, sb) = {tθ(pbi, sb, zb)|i ∈ {1, . . . , Nb}}
(5)

As above, b denotes one element of the mini-batch and sb
depends on the parameters of the shape encoder. We use
a standard image-based discriminator Dφ(Xb|Db) condi-
tioned on the input depth image D by concatenating it with
the input image. For training the model, we use a non-
saturating GAN loss with R1-regularization [20].

An alternative method for learning a latent variable
model is given by a conditional VAE (cVAE) [32]. Our
cVAE model comprises an encoder network that maps color
image X to mean µ and variance σ of an isotropic normal
distributed random variable z which follows the distribution
qφ(z|X, s). Our Texture Field model is used as decoder by
predicting the color value ĉi of each pixel ui for the cor-
responding 3D locations pi conditioned on the shape em-
bedding s. Following [19, 29], we minimize the variational
lower bound

LVAE =
1

B

B∑
b=1

[
β KL(qφ(z|Xb, sb) ‖ p0(zb))

+

Nb∑
i=1

‖tθ(pbi, sb, zb)− cbi‖1

]
(6)

where KL refers to the Kullback-Leibler divergence,
p0(z) = N (z|0, I) denotes the standard normal distri-
bution, zb is a sample from the posterior distribution
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qφ(z|Xb, sb) and β is a trade-off parameter between the
KL-divergence and the reconstruction loss [14]. Again, b
denotes one element of the mini-batch and sb depends on
the parameters of the shape distribution. In practice, we set
β = 1. During training, we optimize LVAE using the repa-
rameterization trick [19, 29]. At test time, we obtain new
texture samples for the 3D object under consideration by
sampling z from a standard normal distribution.

3.3. Implementation details

In all of our experiments, we implement the texture field
tθ(·, s, z) using the fully connected ResNet [12] architec-
ture from [21], see supplementary for details. For the im-
age encoder, we use a ResNet-18 architecture [12], pre-
trained on ImageNet. For the shape encoder, we adopt the
PointNet [25] architecture from [21]. The GAN discrimi-
nator and the VAE encoder are based on the discriminator
from [20]. We train both our supervised model and our VAE
model end-to-end using Adam [18] with learning rate 10−4.
Our GAN is trained with alternating gradient descent using
the RMSProp Optimizer [36] with the same learning rate.

4. Experimental Evaluation
We evaluate our approach in three different experiments.

In the first part, we investigate the representation power
of Texture Fields by analyzing how well the method can
represent high frequency textures when trained on a single
3D object. In the second part, we apply our method to the
challenging task of single view texture reconstruction in
which we predict the full texture of 3D objects given only
the 3D shape and a single view of this object. Moreover,
we combine our method with a state-of-the-art shape recon-
struction method [21] for full textured 3D reconstruction
which also includes reconstructing the shape of the 3D ob-
ject. In the last experiment, we explore if our representation
can also be used in a generative setting where the goal is to
produce a varied distribution of possible textures given only
the shape of the 3D object without further input.

Baselines: Only few prior works have considered texture
reconstruction in the general case without predefined tem-
plate mesh or information about the camera view. There-
fore, we construct a first simple baseline by mapping the in-
put image onto the mesh by projecting all vertices into the
input view to determine their color. While this simple base-
line receives additional information about the camera of the
input view, we believe it still serves as a good sanity check
to see if our method is actually learning something useful
and if it is able to correctly fill-in occluded regions. As a
second baseline we consider a novel-view-synthesis (NVS)
approach which uses the same image encoder as our ap-
proach, but applies a UNet architecture3 [30] to transform a

3See supplementary material for details.

depth rendering of the object into an RGB image. While this
approach can also generate novel views of the object under
consideration, it requires additional (lossy) post-processing
to generate a complete texture map of the object. In partic-
ular, there is no guarantee for this baseline that the newly
generated views are consistent under viewpoint changes.
Lastly, we consider Im2Avatar [34] as a baseline for full
textured 3D reconstruction from single images. To the best
of our knowlege, this method currently achieves the highest
resolution (643) among all voxel-based 3D reconstruction
methods which predict colors and produces state-of-the-art
results. We use the official implementation4 of Im2Avatar.

Dataset: Unless specified otherwise, we use the categories
‘cars’, ‘chairs’, ‘airplanes’ and ‘tables’ from the ShapeNet
dataset [5] as these categories contain rich texture informa-
tion while also providing a large variety of shapes. For our
conditional experiments, we use the renderings provided by
Choy et al. [7] as input. For training our models, we ren-
der 10 additional images and depth maps per object from
random views in the upper hemisphere.

Metrics: For evaluation, we consider three different met-
rics in image space for random views of the objects. Firstly,
to evaluate how well our method and the baselines capture
the appearance distribution for a given object category, we
use the Fréchet Inception Distance (FID) [13]. This is a
common metric between distributions of images and widely
used in the GAN literature [3, 13, 16, 17]. Moreover, to
better estimate the distance between a predicted view and
the ground truth on a per-instance basis, we measure the
structure similarity image metric (SSIM) [39]. Since we
found that SSIM mostly captures local properties of images,
we additionally introduce a more global perceptual mea-
sure, which we call Feature-`1-metric. Similarly to FID,
the Feature-`1-metric is computed by embedding both the
image produced by the method under consideration and the
ground truth view into feature space using an Inception net-
work. The Feature-`1-metric then computes the mean abso-
lute distance between the feature activations of the predicted
and the ground truth image.

4.1. Representation Power

The goal of this experiment is to explore the representa-
tion power of our Texture Field model. This “overfitting”
experiment helps to disentangle the quality of the image en-
coder from the Texture Field representation itself and pro-
vides an upper bound on the reconstruction quality that we
can expect when applying Texture Fields to more difficult
tasks. We train our method separately on 3D meshes of a
cat and a human5, wrt. 5122 px renderings from 500 views.

Qualitative results are shown in Fig. 3, comparing our

4https://github.com/syb7573330/im2avatar
53D models from free3d.com and turbosquid.com.
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Ground Truth Texture Field Voxelization (1283)

Figure 3: Representation Power. Comparison of a Texture
Field fitted to a 3D model of a cat/human to a voxel-based
representation and the corresponding ground truth model.

model to a voxelization at a fixed resolution of 1283 vox-
els. We observe that Texture Fields can represent high-
frequency information while the voxel representation is in-
herently restricted to a Manhattan world of limited granu-
larity. This experiment validates that Texture Fields are a
promising texture representation.

4.2. Single Image Texture Reconstruction

We now turn our attention to the challenging task of
single-image texture reconstruction. Towards this goal, we
conduct experiments for texture reconstruction given a 3D
model together with a 2D image of the object from a ran-
dom camera view. We train our method using the condi-
tional setup described in Section 3.2. At test time we ap-
ply the trained model in three different settings. In the first
setting, we use ground truth 3D shapes as input and apply
our model to synthetic renderings of the object. In the sec-
ond setting, we combine our method with a state-of-the art
shape reconstruction approach [21] to obtain a full 3D re-
construction pipeline of both shape and textures. Finally, in
the third setting, we investigate if our model also transfers

Projection NVS Texture Field

Condition (2D) Prediction (3D)

Figure 4: Texture Reconstruction. A qualitative compar-
ison between our method (Texture Field) and the baselines
is shown. In this experiment, we use GT shapes as input.

to real data. Here, we use images of real cars together with
similar 3D shapes from the ShapeNet dataset.

GT Shapes: When using ground truth shapes, our model
successfully learns to extract texture from just a single im-
age of the object as illustrated in Fig. 4. In particular, our
model can complete parts of the texture that were not vis-
ible in the input view. At the same time, our model suc-
cessfully transfers texture regions visible in the input view
to the shape (e.g. windows and tires of the car). In contrast,
both the projection baseline and NVS show considerable
artifacts. While the projection baseline transfers texture in-
correctly into ambiguous regions, NVS often leads to un-
realistic image artifacts such as rough edges and bleeding
colors. A quantitative comparison is provided in Table 1.
While NVS achieves the best SSIM, our method performs
best in terms of FID and Features-`1 distance. This is con-
sistent with the qualitative result in Fig. 4, as SSIM is a local
score whereas FID and the Features-`1 distance are global
scores that better capture visual similarity and realism.

Full Pipeline: In order to obtain a full single-view textured
3D reconstruction pipeline, we combine Texture Fields with
Occupancy Networks [21]. For a fair comparison, we also
combine the projection baseline and the NVS baseline with
the output from [21].

Our qualitative results in Fig. 7 and Fig. 8 demonstrate
that our approach is able to reconstruct 3D models with tex-
ture from just a single view of the model. In contrast to
Im2Avatar6 [34], NVS and the projection baseline, we ob-

6Unfortunately, Sun et al. provide training data only for a subset of our
training data. We therefore train and evaluate Im2Avatar on the training
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FID SSIM Feature-`1
Projection NVS Texture Field Projection NVS Texture Field Projection NVS Texture Field

airplanes 15.375 17.816 9.236 0.970 0.964 0.968 0.143 0.158 0.136
cars 70.070 72.209 24.271 0.840 0.887 0.885 0.236 0.238 0.192
chairs 8.045 8.788 5.791 0.931 0.947 0.941 0.127 0.125 0.124
tables 10.254 9.311 8.846 0.934 0.953 0.943 0.123 0.117 0.123

mean 25.936 27.031 12.036 0.919 0.938 0.934 0.157 0.159 0.144

Table 1: Single Image Texture Reconstruction. Quantitative Evaluation using the FID, SSIM and Feature-`1 metrics.

FID SSIM Feature-`1
Projection Im2Avatar NVS Texture Field Projection Im2Avatar NVS Texture Field Projection Im2Avatar NVS Texture Field

airplanes 79.146 - 70.592 61.760 0.918 - 0.921 0.921 0.230 - 0.223 0.216
cars 133.411 149.393 122.622 77.439 0.786 0.760 0.836 0.837 0.281 0.290 0.269 0.235
chairs 37.890 158.243 48.926 36.812 0.817 0.695 0.841 0.842 0.213 0.289 0.218 0.207
tables 32.693 115.992 35.086 30.627 0.855 0.749 0.871 0.869 0.193 0.265 0.188 0.186

mean 70.785 141.209 69.306 51.659 0.844 0.734 0.867 0.867 0.229 0.281 0.225 0.211

Table 2: Full Pipeline. Quantitative Evaluation using the FID, SSIM and Feature-`1 metrics.

Condition (2D) Prediction (3D)

Figure 5: Texture Reconstruction from Real Images. In
this experiment, our model transfers texture from previously
unseen real images to unseen 3D CAD models.

and test split provided by Sun et al. As the test split provided by Sun et al.
and our test split are disjoint for the “chairs” and “tables” categories, we
can therefore also only show a qualitative comparision on “cars” category.

serve that our method achieves more consistent and realistic
looking outputs. This is also reflected in the numerical re-
sults in Table 2: while NVS and our method both obtain the
best SSIM, our method achieves the best FID and Features-
`1 distances.

Real images: In Fig. 5, we finally investigate whether our
approach is also able to transfer texture information from
real input images to ground truth CAD models. Towards
this goal, we apply our approach to the images provided
by [33] and [42] and select CAD models that are similar to
the object shown in the input image. We observe that our
model generalizes reasonably well to real data despite only
being trained on synthetic data.

4.3. Unconditional Model

In this section, we conduct unconditional experiments to
investigate if Texture Fields can also be applied in a purely
generative manner where we only provide the shape of the
object to the network, but not the 2D image. Towards this
goal, we train both, the VAE and the GAN model, on the
“cars” category. During training, we provide both target
images and depth maps but no input views to the network.
During testing, we sample the latent code z from a standard
normal distribution to obtain random texture samples for the
given 3D object.

Random samples for the GAN and the VAE model are
shown in Fig. 10. While our unconditional models suc-
cessfully generate realistic textures, both the VAE and GAN
samples contain artifacts similar to those present when ap-
plying VAEs and GANs to the image domain. For example,
the samples of the VAE model are globally consistent but
slightly blurry. In contrast, the samples for the GAN model
are sharper but contain artifacts. In the future, we would
like to explore combinations of VAEs and GANs and more
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Figure 6: Latent Space Interpolations (VAE). Our generative model learns a meaningful latent space embedding.

Projection NVS Texture Field

Condition (2D) Prediction (3D)

Figure 7: Full Pipeline. Results using Occupancy Net-
works [21] for 3D reconstruction in combination with pro-
jection, NVS and Texture Fields for appearance estimation.

advanced models and training methods [10, 17] to improve
upon these initial results.

Fig. 6 shows interpolations in the latent space for the
VAE model. We see that the VAE has learned a meaning-
ful latent space and can hence interpolate smoothly between
different texture samples. Moreover, in Fig. 9, we demon-
strate that our VAE model also allows for successfully trans-
ferring texture from one model to another one.

5. Conclusion
In this paper we introduced Texture Fields, a novel con-

tinuous representation for texture of 3D shapes. Our exper-
iments show that Texture Fields can predict high frequency
textures from just a single object view. Moreover, we have
demonstrated that Texture Fields can also be used in an un-
conditional setting where we are only given the shape of the
3D object. We hence believe that Texture Fields are a use-
ful representation for 3D reconstruction and hope that they
will become an integral part of the next generation of 3D
generative models.

Im2Avatar [34] Texture Field

Condition (2D) Prediction (3D)

Figure 8: Voxels vs. Function Space. We compare our full
pipeline against a voxel-based reconstruction method [34].

Figure 9: Texture Transfer (VAE). Our model transfers
appearance information (top) to the target models (left).

Figure 10: Generative Model. Textures generated using
the GAN (top 2 rows) and VAE (bottom 2 rows) models.
Note that no 2D image is provided as input in this setting.
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Supplementary Material
A. Implementation Details

In this section, we provide more information about the network architectures used in the experiments. Furthermore, we
explain the architecture of the novel view synthesis baseline and provide more information about the pipeline for image based
training.

A.1. Architectures

In this section, we describe the architectures of each part of our model, shown in Figure 2 of the main paper.

Texture Field: In Fig. 11, the network architecture of the Texture Field is shown. We adapt the architecture proposed in [21]
for the task of texture prediction. This architecture is used for all of our experiments. The inputs to a Texture Field are a 3D
position p, shape embedding s and a condition or latent code z. The shape embedding provides information about the global
shape to the network, whereas z is used for the image condition. Fig. 11 shows the architecture applied for a set of N 3D
locations of a single 3D model. All points are passed through a fully-connected neural network that outputs a feature vector
for each point. The next parts of our architecture consists of ResNet blocks with fully-connected layers [12]. In each block
we first inject features of s and z by concatenating them, passing them through a fully-connected network and adding the
output to the features of each point. We apply L = 6 ResNet blocks for the single image texture reconstruction experiments
and L = 4 ResNet blocks for the generative models. Finally, a fully-connected layer maps the 128-dimensional feature vector
to the image space.

++

Figure 11: Texture Field. This figure illustrates the architecture of Texture Fields. Shape Embedding s and condition/latent
texture code z are injected to each ResNet block. For each of the N 3D points, the network outputs a 3-dimensional color
value c.

Shape Encoder: For the pointcloud, we sample 2048 points uniformly on the surface of the 3D models. In order to derive an
embedding from the pointcloud, we utilize the pointcloud encoder, proposed in [21]. The architecture is depicted in Fig. 12.
Based on PointNet [25], the network consists of 5 Resnet blocks with max pooling layers.

+ +

Figure 12: Shape Encoder. Similar to a PointNet encoder [25] , the network shown here determines a feature vector from a
set of points. We use the ResNet-based version, proposed in [21].
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Image Encoder: As encoder for the input image, we use a pretrained ResNet-18 architecture [12], visualized in Fig. 13.
After the last ResNet-Block we apply a average pooling layer and a fully-connected layer for deriving the image embedding
z.

+ ++ + + + + +

Figure 13: Image Encoder. As encoder of the input images for the conditional task, we apply the ResNet-18 network
pretrained on ImageNet.

VAE Encoder: For training the VAE, we encode the ground truth views using the ResNet-based network in Fig. 14. The
encoder receives an image as well as the shape embedding as input and predicts mean µ and log-standard deviation log σ
of normal- distributed random variables in the latent space. For injecting the shape embedding, we pass s through a fully
connected network with 32 as output dimension and add the output to each feature pixel. Then, we iteratively apply average
pooling and a ResNet block for 5 times. Finally, we use two separate fully-connected networks to map the features to mean
and log-standard deviation of the latent code z.

+ ++ + + +

Figure 14: VAE Encoder. Here, we illustrate the network of the encoding part of the VAE. The encoder maps an image and
the shape embedding s to mean µ and log-standard deviation log σ of the latent variable z.

GAN Discriminator: We apply the network shown in Fig. 15 as discriminator in the conditional GAN set up. We condition
the discriminator on the depth image by concatenating the depth and RGB image. Using a similar architecture as in [20], the
input is mapped to a single scalar.

A.2. NVS Baseline

In Fig. 16, we show the architecture of the novel view synthesis baseline (NVS). The networks predict a RGB image given
a depth image as input. We apply a U-Net-based architecture [30] and inject the image encoding into each layer.

A.3. Data preparation

We train Texture Fields from a dataset consisting of rendered images and corresponding depth images as well as intrinsic
and extrinsic camera information. To this end, we render images from 10 random views in the upper hemisphere for the 3D
objects of the ShapeNet categories ’cars’, ’chairs’, ’airplanes’ and ’tables’. For lighting we use a hemispheric light source.
Additionally, we render depth images from the same random views and store camera intrinsics and extrinsics, in order to be
able to reproject each pixel in the depth image back to its 3D location. In the end, the data consists of 10 views for each of
the 7,499 car models, 6,781 chair models, 4,048 airplane models and 8,512 table models. For training our method we use a
resolution of 1282. For the NVS baseline, we use 2562. We evaluate every method at a resolution of 2562 from 10 random
views.

As input images for the conditional experiments, we use the renderings from Choy et al. [7].
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+ + + + +

Figure 15: GAN Discriminator. As input for the discriminator we use a RGB image and a corresponding depth image. By
using average pooling and ResNet blocks, the input is mapped to a single scalar value.

+ + + + +

Figure 16: NVS. In this figure, we show the U-Net-based architecture of the NVS baseline. We inject the image embedding
z into each layer in the encoding part of the network.

B. Further Results
We present more results for each of the experiments in the following Figures 17, 18, 19, 20, 21, 22 and 23.

C. Field Visualizations
In this section, we investigate what Texture Fields are actually learning. For this purpose, we use the single image texture

reconstruction task and we vary the input shape, while we keep the same image condition.
In Fig. 24, we depict color values predicted by a Texture Field along cuts through car models. We see that the Texture Field

learns to predict color values at the location of the shape. As expected, color predictions far from the shape are meaningless
as non of the observations constrain these areas. In the interior of the car, a gray color usually appears, whereas outside of the
car it is white. By varying the input shape, we observe that the network is changing the locations of the color according to
the shape. The Texture Field successfully transfers texture information from the image condition onto arbitrary shapes. This
leads us to the conclusion that Texture Fields implicitly decode the shape embedding and reconstruct the texture at encoded
shape locations following the image condition.
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Condition Predicted

Figure 17: Texture Reconstruction with Texture Field. In this Figure, we use our model to predict texture for untextured
3D CAD models based on a single view of the same objects. The texture is properly predicted for all categories and contains
details as lights and number plates. Very high-frequency details are sometimes leading to some blurriness.
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Condition (2D) Prediction (3D)

Figure 18: Texture Reconstruction with Real Images. In this figure, we show results for texturing untextured synthetic
CAD models from a single real input image using our approach.
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Projection NVS Texture Field

Condition (2D) Prediction (3D)

Figure 19: Full Pipeline. Our full pipeline for texture and shape reconstruction leads to plausible textured 3D objects, as
shown in this figure. We use the same shape reconstruction model (ONet) [21] for all approaches.
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Figure 20: GAN. In this figure, we show 3D CAD objects with generated texture using our GAN-based model. Our GAN
predictions exhibits GAN typical artifacts.
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Figure 21: VAE. This figure illustrates predicted textures using the VAE model. The results are globally consistent, but
exhibits blur in some cases.

Figure 22: Texture Transfer. We utilize the VAE model for texture transfer from one car to another. We encode the image
on the left and use the latent code for synthesizing texture for different shapes.
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Figure 23: Latent Space Interpolations. Here, we illustrate latent space interpolations. The results show that our model
learns a continuous and meaningful latent space.

Condition GT shape Different shape

Figure 24: Texture Field Illustrations. In this figure, we show predicted color values along cuts through the car models.
The image condition is shown on the left and on the right two different results for cuts are depicted. In the top row a cut
through the middle of the cars is shown, whereas in the bottom row a cut on the right side of the car. Furthermore, we show
the results for two different input shapes, the corresponding 3D model and car with a completely different shape. We observe
that the Texture Field learns to predict color values at locations close to the input 3D model. Far from the shape, the color
values are meaningless.
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