
DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation

Jeong Joon Park1,3† Peter Florence 2,3† Julian Straub3 Richard Newcombe3 Steven Lovegrove3

1University of Washington 2Massachusetts Institute of Technology 3Facebook Reality Labs

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.
Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

Abstract
Computer graphics, 3D computer vision and robotics

communities have produced multiple approaches to rep-
resenting 3D geometry for rendering and reconstruction.
These provide trade-offs across fidelity, efficiency and com-
pression capabilities. In this work, we introduce DeepSDF,
a learned continuous Signed Distance Function (SDF) rep-
resentation of a class of shapes that enables high qual-
ity shape representation, interpolation and completion from
partial and noisy 3D input data. DeepSDF, like its clas-
sical counterpart, represents a shape’s surface by a con-
tinuous volumetric field: the magnitude of a point in the
field represents the distance to the surface boundary and the
sign indicates whether the region is inside (-) or outside (+)
of the shape, hence our representation implicitly encodes a
shape’s boundary as the zero-level-set of the learned func-
tion while explicitly representing the classification of space
as being part of the shapes interior or not. While classical
SDF’s both in analytical or discretized voxel form typically
represent the surface of a single shape, DeepSDF can repre-
sent an entire class of shapes. Furthermore, we show state-
of-the-art performance for learned 3D shape representation
and completion while reducing the model size by an order
of magnitude compared with previous work.

† Work performed during internship at Facebook Reality Labs.

1. Introduction

Deep convolutional networks which are a mainstay of
image-based approaches grow quickly in space and time
complexity when directly generalized to the 3rd spatial di-
mension, and more classical and compact surface repre-
sentations such as triangle or quad meshes pose problems
in training since we may need to deal with an unknown
number of vertices and arbitrary topology. These chal-
lenges have limited the quality, flexibility and fidelity of
deep learning approaches when attempting to either input
3D data for processing or produce 3D inferences for object
segmentation and reconstruction.

In this work, we present a novel representation and ap-
proach for generative 3D modeling that is efficient, expres-
sive, and fully continuous. Our approach uses the concept
of a SDF, but unlike common surface reconstruction tech-
niques which discretize this SDF into a regular grid for eval-
uation and measurement denoising, we instead learn a gen-
erative model to produce such a continuous field.

The proposed continuous representation may be intu-
itively understood as a learned shape-conditioned classifier
for which the decision boundary is the surface of the shape
itself, as shown in Fig. 2. Our approach shares the genera-
tive aspect of other works seeking to map a latent space to
a distribution of complex shapes in 3D [54], but critically
differs in the central representation. While the notion of an

1

ar
X

iv
:1

90
1.

05
10

3v
1

 [
cs

.C
V

]
 1

6
Ja

n
20

19

Decision
boundary
of implicit
surface

(a)

(b) (c)

Figure 2: Our DeepSDF representation applied to the Stanford
Bunny: (a) depiction of the underlying implicit surface SDF = 0
trained on sampled points inside SDF < 0 and outside SDF > 0
the surface, (b) 2D cross-section of the signed distance field, (c)
rendered 3D surface recovered from SDF = 0. Note that (b) and
(c) are recovered via DeepSDF.

implicit surface defined as a SDF is widely known in the
computer vision and graphics communities, to our knowl-
edge no prior works have attempted to directly learn contin-
uous, generalizable 3D generative models of SDFs.

Our contributions include: (i) the formulation of gen-
erative shape-conditioned 3D modeling with a continuous
implicit surface, (ii) a learning method for 3D shapes based
on a probabilistic auto-decoder, and (iii) the demonstration
and application of this formulation to shape modeling and
completion. Our models produce high quality continuous
surfaces with complex topologies, and obtain state-of-the-
art results in quantitative comparisons for shape reconstruc-
tion and completion. As an example of the effectiveness
of our method, our models use only 7.4 MB (megabytes)
of memory to represent entire classes of shapes (for exam-
ple, thousands of 3D chair models) – this is, for example,
less than half the memory footprint (16.8 MB) of a single
uncompressed 5123 3D bitmap.

2. Related Work

We review three main areas of related work: 3D rep-
resentations for shape learning (Sec. 2.1), techniques for
learning generative models (Sec. 2.2), and shape comple-
tion (Sec. 2.3).

2.1. Representations for 3D Shape Learning

Representations for data-driven 3D learning approaches
can be largely classified into three categories: point-based,
mesh-based, and voxel-based methods. While some appli-
cations such as 3D-point-cloud-based object classification
are well suited to these representations, we address their

limitations in expressing continuous surfaces with complex
topologies.
Point-based. A point cloud is a lightweight 3D representa-
tion that closely matches the raw data that many sensors (i.e.
LiDARs, depth cameras) provide, and hence is a natural fit
for applying 3D learning. PointNet [38, 39], for example,
uses max-pool operations to extract global shape features,
and the technique is widely used as an encoder for point
generation networks [57, 1]. There is a sizable list of re-
lated works to the PointNet style approach of learning on
point clouds. A primary limitation, however, of learning
with point clouds is that they do not describe topology and
are not suitable for producing watertight surfaces.
Mesh-based. Various approaches represent classes of sim-
ilarly shaped objects, such as morphable human body parts,
with predefined template meshes and some of these models
demonstrate high fidelity shape generation results [2, 34].
Other recent works [3] use poly-cube mapping [51] for
shape optimization. While the use of template meshes is
convenient and naturally provides 3D correspondences, it
can only model shapes with fixed mesh topology.

Other mesh-based methods use existing [48, 36] or
learned [22, 23] parameterization techniques to describe 3D
surfaces by morphing 2D planes. The quality of such repre-
sentations depends on parameterization algorithms that are
often sensitive to input mesh quality and cutting strategies.
To address this, recent data-driven approaches [57, 22] learn
the parameterization task with deep networks. They report,
however, that (a) multiple planes are required to describe
complex topologies but (b) the generated surface patches
are not stitched, i.e. the produced shape is not closed. To
generate a closed mesh, sphere parameterization may be
used [22, 23], but the resulting shape is limited to the topo-
logical sphere. Other works related to learning on meshes
propose to use new convolution and pooling operations for
meshes [17, 53] or general graphs [9].
Voxel-based. Voxels, which non-parametrically describe
volumes with 3D grids of values, are perhaps the most natu-
ral extension into the 3D domain of the well-known learning
paradigms (i.e., convolution) that have excelled in the 2D
image domain. The most straightforward variant of voxel-
based learning is to use a dense occupancy grid (occupied /
not occupied). Due to the cubically growing compute and
memory requirements, however, current methods are only
able to handle low resolutions (1283 or below). As such,
voxel-based approaches do not preserve fine shape details
[56, 14], and additionally voxels visually appear signifi-
cantly different than high-fidelity shapes, since when ren-
dered their normals are not smooth. Octree-based methods
[52, 43, 26] alleviate the compute and memory limitations
of dense voxel methods, extending for example the ability to
learn at up to 5123 resolution [52], but even this resolution
is far from producing shapes that are visually compelling.

2

Aside from occupancy grids, and more closely related to
our approach, it is also possible to use a 3D grid of vox-
els to represent a signed distance function. This inherits
from the success of fusion approaches that utilize a trun-
cated SDF (TSDF), pioneered in [15, 37], to combine noisy
depth maps into a single 3D model. Voxel-based SDF repre-
sentations have been extensively used for 3D shape learning
[59, 16, 49], but their use of discrete voxels is expensive in
memory. As a result, the learned discrete SDF approaches
generally present low resolution shapes. [30] reports vari-
ous wavelet transform-based approaches for distance field
compression, while [10] applies dimensionality reduction
techniques on discrete TSDF volumes. These methods en-
code the SDF volume of each individual scene rather than a
dataset of shapes.

2.2. Representation Learning Techniques

Modern representation learning techniques aim at auto-
matically discovering a set of features that compactly but
expressively describe data. For a more extensive review of
the field, we refer to Bengio et al. [4].
Generative Adversial Networks. GANs [21] and their
variants [13, 41] learn deep embeddings of target data
by training discriminators adversarially against generators.
Applications of this class of networks [29, 31] generate re-
alstic images of humans, objects, or scenes. On the down-
side, adversarial training for GANs is known to be unstable.
In the 3D domain, Wu et al. [54] trains a GAN to generate
objects in a voxel representation, while the recent work of
Hamu et al. [23] uses multiple parameterization planes to
generate shapes of topological spheres.
Auto-encoders. Auto-encoder outputs are expected to
replicate the original input given the constraint of an in-
formation bottleneck between the encoder and decoder.
The ability of auto-encoders as a feature learning tool has
been evidenced by the vast variety of 3D shape learn-
ing works in the literature [16, 49, 2, 22, 55] who adopt
auto-encoders for representation learning. Recent 3D vi-
sion works [6, 2, 34] often adopt a variational auto-encoder
(VAE) learning scheme, in which bottleneck features are
perturbed with Gaussian noise to encourage smooth and
complete latent spaces. The regularization on the latent vec-
tors enables exploring the embedding space with gradient
descent or random sampling.
Optimizing Latent Vectors. Instead of using the full
auto-encoder for representation learning, an alternative is
to learn compact data representations by training decoder-
only networks. This idea goes back to at least the work of
Tan et al. [50] which simultaneously optimizes the latent
vectors assigned to each data point and the decoder weights
through back-propagation. For inference, an optimal latent
vector is searched to match the new observation with fixed
decoder parameters. Similar approaches have been exten-

sively studied in [42, 8, 40], for applications including noise
reduction, missing measurement completions, and fault de-
tections. Recent approaches [7, 20] extend the technique by
applying deep architectures. Throughout the paper we re-
fer to this class of networks as auto-decoders, for they are
trained with self-reconstruction loss on decoder-only archi-
tectures.

2.3. Shape Completion

3D shape completion related works aim to infer unseen
parts of the original shape given sparse or partial input ob-
servations. This task is anaologous to image-inpainting in
2D computer vision.

Classical surface reconstruction methods complete a
point cloud into a dense surface by fitting radial basis func-
tion (RBF) [11] to approximate implicit surface functions,
or by casting the reconstruction from oriented point clouds
as a Poisson problem [32]. These methods only model a
single shape rather than a dataset.

Various recent methods use data-driven approaches for
the 3D completion task. Most of these methods adopt
encoder-decoder architectures to reduce partial inputs of oc-
cupancy voxels [56], discrete SDF voxels [16], depth maps
[44], RGB images [14, 55] or point clouds [49] into a la-
tent vector and subsequently generate a prediction of full
volumetric shape based on learned priors.

3. Modeling SDFs with Neural Networks
In this section we present DeepSDF, our continuous

shape learning approach. We describe modeling shapes
as the zero iso-surface decision boundaries of feed-forward
networks trained to represent SDFs. A signed distance func-
tion is a continuous function that, for a given spatial point,
outputs the point’s distance to the closest surface, whose
sign encodes whether the point is inside (negative) or out-
side (positive) of the watertight surface:

SDF (x) = s : x ∈ R3, s ∈ R . (1)

The underlying surface is implicitly represented by the iso-
surface of SDF (·) = 0. A view of this implicit surface can
be rendered through raycasting or rasterization of a mesh
obtained with, for example, Marching Cubes [35].

Our key idea is to directly regress the continuous SDF
from point samples using deep neural networks. The re-
sulting trained network is able to predict the SDF value
of a given query position, from which we can extract the
zero level-set surface by evaluating spatial samples. Such
surface representation can be intuitively understood as a
learned binary classifier for which the decision boundary
is the surface of the shape itself as depicted in Fig. 2. As
a universal function approximator [27], deep feed-forward
networks in theory can learn the fully continuous shape

3

functions with arbitrary precision. Yet, the precision of
the approximation in practice is limited by the finite num-
ber of point samples that guide the decision boundaries and
the finite capacity of the network due to restricted compute
power.

The most direct application of this approach is to train a
single deep network for a given target shape as depicted in
Fig. 3a. Given a target shape, we prepare a set of pairs X
composed of 3D point samples and their SDF values:

X := {(x, s) : SDF (x) = s} . (2)

We train the parameters θ of a multi-layer fully-connected
neural network fθ on the training set S to make fθ a good
approximator of the given SDF in the target domain Ω:

fθ(x) ≈ SDF (x), ∀x ∈ Ω . (3)

The training is done by minimizing the sum over losses
between the predicted and real SDF values of points in X
under the following L1 loss function:

L(fθ(x), s) = | clamp(fθ(x), δ)− clamp(s, δ) |, (4)

where clamp(x, δ) := min(δ,max(−δ, x)) introduces the
parameter δ to control the distance from the surface over
which we expect to maintain a metric SDF. Larger values of
δ allow for fast ray-tracing since each sample gives infor-
mation of safe step sizes. Smaller values of δ can be used to
concentrate network capacity on details near the surface.

To generate the 3D model shown in Fig. 3a, we use
δ = 0.1 and a feed-forward network composed of eight
fully connected layers, each of them applied with dropouts.
All internal layers are 512-dimensional and have ReLU
non-linearities. The output non-linearity regressing the SDF
value is tanh. We found training with batch-normalization
[28] to be unstable and applied the weight-normalization
technique instead [46]. For training, we use the Adam op-
timizer [33]. Once trained, the surface is implicitly repre-
sented as the zero iso-surface of fθ(x), which can be visu-
alized through raycasting or marching cubes. Another nice
property of this approach is that accurate normals can be
analytically computed by calculating the spatial derivative
∂fθ(x)/∂x via back-propogation through the network.

4. Learning the Latent Space of Shapes
Training a specific neural network for each shape is nei-

ther feasible nor very useful. Instead, we want a model that
can represent a wide variety of shapes, discover their com-
mon properties, and embed them in a low dimensional latent
space. To this end, we introduce a latent vector z, which can
be thought of as encoding the desired shape, as a second in-
put to the neural network as depicted in Fig. 3b. Concep-
tually, we map this latent vector to a 3D shape represented

(x,y,z) SDF

(a) Single Shape DeepSDF

Code

(x,y,z)

SDF

(b) Coded Shape DeepSDF

Figure 3: In the single-shape DeepSDF instantiation, the shape
information is contained in the network itself whereas the coded-
shape DeepSDF, the shape information is contained in a code vec-
tor that is concatenated with the 3D sample location. In both cases,
DeepSDF produces the SDF value at the 3D query location,

Code

Input Output

(a) Auto-encoder

Codes

Output
Backprogate

(b) Auto-decoder

Figure 4: Different from an auto-encoder whose latent code is
produced by the encoder, an auto-decoder directly accepts a la-
tent vector as an input. A randomly initialized latent vector is
assigned to each data point in the beginning of training, and the la-
tent vectors are optimized along with the decoder weights through
standard backpropagation. During inference, decoder weights are
fixed, and an optimal latent vector is estimated.

by a continuous SDF. Formally, for some shape indexed by
i, fθ is now a function of a latent code zi and a query 3D
location x, and outputs the shape’s approximate SDF:

fθ(zi,x) ≈ SDF i(x). (5)

By conditioning the network output on a latent vector, this
formulation allows modeling multiple SDFs with a single
neural network. Given the decoding model fθ, the contin-
uous surface associated with a latent vector z is similarly
represented with the decision boundary of fθ(z,x), and the
shape can again be discretized for visualization by, for ex-
ample, raycasting or Marching Cubes.

Next, we motivate the use of encoder-less training before
introducing the ‘auto-decoder’ formulation of the shape-
coded DeepSDF.

4.1. Motivating Encoder-less Learning

Auto-encoders and encoder-decoder networks are
widely used for representation learning as their bottleneck
features tend to form natural latent variable representations.

Recently, in applications such as modeling depth maps
[6], faces [2], and body shapes [34] a full auto-encoder is
trained but only the decoder is retained for inference, where
they search for an optimal latent vector given some input
observation. However, since the trained encoder is unused

4

at test time, it is unclear whether using the encoder is the
most effective use of computational resources during train-
ing. This motivates us to use an auto-decoder for learning a
shape embedding without an encoder as depicted in Fig. 4.

We show that applying an auto-decoder to learn con-
tinuous SDFs leads to high quality 3D generative models.
Further, we develop a probabilistic formulation for train-
ing and testing the auto-decoder that naturally introduces
latent space regularization for improved generalization. To
the best of our knowledge, this work is the first to intro-
duce the auto-decoder learning method to the 3D learning
community.

4.2. Auto-decoder-based DeepSDF Formulation

To derive the auto-decoder-based shape-coded DeepSDF
formulation we adopt a probabilistic perspective. Given a
dataset of N shapes represented with signed distance func-
tion SDF iNi=1, we prepare a set of K point samples and
their signed distance values:

Xi = {(xj , sj) : sj = SDF i(xj)} . (6)

For an auto-decoder, as there is no encoder, each latent
code zi is paired with training shape Xi. The posterior over
shape code zi given the shape SDF samples Xi can be de-
composed as:

pθ(zi|Xi) = p(zi)
∏

(xj ,sj)∈Xi
pθ(sj |zi;xj) , (7)

where θ parameterizes the SDF likelihood. In the latent
shape-code space, we assume the prior distribution over
codes p(zi) to be a zero-mean multivariate-Gaussian with
a spherical covariance σ2I . This prior encapsulates the no-
tion that the shape codes should be concentrated and we
empirically found it was needed to infer a compact shape
manifold and to help converge to good solutions.

In the auto-decoder-based DeepSDF formulation we ex-
press the SDF likelihood via a deep feed-forward network
fθ(zi,xj) and, without loss of generality, assume that the
likelihood takes the form:

pθ(sj |zi;xj) = exp(−L(fθ(zi,xj), sj)) . (8)

The SDF prediction s̃j = fθ(zi,xj) is represented using a
fully-connected network. L(s̃j , sj) is a loss function penal-
izing the deviation of the network prediction from the actual
SDF value sj . One example for the cost function is the stan-
dard L2 loss function which amounts to assuming Gaussian
noise on the SDF values. In practice we use the clamped L1

cost from Eq. 4 for reasons outlined previously.
At training time we maximize the joint log posterior over

all training shapes with respect to the individual shape codes
{zi}Ni=1 and the network parameters θ:

arg min
θ,{zi}Ni=1

N∑
i=1

 K∑
j=1

L(fθ(zi,xj), sj) +
1

σ2
||zi||22

 . (9)

Figure 5: Compared to car shapes memorized using OGN [52]
(right), our models (left) preserve details and render visually pleas-
ing results as DeepSDF provides oriented surace normals.

At inference time, after training and fixing θ, a shape
code zi for shape Xi can be estimated via Maximum-a-
Posterior (MAP) estimation as:

ẑ = arg min
z

∑
(xj ,sj)∈X

L(fθ(z,xj), sj) +
1

σ2
||z||22 . (10)

Crucially, this formulation is valid for SDF samples X
of arbitrary size and distribution because the gradient of the
loss with respect to z can be computed separately for each
SDF sample. This implies that DeepSDF can handle any
form of partial observations such as depth maps. This is
a major advantage over the auto-encoder framework whose
encoder expects a test input similar to the training data, e.g.
shape completion networks of [16, 58] require preparing
training data of partial shapes.

To incorporate the latent shape code, we stack the code
vector and the sample location as depicted in Fig. 3b and
feed it into the same fully-connected NN described previ-
ously at the input layer and additionally at the 4th layer. We
again use the Adam optimizer [33]. The latent vector z is
initialized randomly from N (0, 0.012).

Note that while both VAE and the proposed auto-decoder
formulation share the zero-mean Gaussian prior on the la-
tent codes, we found that the the stochastic nature of the
VAE optimization did not lead to good training results.

5. Data Preparation
To train our continuous SDF model, we prepare the SDF

samples X (Eq. 2) for each mesh, which consists of 3D
points and their SDF values. While SDF can be computed
through a distance transform for any watertight shapes from
real or synthetic data, we train with synthetic objects, (e.g.
ShapeNet [12]), for which we are provided complete 3D
shape meshes. To prepare data, we start by normalizing
each mesh to a unit sphere and sampling 500,000 spatial
points x’s: we sample more aggressively near the surface
of the object as we want to capture a more detailed SDF
near the surface. For an ideal oriented watertight mesh,
computing the signed distance value of x would only in-
volve finding the closest triangle, but we find that human
designed meshes are commonly not watertight and con-
tain undesired internal structures. To obtain the shell of a

5

Complex Closed Surface Model Inf. Eval.
Method Type Discretization topologies surfaces normals size (GB) (s) time (s) tasks

3D-EPN [16] Voxel SDF 323 voxels X X X 0.42 - C
OGN [52] Octree 2563 voxels X X 0.54 0.32 K
AtlasNet Parametric 1 patch X 0.015 0.01 K, U
-Sphere [22] mesh
AtlasNet Parametric 25 patches X 0.172 0.32 K, U
-25 [22] mesh
DeepSDF Continuous none X X X 0.0074 9.72 K, U, C
(ours) SDF

Table 1: Overview of the benchmarked methods. AtlasNet-Sphere can only describe topological-spheres, voxel/octree occupancy methods
(i.e. OGN) only provide 8 directions for normals, and AtlasNet does not provide oriented normals. Our tasks evaluated are: (K) representing
known shapes, (U) representing unknown shapes, and (C) shape completion.

mesh with proper orientation, we set up equally spaced vir-
tual cameras around the object, and densely sample surface
points, denoted Ps, with surface normals oriented towards
the camera. Double sided triangles visible from both orien-
tations (indicating that the shape is not closed) cause prob-
lems in this case, so we discard mesh objects containing too
many of such faces. Then, for each x, we find the closest
point in Ps, from which the SDF (x) can be computed. We
refer readers to supplementary material for further details.

6. Results
We conduct a number of experiments to show the repre-

sentational power of DeepSDF, both in terms of its ability
to describe geometric details and its generalization capabil-
ity to learn a desirable shape embedding space. Largely, we
propose four main experiments designed to test its ability to
1) represent training data, 2) use learned feature representa-
tion to reconstruct unseen shapes, 3) apply shape priors to
complete partial shapes, and 4) learn smooth and complete
shape embedding space from which we can sample new
shapes. For all experiments we use the popular ShapeNet
[12] dataset.

We select a representative set of 3D learning approaches
to comparatively evaluate aforementioned criteria: a recent
octree-based method (OGN) [52], a mesh-based method
(AtlasNet) [22], and a volumetric SDF-based shape comple-
tion method (3D-EPN) [16] (Table 1). These works show
state-of-the-art performance in their respective representa-
tions and tasks, so we omit comparisons with the works
that have already been compared: e.g. OGN’s octree model
outperforms regular voxel approaches, while AtlasNet com-
pares itself with various points, mesh, or voxel based meth-
ods and 3D-EPN with various completion methods.

6.1. Representing Known 3D Shapes

First, we evaluate the capacity of the model to represent
known shapes, i.e. shapes that were in the training set, from
only a restricted-size latent code — testing the limit of ex-
pressive capability of the representations.

CD, CD, EMD, EMD,
Method \metric mean median mean median

OGN 0.167 0.127 0.043 0.042
AtlasNet-Sph. 0.210 0.185 0.046 0.045
AtlasNet-25 0.157 0.140 0.060 0.060
DeepSDF 0.084 0.058 0.043 0.042

Table 2: Comparison for representing known shapes (K) for cars
trained on ShapeNet. CD = Chamfer Distance (30, 000 points)
multiplied by 103, EMD = Earth Mover’s Distance (500 points).

Quantitative comparison in Table 2 shows that the pro-
posed DeepSDF significantly beats OGN and AtlasNet in
Chamfer distance against the true shape computed with a
large number of points (30,000). The difference in earth
mover distance (EMD) is smaller because 500 points do not
well capture the additional precision. Figure 5 shows a qual-
itative comparison of DeepSDF to OGN.

6.2. Representing Test 3D Shapes (auto-encoding)

For encoding unknown shapes, i.e. shapes in the held-out
test set, DeepSDF again significantly outperforms AtlasNet
on a wide variety of shape classes and metrics as shown
in Table 3. Note that AtlasNet performs reasonably well
at classes of shapes that have mostly consistent topology
without holes (like planes) but struggles more on classes
that commonly have holes, like chairs. This is shown in
Fig. 6 where AtlasNet fails to represent the fine detail of the
back of the chair. Figure 7 shows more examples of detailed
reconstructions on test data from DeepSDF as well as two
example failure cases.

6.3. Shape Completion

A major advantage of the proposed DeepSDF approach
for representation learning is that inference can be per-
formed from an arbitrary number of SDF samples. In the
DeepSDF framework, shape completion amounts to solving
for the shape code that best explains a partial shape obser-
vation via Eq. 10. Given the shape-code a complete shape
can be rendered using the priors encoded in the decoder.

6

(a) Ground-truth (b) Our Result (c) [22]-25 patch (d) [22]-sphere (e) Our Result (f) [22]-25 patch

Figure 6: Reconstruction comparison between DeepSDF and AtlasNet [22] (with 25-plane and sphere parameterization) for test shapes.
Note that AtlasNet fails to capture the fine details of the chair, and that (f) shows holes on the surface of sofa and the plane.

Figure 7: Reconstruction of test shapes. From left to right alternating: ground truth shape and our reconstruction. The two right most
columns show failure modes of DeepSDF. These failures are likely due to lack of training data and failure of minimization convergence.

CD, mean chair plane table lamp sofa
AtlasNet-Sph. 0.752 0.188 0.725 2.381 0.445
AtlasNet-25 0.368 0.216 0.328 1.182 0.411
DeepSDF 0.204 0.143 0.553 0.832 0.132
CD, median
AtlasNet-Sph. 0.511 0.079 0.389 2.180 0.330
AtlasNet-25 0.276 0.065 0.195 0.993 0.311
DeepSDF 0.072 0.036 0.068 0.219 0.088
EMD, mean
AtlasNet-Sph. 0.071 0.038 0.060 0.085 0.050
AtlasNet-25 0.064 0.041 0.073 0.062 0.063
DeepSDF 0.049 0.033 0.050 0.059 0.047
Mesh acc., mean
AtlasNet-Sph. 0.033 0.013 0.032 0.054 0.017
AtlasNet-25 0.018 0.013 0.014 0.042 0.017
DeepSDF 0.009 0.004 0.012 0.013 0.004

Table 3: Comparison for representing unknown shapes (U) for
various classes of ShapeNet. Mesh accuracy as defined in [47]
is the minimum distance d such that 90% of generated points are
within d of the ground truth mesh. Lower is better for all metrics.

We test our completion scheme using single view depth
observations which is a common use-case and maps well
to our architecture without modification. Note that we cur-
rently require the depth observations in the canonical shape
frame of reference.

To generate SDF point samples from the depth image ob-
servation, we sample two points for each depth observation,
each of them located η distance away from the measured

lower is better higher is better
Method CD, CD, Mesh Mesh Cos
\Metric med. mean EMD acc. comp. sim.

chair
3D-EPN 2.25 2.83 0.084 0.059 0.209 0.752
DeepSDF 1.28 2.11 0.071 0.049 0.500 0.766
plane
3D-EPN 1.63 2.19 0.063 0.040 0.165 0.710
DeepSDF 0.37 1.16 0.049 0.032 0.722 0.823
sofa
3D-EPN 2.03 2.18 0.071 0.049 0.254 0.742
DeepSDF 0.82 1.59 0.059 0.041 0.541 0.810

Table 4: Comparison for shape completion (C) from partial range
scans of unknown shapes from ShapeNet.

surface point (along surface normal estimate). With small
η we approximate the signed distance value of those points
to be η and −η, respectively. We solve for Eq. 10 with
loss function of Eq. 4 using clamp value of η. Additionally,
we incorporate free-space observations, (i.e. empty-space
between surface and camera), by sampling points along
the freespace-direction and enforce larger-than-zero con-
straints. The freespace loss is |fθ(z,xj)| if fθ(z,xj) < 0
and 0 otherwise.

Given the SDF point samples and empty space points,
we similarly optimize the latent vector using MAP estima-
tion. Tab. 4 and Figs. (22, 9) respectively shows quantitative
and qualitative shape completion results. Compared to one
of the most recent completion approaches [16] using volu-

7

(a) Input Depth (b) Completion (ours) (c) Second View (ours) (d) Ground truth (e) 3D-EPN

Figure 8: For a given depth image visualized as a green point cloud, we show a comparison of shape completions from our DeepSDF
approach against the true shape and 3D-EPN.

(a) Noisy Input Point Cloud (b) Shape Completion

Figure 9: Demonstration of DeepSDF shape completion from a
partial noisy point cloud. Input here is generated by perturbing the
3D point cloud positions generated by the ground truth depth map
by 3% of the plane length. We provide a comprehensive analysis
of robustness to noise in the supplementary material.

metric shape representation, our continuous SDF approach
produces more visually pleasing and accurate shape recon-
structions. While a few recent shape completion methods
were presented [24, 55], we could not find the code to run
the comparisons, and their underlying 3D representation is
voxel grid which we extensively compare against.

6.4. Latent Space Shape Interpolation

To show that our learned shape embedding is complete
and continuous, we render the results of the decoder when
a pair of shapes are interpolated in the latent vector space
(Fig. 1). The results suggests that the embedded continuous
SDF’s are of meaningful shapes and that our representation
extracts common interpretable shape features, such as the
arms of a chair, that interpolate linearly in the latent space.

7. Conclusion & Future Work

DeepSDF significantly outperforms the applicable
benchmarked methods across shape representation and
completion tasks and simultaneously addresses the goals
of representing complex topologies, closed surfaces, while
providing high quality surface normals of the shape. How-
ever, while point-wise forward sampling of a shape’s SDF is
efficient, shape completion (auto-decoding) takes consider-
ably more time during inference due to the need for explicit
optimization over the latent vector. We look to increase per-
formance by replacing ADAM optimization with more ef-
ficient Gauss-Newton or similar methods that make use of
the analytic derivatives of the model.

DeepSDF models enable representation of more com-
plex shapes without discretization errors with significantly
less memory than previous state-of-the-art results as shown
in Table 1, demonstrating an exciting route ahead for 3D
shape learning. The clear ability to produce quality latent
shape space interpolation opens the door to reconstruction
algorithms operating over scenes built up of such efficient
encodings. However, DeepSDF currently assumes models
are in a canonical pose and as such completion in-the-wild
requires explicit optimization over a SE(3) transformation
space increasing inference time. Finally, to represent the
true space-of-possible-scenes including dynamics and tex-
tures in a single embedding remains a major challenge, one
which we continue to explore.

8

Supplementary

A. Overview
This supplementary material provides quantitative and

qualitative experimental results along with extended tech-
nical details that are supplementary to the main paper. We
first describe the shape completion experiment with noisy
depth maps using DeepSDF (Sec. B). We then discuss ar-
chitecture details (Sec. C) along with experiments exploring
characteristics and tradeoffs of the DeepSDF design deci-
sions (Sec. D). In Sec. E we compare auto-decoders with
variational and standard auto-encoders. Further, additional
details on data preparation (Sec. F), training (Sec. G), the
auto-decoder learning scheme (Sec. H), and quantitative
evaluations (Sec. I) are presented, and finally in Sec. J we
provide additional quantitative and qualitative results.

B. Shape Completion from Noisy Depth Maps
We test the robustness of our shape completion method

by using noisy depth maps as input. Specifically, we
demonstrate the ability to complete shapes given partial
noisy point clouds obtained from consumer depth cameras.
Following [25], we simulate the noise distribution of typi-
cal structure depth sensors, including Kinect V1 by adding
zero-mean Guassian noise to the inverse depth representa-
tion of a ground truth input depth image:

Dnoise =
1

(1/D) +N (0, α2)
, (11)

where α is standard deviation of the normal distribution.
For the experiment, we synthetically generate noisy

depth maps from the ShapeNet [12] plane models using the
same benchmark test set of Dai et al. [16] used in the main
paper. We perturb the depth values using standard deviation
α of 0.01, 0.02, 0.03, and 0.05. Given that the target shapes
are normalized to a unit sphere, one can observe that the
inserted noise level is significant (Fig. 10).

The shape completion results with respect to added
Guassian noise on the input synthetic depth maps are shown
in Fig. 11. The Chamfer distance of the inferred shape ver-
sus the ground truth shape deteriorates approximately lin-
early with increasing standard deviation of the noise. Com-
pared to the Chamfer distance between raw perturbed point
cloud and ground truth depth map, which increases super-
linearly with increasing noise level (Fig. 11), the shape
completion quality using DeepSDF degrades much slower,
implying that the shape priors encoded in the network play
an important role regularizing the shape reconstruction.

C. Network Architecture
Fig. 13 depicts the overall architecture of DeepSDF. For

all experiments in the main paper we used a network com-

0.00 0.01 0.02 0.03 0.04 0.05
α , std. dev of inverse-depth Gaussian noise

0

1

2

3

4

5

6

C
h

am
fe

r
D

is
ta

n
ce

raw perturbed depth image

completion, mean

completion, median

Figure 10: Chamfer distance (multiplied by 103) as a function
of α, the standard deviation of inverse-depth Gaussian noise as
shown in Eq. 11, for shape completions on planes from ShapeNet.
Green line describes Chamfer distance between the perturbed
depth points and original depth points, which shows the superlin-
ear increase with increased noise. Blue and orange show respec-
tively the mean and median of the shape completion’s Chamfer
distance (over a dataset of 85 plane completions) relative to the
ground truth mesh which deteriorates approximately linearly with
increasing standard deviation of noise. The same DeepSDF model
was used for inference, the only difference is in the noise of the
single depth image provided from which to perform shape com-
pletion. Example qualitative resuls are shown in Fig. 11.

posed of 8 fully connected layers each of which are applied
with weight-normalization, and each intermediate vectors
are processed with RELU activation and 0.2 dropout ex-
cept for the final layer. A skip connection is included at the
fourth layer.

D. DeepSDF Network Design Decisions
In this section, we study system parameter decisions that

affect the accuracy of SDF regression, thereby providing
insight on the tradeoffs and scalability of the proposed al-
gorithm.

D.1. Effect of Network Depth on Regression Accu-
racy

In this experiment we test how the expressive capabil-
ity of DeepSDF varies as a function of the number of lay-
ers. Theoretically, an infinitely deep feed-forward network
should be able to memorize the training data with arbitrary
precision, but in practice this is not true due to finite com-
pute power and the vanishing gradient problem, which lim-
its the depth of the network.

We conduct an experiment where we let DeepSDF mem-
orize SDFs of 500 chairs and inspect the training loss with
varying number of layers. As described in Fig. 13, we find

9

(a) No noise (b) α = 0.01 (c) α = 0.02 (d) α = 0.03 (e) α = 0.05

Figure 11: Shape completion results obtained from the partial and noisy input depth maps shown below. Input point clouds are overlaid
on each completion to illustrate the scale of noise in the input.

(a) No noise (b) α = 0.01 (c) α = 0.02 (d) α = 0.03 (e) α = 0.05

Figure 12: Visualization of partial and noisy point-clouds used to test shape completion with DeepSDF. Here, α is the standard deviation
of Gaussian noise in Eq. 11. Corresponding completion results are shown above.

Latent Vector

(x,y,z)

FC

512

FC

512259

FC

512

FC

512

FC

512

FC

512

FC

512

FC
1

TH
1

Figure 13: DeepSDF architecture used for experiments. Boxes represent vectors while arrows represent operations. The feed-forward
network is composed of 8 fully connected layers, denoted as “FC” on the diagram. We used 256 and 128 dimensional latent vectors for
reconstruction and shape completion experiments, respectively. The latent vector is concatenated, denoted “+”, with the xyz query, making
259 length vector, and is given as input to the first layer. We find that inserting the latent vector again to the middle layers significantly
improves the learning, denoted as dotted arrow in the diagram: the 259 vector is concatenated with the output of fourth fully connected
layer to make a 512 vector. Final SDF value is obtained with hypberbolic tangent non-linear activation denoted as “TH”.

that applying the input vector (latent vector + xyz query)
both to the first and a middle layer improves training. In-
spired by this, we split the experiment into two cases: 1)
train a regular network without skip connections, 2) train a
network by concatenating the input vector to every 4 layers
(e.g. for 12 layer network the input vector will be concate-
nated to the 4th, and 8th intermediate feature vectors).

Experiment results in Fig. 14 shows that the DeepSDF
architecture without skip connections gets quickly saturated
at 4 layers while the error keeps decreasing when trained

with latent vector skip connections. Compared to the archi-
tecture we used for the main experiments (8 FC layers), a
network with 16 layers produces significantly smaller train-
ing error, suggesting a possibility of using a deeper network
for higher precision in some application scenarios. Further,
we observe that the test error quickly decrease from four-
layer architecture (9.7) to eight layer one (5.7) and subse-
quently plateaued for deeper architectures. However, this
does not suggest conclusive results on generalization, as we
used the same number of small training data for all archi-

10

2 4 6 8 10 12 14 16 18 20
Number of FC Layers

0

1

2

3

4

5

6

7

8

Tr
ai

ni
ng

 S
DF

 L
os

s (
1e

-3
)

Our Used Model

Training Loss by Network Size
Without Skip
With Skip

Figure 14: Regression accuracy (measured by the SDF loss used
in training) as a function of network depth. Without skip con-
nections, we observe a plateau in training loss past 4 layers. With
skip connections, training loss continues to decrease although with
diminishing returns past 12 layers. The model size chosen for
all other experiments, 8 layers, provides a good tradeoff between
speed and accuracy.

tectures even though a network with more number of pa-
rameters tends to require higher volume of data to avoid
overfitting.

D.2. Effect of Truncation Distance on Regression
Accuracy

We study the effect of the truncation distance (δ from
Eq. 4 of the manuscript) on the regression accuracy of the
model. The truncation distance controls the extent from the
surface over which we expect the network to learn a met-
ric SDF. Fig. 15 plots the Chamfer distance as a function of
truncation distance. We observe a moderate decrease in the
accuracy of the surface representation as the truncation dis-
tance is increased. A hypothesis for an explanation is that
it becomes more difficult to approximate a larger truncation
region (a strictly larger domain of the function) to the same
absolute accuracy as a smaller truncation region. The ben-
efit, however, of larger truncation regions is that there is a
larger region over which the metric SDF is maintained – in
our application this reduces raycasting time, and there are
other applications as well, such as physics simulation and
robot motion planning for which a larger SDF of shapes
may be valuable. We chose a δ value of 0.01 for all exper-
iments presented in the manuscript, which provides a good
tradeoff between raycasting speed and surface accuracy.

0.2 0.4 0.6 0.8 1.0
δ , Truncation distance

0.05

0.06

0.07

0.08

0.09

0.10

C
h

am
fe

r
D

is
ta

n
ce

(3
0,

00
0

p
oi

n
ts

)

mean

median

Figure 15: Chamfer distance (multiplied by 103) as a function of
δ, the truncation distance, for representing a known small dataset
of 100 cars from ShapeNet dataset [12]. All models were trained
on the same set of SDF samples from these 100 cars. There is
a moderate reduction in the accuracy of the surface, as measured
by the increasing Chamfer distance, as the truncation distance is
increased between 0.05 and 1.0. The bend in the curve at δ = 0.3
is just expected to be due to the stochasticity inherent in training.
Note that (a) due to the tanh() activation in the final layer, 1.0
is the maximum value the model can predict, and (b) the plot is
dependent on the distribution of the samples used during training.

E. Comparison with Variational and Standard
Auto-encoders on MNIST

To compare different approaches of learning a latent
code-space for a given datum, we use the MNIST dataset
and compare the variational auto encoder (VAE), the stan-
dard bottleneck auto encoder (AE), and the proposed auto
decoder (AD). As the reconstruction error we use the stan-
dard binary cross-entropy and match the model architec-
tures such that the decoders of the different approaches have
exactly the same structure and hence theoretical capacity.
We show all evaluations for different latent code-space di-
mensions of 2D, 5D and 15D.

For 2D codes the latent spaces learned by the different
methods are visualized in Fig. 16. All code spaces can rea-
sonably represent the different digits. The AD latent space
seems more condensed than the ones from VAE and AE.
For the optimization-based encoding approach we initialize
codes randomly. We show visualizations of such random
samples in Fig. 17. Note that samples from the AD- and
VAE-learned latent code spaces mostly look like real digits,
showing their ability to generate realistic digit images.

We also compare the train and test reconstruction errors
for the different methods in Fig. 18. For VAE and AE
we show both the reconstruction error obtained using the
learned encoder and obtained via code optimization using

11

(a) Auto Encoder (AE) (b) Variational Auto Encoder (VAE) (c) Auto Decoder (AD)

Figure 16: Comparison of the 2D latent code-space learned by the different methods. Note that large portion of the regular auto-encoder’s
(AE) latent embedding space contains images that do not look like digits. In contrast, both VAE and AD generate smooth and complete
latent space without outstanding artifacts. Best viewed digitally.

(a) AD (b) VAE (c) AE

Figure 17: Visualization of random samples from the latent 2D
(top), 5D (middle), and 15D (bottom) code space on MNIST. Note
that the sampling from regular auto-encoder (AE) suffers from ar-
tifacts. Best viewed digitally.

the learned decoder only (denoted “(V)AE decode”). The
test error for VAE and AE are consistently minimized for
all latent code dimensions. “AE decode ” diverges in all
cases hinting at a learned latent space that is poorly suited
for optimization-based decoding. Optimizing latent codes
using the VAE encoder seems to work better for higher di-
mensional codes. The proposed AD approach works well in
all tested code space dimensions. Although “VAE decode”
has slightly lower test error than AD in 15 dimensions, qual-
itatively the AD’s reconstructions are better as we discuss
next.

In Fig. 19 we show example reconstructions from the
test dataset. When using the learned encoders VAE and
AE produce qualitatively good reconstructions. When using
optimization-based encoding “AE decode” performs poorly
indicating that the latent space has many bad local minima.

While the reconstructions from “VAE decode“ are, for the
most part, qualitatively close to the original, AD’s recon-
structions more closely resemble the actual digit of the test
data. Qualitatively, AD is on par with reconstructions from
end-to-end-trained VAE and AE.

F. Data Preparation Details
For data preparation, we are given a mesh of a shape

to sample spatial points and their SDF values. We begin
by normalizing each shape so that the shape model fits into
a unit sphere with some margin (in practice fit to sphere
radius of 1/1.03). Then, we virtually render the mesh from
100 virtual cameras regularly sampled on the surface of the
unit sphere. Then, we gather the surface points by back-
projecting the depth pixels from the virtual renderings, and
the points’ normals are assigned from the triangle to which
it belongs. Triangle surface orientations are set such that
they are towards the camera. When a triangle is visible from
both orientations, however, the given mesh is not watertight,
making true SDF values hard to calculate, so we discard a
mesh with more than 2% of its triangles being double-sided.
For a valid mesh, we construct a KD-tree for the oriented
surface points.

As stated in the main paper, it is important that we sam-
ple more aggressively near the surface of the mesh as we
want to accurately model the zero-crossings. Specifically,
we sample around 250,000 points randomly on the surface
of the mesh, weighted by triangle areas. Then, we perturb
each surface point along all xyz axes with mean-zero Gaus-
sian noise with variance 0.0025 and 0.00025 to generate
two spatial samples per surface point. For around 25,000
points we uniformly sample within the unit sphere. For each
collected spatial samples, we find the nearest surface point

12

(a) 2D (b) 5D (c) 15D

Figure 18: Train and test error for different dimensions of the latent code for the different approaches.

(a) AD (b) VAE (c) VAE decode (d) AE (e) AE decode

Figure 19: Reconstructions for 2D (top), 5D (middle), and 15D (bottom) code space on MNIST. For each of the different dimensions we
plot the given test MNIST image and the reconstruction given the inferred latent code.

from the KD-tree, measure the distance, and decide the sign
from the dot product between the normal and their vector
difference.

G. Training and Testing Details
For training, we find it is important to initialize the latent

vectors quite small, so that similar shapes do not diverge
in the latent vector space – we used N (0, 0.012). Another
crucial point is balancing the positive and negative samples
both for training and testing: for each batch used for gradi-
ent descent, we set half of the SDF point samples positive
and the other half negative.

Learning rate for the decoder parameters was set to be
1e-5 * B, where B is number of shapes in one batch. For
each shape in a batch we subsampled 16384 SDF samples.
Learning rate for the latent vectors was set to be 1e-3. Also,
we set the regularization parameter σ = 10−2. We trained
our models on 8 Nvidia GPUs approximately for 8 hours
for 1000 epochs. For reconstruction experiments the latent
vector size was set to be 256, and for the shape completion
task we used models with 128 dimensional latent vectors.

H. Full Derivation of Auto-decoder-based
DeepSDF Formulation

To derive the auto-decoder-based shape-coded DeepSDF
formulation we adopt a probabilistic perspective. Given a
dataset of N shapes represented with signed distance func-

tion SDF iNi=1, we prepare a set of K point samples and
their signed distance values:

Xi = {(xj , sj) : sj = SDF i(xj)} . (12)

The SDF values can be computed from mesh inputs as de-
tailed in the main paper.

For an auto-decoder, as there is no encoder, each la-
tent code zi is paired with training shape data Xi and
randomly initialized from a zero-mean Gaussian. We use
N (0, 0.0012). The latent vectors {zi}Ni=1 are then jointly
optimized during training along with the decoder parame-
ters θ.

We assume that each shape in the given dataset X =
{Xi}Ni=1 follows the joint distribution of shapes:

pθ(Xi, zi) = pθ(Xi|zi)p(zi) , (13)

where θ parameterizes the data likelihood. For a given θ a
shape code zi can be estimated via Maximum-a-Posterior
(MAP) estimation:

ẑi = arg max
zi

pθ(zi|Xi) = arg max
zi

log pθ(zi|Xi) . (14)

We estimate θ as the parameters that maximizes the poste-
rior across all shapes:

θ̂ = arg max
θ

∑
Xi∈X

max
zi

log pθ(zi|Xi) (15)

= arg max
θ

∑
Xi∈X

max
zi

(log pθ(Xi|zi) + log p(zi)) ,

13

where the second equality follows from Bayes Law.
For each shape Xi defined via point and SDF samples

(xj , sj) as defined in Eq. 12 we make a conditional inde-
pendence assumption given the code zi to arrive at the de-
composition of the posterior pθ(Xi|zi):

pθ(Xi|zi) =
∏

(xj ,sj)∈Xi

pθ(sj |zi;xj) . (16)

Note that the individual SDF likelihoods pθ(sj |zi;xj) are
parameterized by the sampling location xj .

To derive the proposed auto-decoder-based DeepSDF
approach we express the SDF likelihood via a deep feed-
forward network fθ(zi,xj) and, without loss of generality,
assume that the likelihood takes the form:

pθ(sj |zi;xj) = exp(−L(fθ(zi,xj), sj)) . (17)

The SDF prediction s̃j = fθ(zi,xj) is represented using
a fully-connected network and L(s̃j , sj) is a loss function
penalizing the deviation of the network prediction from the
actual SDF value sj . One example for the cost function is
the standard L2 loss function which amounts to assuming
Gaussian noise on the SDF values. In practice we use the
clamped L1 cost introduced in the main manuscript.

In the latent shape-code space, we assume the prior dis-
tribution over codes p(zi) to be a zero-mean multivariate-
Gaussian with a spherical covariance σ2I . Note that other
more complex priors could be assumed. This leads to the fi-
nal cost function via Eq. 15 which we jointly minimize with
respect to the network parameters θ and the shape codes
{zi}Ni=1:

arg min
θ,{zi}Ni=1

N∑
i=1

 K∑
j=1

L(fθ(zi,xj), sj) +
1

σ2
||zi||22

 . (18)

At inference time, we are given SDF point samples X of
one underlying shape to estimate the latent code z describ-
ing the shape. Using the MAP formulation from Eq. 14 with
fixed network parameters θ we arrive at:

ẑ = arg min
z

∑
(xj ,sj)∈X

L(fθ(z,xj), sj) +
1

σ2
||z||22, (19)

where 1
σ2 can be used to balance the reconstruction and reg-

ularization term. For additional comments and insights as
well as the practical implementation of the network and its
training refer to the main manuscript.

I. Details on Quantitative Evaluations
I.1. Preparation for Benchmarked Methods

I.1.1 DeepSDF

For quantitative evaluations we converted the DeepSDF
model for a given shape into a mesh by using Marching

Cubes [35] with 5123 resolution. Note that while this was
done for quantitative evaluation as a mesh, many of the
qualitative renderings are instead produced by raycasting
directly against the continuous SDF model, which can avoid
some of the artifacts produced by Marching Cubes at fi-
nite resolution. For all experiments in representing known
or unknown shapes, DeepSDF was trained on ShapeNet
v2, while all shape completion experiments were trained
on ShapeNet v1, to match 3D-EPN. Additional DeepSDF
training details are provided in Sec. G.

I.1.2 OGN

For OGN we trained the provided decoder model
(“shape from id”) for 300,000 steps on the same train set
of cars used for DeepSDF. To compute the point-based
metrics, we took the pair of both the groundtruth 256-
voxel training data provided by the authors, and the gen-
erated 256-voxel output, and converted both of these into
point clouds of only the surface voxels, with one point for
each of the voxels’ centers. Specifically, surface voxels
were defined as voxels which have at least one of 6 di-
rect (non-diagonal) voxel neighbors unoccupied. A typi-
cal number of vertices in the resulting point clouds is ap-
proximately 80,000, and the points used for evaluation are
randomly sampled from these sets. Additionally, OGN was
trained based on ShapeNet v1, while AtlasNet was trained
on ShapeNet v2. To adjust for the scale difference, we con-
verted OGN point clouds into ShapeNet v2 scale for each
model.

I.1.3 AtlasNet

Since the provided pretrained AtlasNet models were trained
multi-class, we instead trained separate AtlasNet models for
each evaluation. Each model was trained with the avail-
able code by the authors with all default parameters, except
for the specification of class for each model and matching
train/test splits with those used for DeepSDF. The quality of
the models produced from these trainings appear compara-
ble to those in the original paper.

Of note, we realized that AtlasNet’s own computation
of its training and evaluation metric, Chamfer distance, had
the limitation that only the vertices of the generated mesh
were used for the evaluation. This leaves the triangles of
the mesh unconstrained in that they can connect across what
are supposed to be holes in the shape, and this would not be
reflected in the metric. Our evaluation of meshes produced
by AtlasNet instead samples evenly from the mesh surface,
i.e. each triangle in the mesh is weighted by its surface area,
and points are sampled from the triangle faces.

14

I.1.4 3D-EPN

We used the provided shape completion inference results for
3D-EPN, which is in voxelized distance function format.
We subsequently extracted the isosurface using MATLAB
as described in the paper to obtain the final mesh.

I.2. Metrics

The first two metrics, Chamfer and Earth Mover’s, are
easily applicable to points, meshes (by sampling points
from the surface) and voxels (by sampling surface voxels
and treating their centers as points). When meshes are
available, we also can compute metrics suited particularly
for meshes: mesh accuracy, mesh completion, and mesh
cosine similarity.

Chamfer distance is a popular metric for evaluating
shapes, perhaps due to its simplicity [19]. Given two point
sets S1 and S2, the metric is simply the sum of the nearest-
neighbor distances for each point to the nearest point in the
other point set.

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈S2

min
x∈S1

||x− y||22

Note that while sometimes the metric is only defined
one-way (i.e., just

∑
x∈S1

min
y∈S2

||x − y||22) and this is not

symmetric, the sum of both directions, as defined above, is
symmetric: dCD(S1, S2) = dCD(S2, S1). Note also that
the metric is not technically a valid distance function since
it does not satisfy the triangle inequality, but is commonly
used as a psuedo distance function [19]. In all of our
experiments we report the Chamfer distance for 30,000
points for both |S1| and |S2|, which can be efficiently
computed by use of a KD-tree, and akin to prior work
[22] we normalize by the number of points: we report
dCD(S1,S2)

30,000 .

Earth Mover’s distance [45], also known as the Wasser-
stein distance, is another popular metric for measuring the
difference between two discrete distributions. Unlike the
Chamfer distance, which does not require any constraints
on the correspondences between evaluated points, for the
Earth Mover’s distance a bijection φ : S1 → S2, i.e. a
one-to-one correspondence, is formed. Formally, for two
point sets S1 and S2 of equal size |S1| = |S2|, the metric is
defined via the optimal bijection [19]:

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x− φ(x)||2

Although the metric is commonly approximated in the
deep learning literature [19] by distributed approximation

schemes [5] for speed during training, we compute the met-
ric accurately for evaluation using a more modest number
of point samples (500) using [18].

In practice the intuitive, important difference between
the Chamfer and Earth Mover’s metrics is that the Earth
Mover’s metric more favors distributions of points that are
similarly evenly distributed as the ground truth distribution.
A low Chamfer distance may be achieved by assigning just
one point in S2 to a cluster of points in S1, but to achieve
a low Earth Mover’s distance, each cluster of points in S1

requires a comparably sized cluster of points in S2.

Mesh accuracy, as defined in [47], is the minimum
distance d such that 90% of generated points are within d
of the ground truth mesh. We used 1,000 points sampled
evenly from the generated mesh surface, and computed the
minimum distances to the full ground truth mesh. To clar-
ify, the distance is computed to the closest point on any face
of the mesh, not just the vertices. Note that unlike Chamfer
and Earth Mover’s metrics which require sampling of points
from both meshes, with this metric the entire mesh for the
ground truth is used – accordingly this metric has lower
variance than for example Chamfer distance computed with
only 1,000 points from each mesh. Note also that mesh
accuracy does not measure how complete the generated
mesh is – a low (good) mesh accuracy can be achieved
by only generating one small portion of the ground truth
mesh, ignoring the rest. Accordingly, it is ideal to pair
mesh accuracy with the following metric, mesh completion.

Mesh completion, also as defined in [47], is the fraction
of points sampled from the ground truth mesh that are
within some distance ∆ (a parameter of the metric) to the
generated mesh. We used ∆ = 0.01, which well measured
the differences in mesh completion between the different
methods. With this metric the full generated mesh is used,
and points (we used 1,000) are sampled from the ground
truth mesh (mesh accuracy is vice versa). Ideal mesh
completion is 1.0, minimum is 0.0.

Mesh cosine similarity is a metric we introduce to mea-
sure the accuracy of mesh normals. We define the metric
as the mean cosine similarity between the normals of points
sampled from the ground truth mesh, and the normals of the
nearest faces of the generated mesh. More precisely, given
the generated mesh Mgen and a set of points with normals
Sgt sampled from the ground truth mesh, for each point xi
in Sgt we look up the closest face Fi in Mgen, and then
compute the average cosine similarity between the normals
associated with xi and Fi,

Cos. sim(Mgen, Sgt) =
1

|Sgt|
∑
xi∈Sgt

n̂Fi · n̂xi ,

15

Mesh comp., mean chair plane table lamp sofa
AtlasNet-Sph. 0.668 0.862 0.755 0.281 0.641
AtlasNet-25 0.723 0.887 0.785 0.528 0.681
DeepSDF 0.947 0.943 0.959 0.877 0.931
Mesh comp., median
AtlasNet-Sph. 0.686 0.930 0.795 0.257 0.666
AtlasNet-25 0.736 0.944 0.825 0.533 0.702
DeepSDF 0.970 0.970 0.982 0.930 0.941
Cosine sim., mean
AtlasNet-Sph. 0.790 0.840 0.826 0.719 0.847
AtlasNet-25 0.797 0.858 0.835 0.725 0.826
DeepSDF 0.896 0.907 0.916 0.862 0.917

Table 5: Comparison of metrics for representing unknown shapes
(U) for various classes of ShapeNet. Mesh completion as defined
in [47] i.e. the fraction of groundtruth sampled points that are
within a ∆ (we used ∆ = 0.01) of the generated mesh, and mean
cosine similarity is of normals for nearest groundtruth-generated
point pairs. Cosine similarity is defined in I.2. Higher is better for
all metrics in this table.

where each n̂ ∈ R3 is a unit-norm normal vector. We
use |Sgt| = 2, 500 and in order to allow for [22] which
does not provide oriented normals, we compute the min(·)
over both the generated mesh normal and its flipped normal:
min(n̂Fi · n̂xi ,−n̂Fi · n̂xi). Ideal cosine similarity is 1.0,
minimum (given the allowed flip of the normal) is 0.0.

J. Additional Results

J.1. Representing Unseen Objects

We provide additional results on representing test ob-
jects with trained DeepSDF (Fig. 20, 21). We provide ad-
ditional data with the additional metrics, mesh completion
and mesh cosine similarity, for the comparison of methods
contained in the manuscript (Tab. 5). The success of this
task for DeepSDF implies that 1) high quality shapes sim-
ilar to the test shapes exist in the embedding space, and 2)
the codes for the shapes can be found through simple gradi-
ent descent.

J.2. Shape Completions

Finally we present additional shape completion results
on unperturbed depth images of synthetic ShapeNet dataset
(Fig. 22), demonstrating the quality of the auto-decoder
learning scheme and the new shape representation.

References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.

Learning representations and generative models for 3d point
clouds. 2018.

[2] T. Bagautdinov, C. Wu, J. Saragih, P. Fua, and Y. Sheikh.
Modeling facial geometry using compositional vaes. 1:1.

[3] P. Baqué, E. Remelli, F. Fleuret, and P. Fua. Geodesic
convolutional shape optimization. arXiv preprint
arXiv:1802.04016, 2018.

[4] Y. Bengio, A. Courville, and P. Vincent. Representa-
tion learning: A review and new perspectives. TPAMI,
35(8):1798–1828, 2013.

[5] D. P. Bertsekas. A distributed asynchronous relaxation algo-
rithm for the assignment problem. In Decision and Control,
1985 24th IEEE Conference on, pages 1703–1704. IEEE,
1985.

[6] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and
A. J. Davison. Codeslam-learning a compact, optimis-
able representation for dense visual slam. arXiv preprint
arXiv:1804.00874, 2018.

[7] P. Bojanowski, A. Joulin, D. Lopez-Pas, and A. Szlam. Op-
timizing the latent space of generative networks. In J. Dy
and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 600–609. PMLR, 10–
15 Jul 2018.

[8] M. Bouakkaz and M.-F. Harkat. Combined input training and
radial basis function neural networks based nonlinear princi-
pal components analysis model applied for process monitor-
ing. In IJCCI, pages 483–492, 2012.

[9] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral
networks and locally connected networks on graphs. arXiv
preprint arXiv:1312.6203, 2013.

[10] D. R. Canelhas, E. Schaffernicht, T. Stoyanov, A. J. Lilien-
thal, and A. J. Davison. An eigenshapes approach to com-
pressed signed distance fields and their utility in robot map-
ping. arXiv preprint arXiv:1609.02462, 2016.

[11] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3d objects with radial basis functions.
In SIGGRAPH, pages 67–76. ACM, 2001.

[12] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[13] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,
and P. Abbeel. Infogan: Interpretable representation learning
by information maximizing generative adversarial nets. In
NIPS, pages 2172–2180, 2016.

[14] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In ECCV, pages 628–644. Springer, 2016.

[15] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In SIGGRAPH, pages
303–312. ACM, 1996.

[16] A. Dai, C. Ruizhongtai Qi, and M. Niessner. Shape comple-
tion using 3d-encoder-predictor cnns and shape synthesis. In
CVPR, pages 5868–5877, 2017.

[17] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral
filtering. In NIPS, pages 3844–3852, 2016.

[18] G. Doran. PyEMD: Earth mover’s distance for Python,
2014–. [Online; accessed ¡today¿].

16

Figure 20: Additional test shape reconstruction results. Left to right alternatingly: DeepSDF reconstruction and ground truth.

Figure 21: Additional test shape reconstruction results for Table ShapeNet class. All of the above images are test shapes represented with
our DeepSDF network during inference time, showing the accuracy and expressiveness of the shape embedding.

[19] H. Fan, H. Su, and L. J. Guibas. A point set generation net-
work for 3d object reconstruction from a single image.

[20] J. Fan and J. Cheng. Matrix completion by deep matrix fac-
torization. Neural Networks, 98:34–41, 2018.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NIPS, pages 2672–2680, 2014.

[22] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry. Atlasnet: A papier-m\ˆ ach\’e approach to learn-
ing 3d surface generation. arXiv preprint arXiv:1802.05384,
2018.

[23] H. B. Hamu, H. Maron, I. Kezurer, G. Avineri, and Y. Lip-
man. Multi-chart generative surface modeling. arXiv

preprint arXiv:1806.02143, 2018.
[24] X. Han, Z. Li, H. Huang, E. Kalogerakis, and Y. Yu. High-

resolution shape completion using deep neural networks for
global structure and local geometry inference.

[25] A. Handa, T. Whelan, J. McDonald, and A. J. Davison. A
benchmark for rgb-d visual odometry, 3d reconstruction and
slam. In Robotics and automation (ICRA), 2014 IEEE inter-
national conference on, pages 1524–1531. IEEE, 2014.

[26] C. Häne, S. Tulsiani, and J. Malik. Hierarchical surface pre-
diction for 3d object reconstruction. In 3D Vision (3DV),
2017 International Conference on, pages 412–420. IEEE,
2017.

[27] K. Hornik, M. Stinchcombe, and H. White. Multilayer feed-

17

Figure 22: Additional shape completion results. Left to Right: input depth point cloud, shape completion using DeepSDF, second view,
and third view.

forward networks are universal approximators. Neural net-
works, 2(5):359–366, 1989.

[28] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[29] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial networks.
arXiv preprint, 2017.

[30] M. W. Jones. Distance field compression. Journal of WSCG,
12(2):199–204, 2004.

[31] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive
growing of gans for improved quality, stability, and variation.
arXiv preprint arXiv:1710.10196, 2017.

[32] M. Kazhdan and H. Hoppe. Screened poisson surface recon-
struction. ACM TOG, 32(3):29, 2013.

[33] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[34] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia. De-
formable shape completion with graph convolutional autoen-
coders. CVPR, 2017.

[35] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In SIGGRAPH,
volume 21, pages 163–169. ACM, 1987.

[36] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym,
E. Yumer, V. G. Kim, and Y. Lipman. Convolutional neu-
ral networks on surfaces via seamless toric covers. 2017.

[37] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and
A. Fitzgibbon. Kinectfusion: Real-time dense surface map-
ping and tracking. In ISMAR, pages 127–136. IEEE, 2011.

18

[38] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
In CVPR, pages 652–660, 2017.

[39] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
In NIPS, pages 5099–5108, 2017.

[40] Z. Qunxiong and L. Chengfei. Dimensionality reduction
with input training neural network and its application in
chemical process modelling. Chinese Journal of Chemical
Engineering, 14(5):597–603, 2006.

[41] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[42] V. Reddy and M. Mavrovouniotis. An input-training neu-
ral network approach for gross error detection and sensor
replacement. Chemical Engineering Research and Design,
76(4):478–489, 1998.

[43] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning
deep 3d representations at high resolutions. In CVPR, pages
6620–6629. IEEE, 2017.

[44] J. Rock, T. Gupta, J. Thorsen, J. Gwak, D. Shin, and
D. Hoiem. Completing 3d object shape from one depth im-
age. In CVPR, pages 2484–2493, 2015.

[45] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distri-
butions with applications to image databases. In Computer
Vision, 1998. Sixth International Conference on, pages 59–
66. IEEE, 1998.

[46] T. Salimans and D. P. Kingma. Weight normalization: A
simple reparameterization to accelerate training of deep neu-
ral networks. In NIPS, pages 901–909, 2016.

[47] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. pages 519–528. IEEE,
2006.

[48] A. Sinha, J. Bai, and K. Ramani. Deep learning 3d shape
surfaces using geometry images. In ECCV, pages 223–240.
Springer, 2016.

[49] D. Stutz and A. Geiger. Learning 3d shape completion from
laser scan data with weak supervision. In CVPR, pages
1955–1964, 2018.

[50] S. Tan and M. L. Mayrovouniotis. Reducing data dimen-
sionality through optimizing neural network inputs. AIChE
Journal, 41(6):1471–1480, 1995.

[51] M. Tarini, K. Hormann, P. Cignoni, and C. Montani.
Polycube-maps. In ACM TOG, volume 23, pages 853–860.
ACM, 2004.

[52] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree gen-
erating networks: Efficient convolutional architectures for
high-resolution 3d outputs. In ICCV, 2017.

[53] N. Verma, E. Boyer, and J. Verbeek. Feastnet: Feature-
steered graph convolutions for 3d shape analysis.

[54] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.
Learning a probabilistic latent space of object shapes via
3d generative-adversarial modeling. In NIPS, pages 82–90,
2016.

[55] J. Wu, C. Zhang, X. Zhang, Z. Zhang, W. T. Freeman,
and J. B. Tenenbaum. Learning shape priors for single-

view 3d completion and reconstruction. arXiv preprint
arXiv:1809.05068, 2018.

[56] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In CVPR, pages 1912–1920, 2015.

[57] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: In-
terpretable unsupervised learning on 3d point clouds. arXiv
preprint arXiv:1712.07262, 2017.

[58] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn:
Point completion network. In 3DV, 2018.

[59] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and
T. Funkhouser. 3dmatch: Learning local geometric descrip-
tors from rgb-d reconstructions. In CVPR, pages 199–208.
IEEE, 2017.

19

