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Overview

We’ve seen two particular classification algorithms: KNN and decision trees

Next two lectures: combine multiple classifiers into an ensemble which
performs better than the individual members

I Generic class of techniques that can be applied to almost any learning
algorithm...

I ... but are particularly well suited to decision trees

Today

I Understanding generalization using the bias/variance decomposition
I Reducing variance using bagging

Next lecture

I Making a weak classifier stronger (i.e. reducing bias) using boosting
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Ensemble methods: Overview

An ensemble of predictors is a set of predictors whose individual decisions
are combined in some way to classify new examples

I E.g., (possibly weighted) majority vote

For this to be nontrivial, the classifiers must differ somehow, e.g.

I Different algorithm
I Different choice of hyperparameters
I Trained on different data
I Trained with different weighting of the training examples

Ensembles are usually trivial to implement. The hard part is deciding what
kind of ensemble you want, based on your goals.
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This lecture: bagging
I Train classifiers independently on random subsets of the training data.

Next lecture: boosting
I Train classifiers sequentially, each time focusing on training examples

that the previous ones got wrong.

Bagging and boosting serve very different purposes. To understand
this, we need to take a detour to understand the bias and variance of
a learning algorithm.
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Loss Functions

A loss function L(y , t) defines how bad it is if the algorithm predicts y , but
the target is actually t.

Example: 0-1 loss for classification

L0−1(y , t) =

{
0 if y = t

1 if y 6= t

I Averaging the 0-1 loss over the training set gives the training error
rate, and averaging over the test set gives the test error rate.

Example: squared error loss for regression

LSE(y , t) =
1

2
(y − t)2

I The average squared error loss is called mean squared error (MSE).
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Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We can quantify this effect in terms of the bias/variance decomposition.

I Bias and variance of what?
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Bias-Variance Decomposition: Basic Setup

Suppose the training set D consists of pairs (xi , ti ) sampled independent and
identically distributed (i.i.d.) from a single data generating distribution
pdata.

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training sets independently
from pdata.
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Bias-Variance Decomposition: Basic Setup

Let’s run our learning algorithm on each training set, and compute its
prediction y at the query point x.

We can view y as a random variable, where the randomness comes from the
choice of training set.

The classification accuracy is determined by the distribution of y .
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y is a random variable, we can talk about its expectation, variance, etc.
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Bias-Variance Decomposition: Basic Setup

Recap of basic setup:

I Fix a query point x.
I Repeat:

I Sample a random training dataset D i.i.d. from the data generating
distribution pdata.

I Run the learning algorithm on D to get a prediction y at x.
I Sample the (true) target from the conditional distribution p(t|x).
I Compute the loss L(y , t).

Notice: y is independent of t. (Why?)

This gives a distribution over the loss at x, with expectation E[L(y , t) | x].

For each query point x, the expected loss is different. We are interested in
minimizing the expectation of this with respect to x ∼ pdata.
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Bayes Optimality

For now, focus on squared error loss, L(y , t) = 1
2 (y − t)2.

A first step: suppose we knew the conditional distribution p(t | x). What
value y should we predict?

I Here, we are treating t as a random variable and choosing y .

Claim: y∗ = E[t | x] is the best possible prediction.

Proof:

E[(y − t)2 | x] = E[y2 − 2yt + t2 | x]

= y2 − 2yE[t | x] + E[t2 | x]

= y2 − 2yE[t | x] + E[t | x]2 + Var[t | x]

= y2 − 2yy∗ + y2
∗ + Var[t | x]

= (y − y∗)2 + Var[t | x]
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Bayes Optimality

E[(y − t)2 | x] = (y − y∗)2 + Var[t | x]

The first term is nonnegative, and can be made 0 by setting y = y∗.

The second term corresponds to the inherent unpredictability, or noise, of
the targets, and is called the Bayes error.

I This is the best we can ever hope to do with any learning algorithm.
An algorithm that achieves it is Bayes optimal.

I Notice that this term doesn’t depend on y .

This process of choosing a single value y∗ based on p(t | x) is an example of
decision theory.
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Bayes Optimality

Now return to treating y as a random variable (where the randomness
comes from the choice of dataset).

We can decompose out the expected loss (suppressing the conditioning on x
for clarity):

E[(y − t)2] = E[(y − y∗)2] + Var(t)

= E[y2
∗ − 2y∗y + y2] + Var(t)

= y2
∗ − 2y∗E[y ] + E[y2] + Var(t)

= y2
∗ − 2y∗E[y ] + E[y ]2 + Var(y) + Var(t)

= (y∗ − E[y ])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error
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Bayes Optimality

E[(y − t)2] = (y∗ − E[y ])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

We just split the expected loss into three terms:

I bias: how wrong the expected prediction is (corresponds to
underfitting)

I variance: the amount of variability in the predictions (corresponds to
overfitting)

I Bayes error: the inherent unpredictability of the targets

Even though this analysis only applies to squared error, we often loosely use
“bias” and “variance” as synonyms for “underfitting” and “overfitting”.
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Bias/Variance Decomposition: Another Visualization

We can visualize this decomposition in output space, where the axes
correspond to predictions on the test examples.
If we have an overly simple model (e.g. KNN with large k), it might
have

I high bias (because it’s too simplistic to capture the structure in the
data)

I low variance (because there’s enough data to get a stable estimate of
the decision boundary)
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Bias/Variance Decomposition: Another Visualization

If you have an overly complex model (e.g. KNN with k = 1), it might
have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)
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Bagging

Now, back to bagging!
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Bagging: Motivation

Suppose we could somehow sample m independent training sets from
pdata.

We could then compute the prediction yi based on each one, and take
the average y = 1

m

∑m
i=1 yi .

How does this affect the three terms of the expected loss?
I Bayes error: unchanged, since we have no control over it
I Bias: unchanged, since the averaged prediction has the same

expectation

E[y ] = E

[
1

m

m∑
i=1

yi

]
= E[yi ]

I Variance: reduced, since we’re averaging over independent samples

Var[y ] = Var

[
1

m

m∑
i=1

yi

]
=

1

m2

m∑
i=1

Var[yi ] =
1

m
Var[yi ].
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Bagging: The Idea

In practice, running an algorithm separately on independently sampled
datasets is very wasteful!

Solution: bootstrap aggregation, or bagging.
I Take a single dataset D with n examples.
I Generate m new datasets, each by sampling n training examples from
D, with replacement.

I Average the predictions of models trained on each of these datasets.

The bootstrap is one of the most important ideas in all of statistics!
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Bagging: The Idea

Problem: the datasets are not independent, so we don’t get the 1/m
variance reduction.

I Possible to show that if the sampled predictions have variance σ2 and
correlation ρ, then

Var

(
1

m

m∑
i=1

yi

)
=

1

m
(1− ρ)σ2 + ρσ2.

Ironically, it can be advantageous to introduce additional variability
into your algorithm, as long as it reduces the correlation between
samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random set
of d input features, and only consider splits on those features

Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions
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Summary

Bagging reduces overfitting by averaging predictions.

Used in most competition winners

I Even if a single model is great, a small ensemble usually helps.

Limitations:

I Does not reduce bias.
I There is still correlation between classifiers.

Random forest solution: Add more randomness.
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