Linear Algebra - Part II Projection, Eigendecomposition, SVD

Punit Shah

(Adapted from Sargur Srihari's slides)

Brief Review from Part 1

- Symmetric Matrix:

$$
\mathbf{A}=\mathbf{A}^{T}
$$

- Orthogonal Matrix:

$$
\mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T}=\mathbf{I} \quad \text { and } \quad \mathbf{A}^{-1}=\mathbf{A}^{T}
$$

- L2 Norm:

$$
\|\mathbf{x}\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}
$$

Angle Between Vectors

- Dot product of two vectors can be written in terms of their L2 norms and the angle θ between them.

$$
\mathbf{a}^{T} \mathbf{b}=\|\mathbf{a}\|_{2}\|\mathbf{b}\|_{2} \cos (\theta)
$$

Cosine Similarity

- Cosine between two vectors is a measure of their similarity:

$$
\cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}
$$

- Orthogonal Vectors: Two vectors \mathbf{a} and \mathbf{b} are orthogonal to each other if $\mathbf{a} \cdot \mathbf{b}=0$.

Vector Projection

- Given two vectors \mathbf{a} and \mathbf{b}, let $\hat{\mathbf{b}}=\frac{\mathbf{b}}{\|\mathbf{b}\|}$ be the unit vector in the direction of \mathbf{b}.
- Then $\mathbf{a}_{1}=a_{1} \hat{\mathbf{b}}$ is the orthogonal projection of a onto a straight line parallel to \mathbf{b}, where

$$
a_{1}=\|\mathbf{a}\| \cos (\theta)=\mathbf{a} \cdot \hat{\mathbf{b}}=\mathbf{a} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\|}
$$

Image taken from wikipedia.

Diagonal Matrix

- Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity matrix.
- A square diagonal matrix with diagonal elements given by entries of vector \mathbf{v} is denoted:

$$
\operatorname{diag}(\mathbf{v})
$$

- Multiplying vector x by a diagonal matrix is efficient:

$$
\operatorname{diag}(\mathbf{v}) \mathbf{x}=\mathbf{v} \odot \mathbf{x}
$$

- Inverting a square diagonal matrix is efficient:

$$
\operatorname{diag}(\mathbf{v})^{-1}=\operatorname{diag}\left(\left[\frac{1}{v_{1}}, \ldots, \frac{1}{v_{n}}\right]^{T}\right)
$$

Determinant

- Determinant of a square matrix is a mapping to a scalar.

$$
\operatorname{det}(\mathbf{A}) \text { or }|\mathbf{A}|
$$

- Measures how much multiplication by the matrix expands or contracts the space.
- Determinant of product is the product of determinants:

$$
\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})
$$

$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c .
$$

Image taken from wikipedia.

List of Equivalencies

The following are all equivalent:

- \mathbf{A} is invertible, i.e. \mathbf{A}^{-1} exists.
- $\mathbf{A x}=\mathrm{b}$ has a unique solution.
- Columns of A are linearly independent.
$-\operatorname{det}(\mathbf{A}) \neq 0$
- $\mathbf{A x}=\mathbf{0}$ has a unique, trivial solution: $\mathrm{x}=0$.

Zero Determinant

If $\operatorname{det}(\mathbf{A})=0$, then:

- A is linearly dependent.
- $\mathbf{A x}=\mathbf{b}$ has no solution or infinitely many solutions.
- $A x=0$ has a non-zero solution.

Matrix Decomposition

- We can decompose an integer into its prime factors, e.g. $12=2 \times 2 \times 3$.
- Similarly, matrices can be decomposed into factors to learn universal properties:

$$
\mathbf{A}=\mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1}
$$

Eigenvectors

- An eigenvector of a square matrix \mathbf{A} is a nonzero vector \mathbf{v} such that multiplication by \mathbf{A} only changes the scale of \mathbf{v}.

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

- The scalar λ is known as the eigenvalue.
- If \mathbf{v} is an eigenvector of \mathbf{A}, so is any rescaled vector $s \mathbf{v}$. Moreover, sv still has the same eigenvalue. Thus, we constrain the eigenvector to be of unit length:

$$
\|\mathbf{v}\|=1
$$

Characteristic Polynomial

- Eigenvalue equation of matrix \mathbf{A} :

$$
\begin{aligned}
\mathbf{A} \mathbf{v} & =\lambda \mathbf{v} \\
\mathbf{A} \mathbf{v}-\lambda \mathbf{v} & =\mathbf{0} \\
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

- If nonzero solution for v exists, then it must be the case that:

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
$$

- Unpacking the determinant as a function of λ, we get:

$$
|\mathbf{A}-\lambda \mathbf{I}|=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)=0
$$

- The $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are roots of the characteristic polynomial, and are eigenvalues of \mathbf{A}.

Example

- Consider the matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

- The characteristic polynomial is:

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right]=3-4 \lambda+\lambda^{2}=0
$$

- It has roots $\lambda=1$ and $\lambda=3$ which are the two eigenvalues of \mathbf{A}.
- We can then solve for eigenvectors using $\mathbf{A v}=\lambda \mathbf{v}$:

$$
\mathbf{v}_{\lambda=1}=[1,-1]^{T} \quad \text { and } \quad \mathbf{v}_{\lambda=3}=[1,1]^{T}
$$

Eigendecomposition

- Suppose that $n \times n$ matrix \mathbf{A} has n linearly independent eigenvectors $\left\{\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}\right\}$ with eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.
- Concatenate eigenvectors to form matrix V .
- Concatenate eigenvalues to form vector $\boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{n}\right]^{T}$.
- The eigendecomposition of \mathbf{A} is given by:

$$
\mathbf{A}=\mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1}
$$

Symmetric Matrices

- Every real symmetric matrix A can be decomposed into real-valued eigenvectors and eigenvalues:

$$
\mathbf{A}=\mathbf{Q} \Lambda \mathbf{Q}^{T}
$$

- \mathbf{Q} is an orthogonal matrix of the eigenvectors of \mathbf{A}, and Λ is a diagonal matrix of eigenvalues.
- We can think of \mathbf{A} as scaling space by λ_{i} in direction $\boldsymbol{v}^{(i)}$.

Eigendecomposition is not Unique

- Decomposition is not unique when two eigenvalues are the same.
- By convention, order entries of Λ in descending order. Then, eigendecomposition is unique if all eigenvalues are unique.
- If any eigenvalue is zero, then the matrix is singular.

Positive Definite Matrix

- A matrix whose eigenvalues are all positive is called positive definite.
- If eigenvalues are positive or zero, then matrix is called positive semidefinite.
- Positive definite matrices guarantee that:

$$
x^{T} A x>0 \quad \text { for any nonzero vector } x
$$

- Similarly, positive semidefinite guarantees: $\mathbf{x}^{\top} \mathbf{A x} \geq 0$

Singular Value Decomposition (SVD)

- If \mathbf{A} is not square, eigendecomposition is undefined.
- SVD is a decomposition of the form:

$$
\mathbf{A}=\mathbf{U D V}^{T}
$$

- SVD is more general than eigendecomposition.
- Every real matrix has a SVD.

SVD Definition (1)

- Write \mathbf{A} as a product of three matrices: $\mathbf{A}=$ UDV $^{\top}$.
- If \mathbf{A} is $m \times n$, then \mathbf{U} is $m \times m, \mathbf{D}$ is $m \times n$, and \mathbf{V} is $n \times n$.
- U and V are orthogonal matrices, and D is a diagonal matrix (not necessarily square).
- Diagonal entries of D are called singular values of A.
- Columns of U are the left singular vectors, and columns of V are the right singular vectors.

SVD Definition (2)

- SVD can be interpreted in terms of eigendecompostion.
- Left singular vectors of \mathbf{A} are the eigenvectors of AA^{T}.
- Right singular vectors of \mathbf{A} are the eigenvectors of $\mathbf{A}^{T} \mathbf{A}$.
- Nonzero singular values of \mathbf{A} are square roots of eigenvalues of $A^{T} A$ and $A A^{T}$.

