Linear Algebra - Part II Projection, Eigendecomposition, SVD

Punit Shah

(Adapted from Sargur Srihari's slides)

Brief Review from Part 1

Symmetric Matrix:

$$A = A^T$$

Orthogonal Matrix:

$$\mathbf{A}^{T}\mathbf{A} = \mathbf{A}\mathbf{A}^{T} = \mathbf{I}$$
 and $\mathbf{A}^{-1} = \mathbf{A}^{T}$

$$||\mathbf{x}||_2 = \sqrt{\sum_i x_i^2}$$

Angle Between Vectors

Dot product of two vectors can be written in terms of their L2 norms and the angle θ between them.

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = ||\mathbf{a}||_2 ||\mathbf{b}||_2 \cos(\theta)$$

Cosine Similarity

Cosine between two vectors is a measure of their similarity:

$$\cos(heta) \;=\; rac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||\; ||\mathbf{b}||}$$

Orthogonal Vectors: Two vectors a and b are orthogonal to each other if a · b = 0.

Vector Projection

- Given two vectors **a** and **b**, let $\hat{\mathbf{b}} = \frac{\mathbf{b}}{||\mathbf{b}||}$ be the unit vector in the direction of **b**.
- ▶ Then $\mathbf{a}_1 = a_1 \hat{\mathbf{b}}$ is the orthogonal projection of **a** onto a straight line parallel to **b**, where

$$\mathbf{a}_1 = ||\mathbf{a}||\cos(heta) = \mathbf{a} \cdot \hat{\mathbf{b}} = \mathbf{a} \cdot rac{\mathbf{b}}{||\mathbf{b}||}$$

Image taken from wikipedia.

Diagonal Matrix

- Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity matrix.
- A square diagonal matrix with diagonal elements given by entries of vector v is denoted:

$\mathsf{diag}(\mathbf{v})$

Multiplying vector x by a diagonal matrix is efficient:

$$\mathsf{diag}(\mathbf{v})\mathbf{x} = \mathbf{v} \odot \mathbf{x}$$

Inverting a square diagonal matrix is efficient:

$$\mathsf{diag}(\mathbf{v})^{-1} = \mathsf{diag}\left([\frac{1}{v_1}, \dots, \frac{1}{v_n}]^{\mathcal{T}}\right)$$

Determinant

Determinant of a square matrix is a mapping to a scalar.

$$det(A)$$
 or $|A|$

- Measures how much multiplication by the matrix expands or contracts the space.
- Determinant of product is the product of determinants:

$$det(AB) = det(A)det(B)$$

$$|A| = egin{bmatrix} a & b \ c & d \end{bmatrix} = ad - bc.$$

Image taken from wikipedia.

List of Equivalencies

The following are all equivalent:

- ► A is invertible, i.e. A^{-1} exists.
- Ax = b has a **unique** solution.
- Columns of A are linearly independent.

• det(A)
$$\neq$$
 0

• Ax = 0 has a unique, trivial solution: x = 0.

Zero Determinant

- If $det(\mathbf{A}) = 0$, then:
 - ► A is linearly dependent.

\blacktriangleright Ax = b has no solution or infinitely many solutions.

• Ax = 0 has a non-zero solution.

Matrix Decomposition

- We can decompose an integer into its prime factors, e.g. 12 = 2 × 2 × 3.
- Similarly, matrices can be decomposed into factors to learn universal properties:

$$A = V diag(\lambda) V^{-1}$$

Eigenvectors

An eigenvector of a square matrix A is a nonzero vector v such that multiplication by A only changes the scale of v.

$$Av = \lambda v$$

- The scalar λ is known as the **eigenvalue**.
- If v is an eigenvector of A, so is any rescaled vector sv. Moreover, sv still has the same eigenvalue. Thus, we constrain the eigenvector to be of unit length:

$$||v|| = 1$$

Characteristic Polynomial

Eigenvalue equation of matrix A:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
$$\mathbf{A}\mathbf{v} - \lambda\mathbf{v} = \mathbf{0}$$
$$(\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$$

If nonzero solution for v exists, then it must be the case that:

$$det(\mathbf{A} - \lambda \mathbf{I}) = \mathbf{0}$$

• Unpacking the determinant as a function of λ , we get:

$$\mathbf{A} - \lambda \mathbf{I} | = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \dots (\lambda_n - \lambda) = \mathbf{0}$$

The λ₁, λ₂,..., λ_n are roots of the characteristic polynomial, and are eigenvalues of **A**.

Example

Consider the matrix:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

The characteristic polynomial is:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = 3 - 4\lambda + \lambda^2 = 0$$

It has roots λ = 1 and λ = 3 which are the two eigenvalues of A.

• We can then solve for eigenvectors using $Av = \lambda v$:

$$\mathbf{v}_{\lambda=1} = [1, -1]^{\mathcal{T}}$$
 and $\mathbf{v}_{\lambda=3} = [1, 1]^{\mathcal{T}}$

Eigendecomposition

- Suppose that n × n matrix A has n linearly independent eigenvectors {v⁽¹⁾,..., v⁽ⁿ⁾} with eigenvalues {λ₁,...,λ_n}.
- Concatenate eigenvectors to form matrix V.
- Concatenate eigenvalues to form vector $\boldsymbol{\lambda} = [\lambda_1, \dots, \lambda_n]^T$.
- The **eigendecomposition** of **A** is given by:

$$A = V diag(\lambda) V^{-1}$$

Symmetric Matrices

Every real symmetric matrix A can be decomposed into real-valued eigenvectors and eigenvalues:

$$\mathsf{A} = \mathsf{Q} \Lambda \mathsf{Q}^{\mathsf{T}}$$

- Q is an orthogonal matrix of the eigenvectors of A, and A is a diagonal matrix of eigenvalues.
- We can think of **A** as scaling space by λ_i in direction $\mathbf{v}^{(i)}$.

Eigendecomposition is not Unique

- Decomposition is not unique when two eigenvalues are the same.
- By convention, order entries of A in descending order. Then, eigendecomposition is unique if all eigenvalues are unique.
- ▶ If any eigenvalue is zero, then the matrix is **singular**.

Positive Definite Matrix

- A matrix whose eigenvalues are all positive is called positive definite.
- If eigenvalues are positive or zero, then matrix is called positive semidefinite.
- Positive definite matrices guarantee that:

 $\mathbf{x}^{T}\mathbf{A}\mathbf{x} > 0$ for any nonzero vector \mathbf{x}

Similarly, positive semidefinite guarantees: $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$

Singular Value Decomposition (SVD)

- ► If A is not square, eigendecomposition is undefined.
- **SVD** is a decomposition of the form:

$$A = UDV^{T}$$

- SVD is more general than eigendecomposition.
- Every real matrix has a SVD.

SVD Definition (1)

• Write A as a product of three matrices: $A = UDV^{T}$.

- ▶ If A is $m \times n$, then U is $m \times m$, D is $m \times n$, and V is $n \times n$.
- U and V are orthogonal matrices, and D is a diagonal matrix (not necessarily square).
- Diagonal entries of D are called singular values of A.
- Columns of U are the left singular vectors, and columns of V are the right singular vectors.

- SVD can be interpreted in terms of eigendecompostion.
- Left singular vectors of A are the eigenvectors of AA^{T} .
- **•** Right singular vectors of **A** are the eigenvectors of $\mathbf{A}^T \mathbf{A}$.
- Nonzero singular values of A are square roots of eigenvalues of A^TA and AA^T.