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Organization:

● Clustering
○ Motivation

● K-Means
○ Review & Demo

● Gaussian Mixture Models
○ Review

● EM Algorithm (time permitting)
○ Free Energy Justification
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Clustering



● Important assumption we make when doing any form of 
learning:

“Similar data-points have similar behaviour”

● Eg. In the context of supervised learning

“Similar inputs should lead to similar predictions”*

Clustering: Motivation

*sometimes our trained models don’t follow these assumption (cf. literature on adversarial examples)



● Discretizing colours for compression using a codebook

Clustering: Examples



● Doing a very basic form of 
boundary detection
○ Discretize colours
○ Draw boundaries between 

colour groups

Clustering: Examples



Clustering: Examples

● Like all unsupervised learning algorithms, clustering can 
be incorporated into the pipeline for training a supervised 
model

● We will go over an example of this very soon



Clustering: Challenges
● What is a good notion of “similarity”?
● Euclidean distance bad for Images
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Clustering: Challenges

● The notion of similarity used can make the same algorithm 
behave in very different ways and can in some cases be a 
motivation for developing new algorithms (not necessarily 
just for clustering algorithms)

● Another question is how to compare different clustering 
algorithms
○ May have specific methods for making these decisions 

based on the clustering algorithms used
○ Can also use performance on down-the-line tasks as a 

proxy when choosing between different setups



Clustering: Some Specific Algorithms

● Today we shall review:
○ K-Means
○ Gaussian Mixture Models

● Hopefully there will be some time to go over EM as well



K-Means



K-Means: The Algorithm

1. Initialize K centroids
2. Iterate until convergence

a. Assign each data-point to it’s closest centroid
b. Move each centroid to the center of data-points 

assigned to it



K-Means: A look at how it can be used

<< Slides from TA’s past >>



Tomato sauce

A major tomato sauce company wants to tailor their brands to sauces
to suit their customers

They run a market survey where the test subject rates different sauces

After some processing they get the following data

Each point represents the preferred sauce characteristics of a specific
person
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Tomato sauce data

M
or

e
G

ar
lic

→

More Sweet →

This tells us how much different customers like different flavors
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Some natural questions

How many different sauces should the company make?

How sweet/garlicy should these sauces be?

Idea: We will segment the consumers into groups (in this case 3), we
will then find the best sauce for each group
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Approaching k-means

Say I give you 3 sauces whose garlicy-ness and sweetness are marked
by X

M
or

e
G

ar
lic

→

More Sweet →
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Approaching k-means

We will group each customer by the sauce that most closely matches
their taste

M
or

e
G

ar
lic

→

More Sweet →
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Approaching k-means

Given this grouping, can we choose sauces that would make each
group happier on average?

M
or

e
G

ar
lic

→

More Sweet →
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Approaching k-means

Given this grouping, can we choose sauces that would make each
group happier on average?

M
or

e
G

ar
lic

→

More Sweet →

Yes !
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Approaching k-means

Given these new sauces, we can regroup the customers
M

or
e

G
ar

lic
→

More Sweet →
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Approaching k-means

Given these new sauces, we can regroup the customers
M

or
e

G
ar

lic
→

More Sweet →
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K-Means: Challenges

● How to initialize?
○ You saw k-means++ in lecture slides
○ Can come up with other heuristics

● How do you choose K?
○ You may come up with criteria for the value of K based 

on:
■ Restrictions on the magnitude of K

● Everyone can’t have their own tomato sauce
■ Performance on some down-the-line task

● If used for doing supervised learning later, must 
choose K such that you do not under/over fit
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K-Means: Challenges

● K-Means algorithm converges to a local minimum:
○ Can try multiple random restarts
○ Other heuristics such as splitting discussed in lecture

● Questions about K-Means?



Gaussian Mixture Models



Generative Models

● One important class of methods in machine learning
● The goal is to define some parametric family of probability 

distributions and then maximize the likelihood of your data 
under this distribution by finding the best parameters



Gaussian Mixture Model (GMM)

What is p(x)?

p(x) =

K∑
k=1

p(z = k)p(x|z = k) =

K∑
k=1

πkN (x|µk, I)

This distribution is an example of a Gaussian Mixture Model (GMM),
and πk are known as the mixing coefficients

In general, we would have different covariance for each cluster, i.e.,
p(x | z = k) = N (x|µk,Σk). For this lecture, we assume Σk = I for
simplicity.

If we allow arbitrary covariance matrices, GMMs are universal
approximators of densities (if you have enough Gaussians). Even
diagonal GMMs are universal approximators.

Intro ML (UofT) CSC311-Lec9 26 / 41



Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit one Gaussian distribution to data:

Now, we are trying to fit a GMM with K = 2:

[Slide credit: K. Kutulakos]
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Visualizing a Mixture of Gaussians – 2D Gaussians
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Fitting GMMs: Maximum Likelihood

Maximum likelihood objective:

log p(D) =

N∑
n=1

log p(x(n)) =

N∑
n=1

log

(
K∑
k=1

πkN (x(n)|µk, I)

)

How would you optimize this w.r.t. parameters {πk,µk}?
I No closed-form solution when we set derivatives to 0
I Difficult because sum inside the log

One option: gradient ascent. Can we do better?

Can we have a closed-form update?
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Maximum Likelihood

Observation: if we knew z(n) for every x(n), (i.e. our dataset was
Dcomplete = {(z(n),x(n))}Nn=1) the maximum likelihood problem is easy:

log p(Dcomplete) =

N∑
n=1

log p(z(n),x(n))

=

N∑
n=1

log p(x(n)|z(n)) + log p(z(n))

=

N∑
n=1

K∑
k=1

I{z(n) = k}
(

logN (x(n)|µk, I) + log πk

)

Intro ML (UofT) CSC311-Lec9 30 / 41



Maximum Likelihood

log p(Dcomplete) =

N∑
n=1

K∑
k=1

I{z(n) = k}
(

logN (x(n)|µk, I) + log πk

)

We have been optimizing something similar for Naive bayes classifiers

By maximizing log p(Dcomplete), we would get this:

µ̂k =

∑N
n=1 I{z(n) = k}x(n)∑N
n=1 I{z(n) = k}

= class means

π̂k =
1

N

N∑
n=1

I{z(n) = k} = class proportions
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Maximum Likelihood

We haven’t observed the cluster assignments z(n), but we can compute
p(z(n)|x(n)) using Bayes rule

Conditional probability (using Bayes rule) of z given x

p(z = k|x) =
p(z = k)p(x|z = k)

p(x)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

=
πkN (x|µk, I)∑K
j=1 πjN (x|µj , I)
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Maximum Likelihood

log p(Dcomplete) =

N∑
n=1

K∑
k=1

I{z(n) = k}(logN (x(n)|µk, I) + log πk)

We don’t know the cluster assignments I{z(n) =k} (they are our latent
variables), but we know their expectation
E[I{z(n) =k} |x(n)]=p(z(n) =k|x(n)).

If we plug in r
(n)
k = p(z(n) = k|x(n)) for I{z(n) = k}, we get:

N∑
n=1

K∑
k=1

r
(n)
k (logN (x(n)|µk, I) + log πk)

This is still easy to optimize! Solution is similar to what we have seen:

µ̂k =

∑N
n=1 r

(n)
k x(n)∑N

n=1 r
(n)
k

π̂k =

∑N
n=1 r

(n)
k

N

Note: this only works if we treat r
(n)
k = πkN (x(n)|µk,I)∑K

j=1 πjN (x(n)|µj ,I)
as fixed.
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How Can We Fit a Mixture of Gaussians?

This motivates the Expectation-Maximization algorithm, which
alternates between two steps:

1. E-step: Compute the posterior probabilities r
(n)
k = p(z(n) = k|x(n))

given our current model, i.e., how much do we think a cluster is
responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the

parameters, assuming r
(n)
k are held fixed – change the parameters of

each Gaussian to maximize the probability that it would generate
the data it is currently responsible for.
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EM Algorithm for GMM

Initialize the means µ̂k and mixing coefficients π̂k

Iterate until convergence:

I E-step: Evaluate the responsibilities r
(n)
k given current parameters

r
(n)
k = p(z(n)=k|x(n)) =

π̂kN (x(n)|µ̂k, I)∑K
j=1 π̂jN (x(n)|µ̂j , I)

=
π̂k exp{− 1

2
‖x(n) − µ̂k‖2}∑K

j=1 π̂j exp{− 1
2
‖x(n) − µ̂j‖2}

I M-step: Re-estimate the parameters given current responsibilities

µ̂k =
1

Nk

N∑
n=1

r
(n)
k x(n)

π̂k =
Nk

N
with Nk =

N∑
n=1

r
(n)
k

I Evaluate log likelihood and check for convergence

log p(D) =
N∑

n=1

log

(
K∑

k=1

π̂kN (x(n)|µ̂k, I)

)
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Gaussian Mixture Models: Connection to K-Means

● You saw soft K-means in lecture
● If you look at the update equations (and maybe some 

back of the envelope calculations) you will see that the 
update rule for soft k-means is the same as the GMMs 
where each Gaussian is spherical (0 mean, Identity 
covariance matrix)



Gaussian Mixture Models: Miscellany

● Can try initializing the centers with the k-means algorithm
● Your models will train a lot fast if you use diagonal 

covariance matrices (but it might not necessarily be a 
good idea)




