CSC411: Optimization for Machine Learning

University of Toronto

September 20-26, 2018

1

¹based on slides by Eleni Triantafillou, Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang and other

Convexity

Definition of Convexity

A function f is **convex** if for any two points θ_1 and θ_2 and any $t \in [0, 1]$,

$$f(t heta_1+(1-t) heta_2)\leq tf(heta_1)+(1-t)f(heta_2)$$

We can *compose* convex functions such that the resulting function is also convex:

- If f is convex, then so is αf for $\alpha \geq 0$
- If f_1 and f_2 are both convex, then so is $f_1 + f_2$
- ▶ *etc.*, see

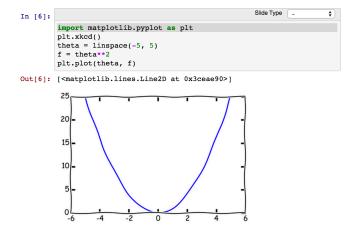
 $http://www.ee.ucla.edu/ee236b/lectures/functions.pdf \ for more$

Why do we care about convexity?

- Any local minimum is a global minimum.
- This makes optimization a lot easier because we don't have to worry about getting stuck in a local minimum.

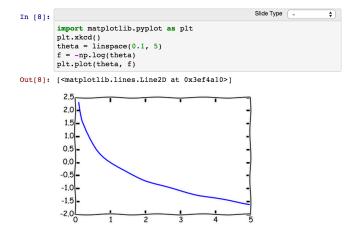
Examples of Convex Functions

Quadratics



Examples of Convex Functions

Negative logarithms

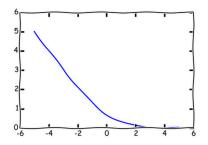


Convexity for logistic regression

Cross-entropy objective function for logistic regression is also convex!

 $f(\theta) = -\sum_{n} t^{(n)} \log p(y = 1 | x^{(n)}, \theta) + (1 - t^{(n)}) \log p(y = 0 | x^{(n)}, \theta)$ Plot of $-\log \sigma(\theta)$

Out[15]: [<matplotlib.lines.Line2D at 0x4c453d0>]



More on optimization

- Automatic Differentiation Modern technique (used in libraries like tensorflow, pytorch, etc) to efficiently compute the gradients required for optimization. A survey of these techniques can be found here: https://arxiv.org/pdf/1502.05767.pdf
- Convex Optimization by Boyd & Vandenberghe Book available for free online at http://www.stanford.edu/~boyd/cvxbook/
- Numerical Optimization by Nocedal & Wright Electronic version available from UofT Library

Cross-Validation

Cross-Validation: Why Validate?

So far:

Learning as Optimization Goal: Optimize model complexity (for the task) while minimizing under/overfitting

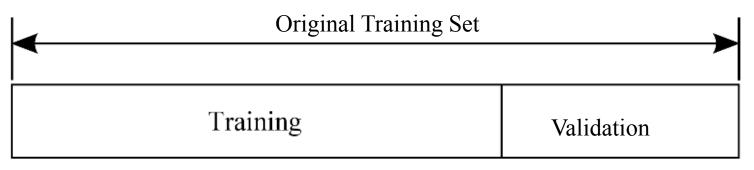
We want our model to **generalize well** without **overfitting**.

We can ensure this by **validating** the model.

Types of Validation

Hold-Out Validation: Split data into training and validation sets.

• Usually 30% as hold-out set.

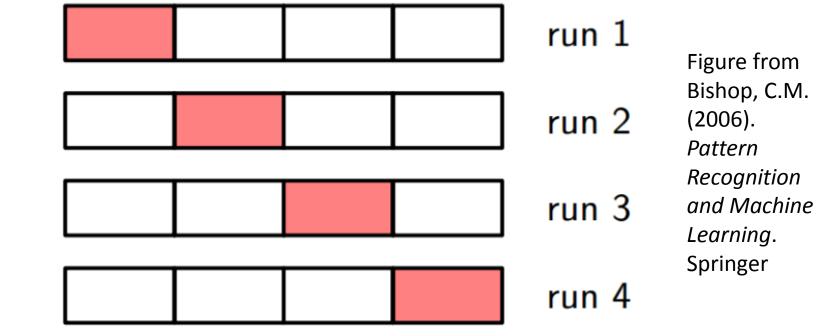


Problems:

- Waste of dataset
- Estimation of error rate might be misleading

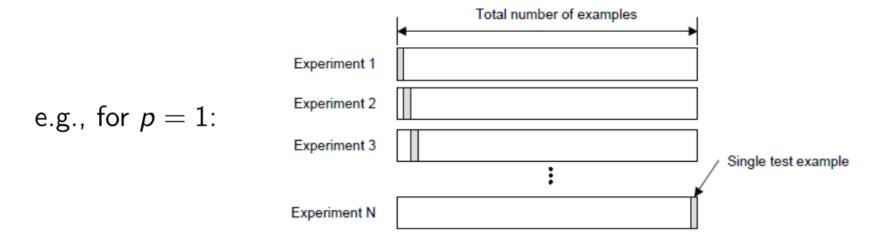
Types of Validation

• **Cross-Validation**: Random subsampling



Problem:

 More computationally expensive than holdout validation. Variants of Cross-Validation Leave-p-out: Use p examples as the validation set, and the rest as training; repeat for all configurations of examples.

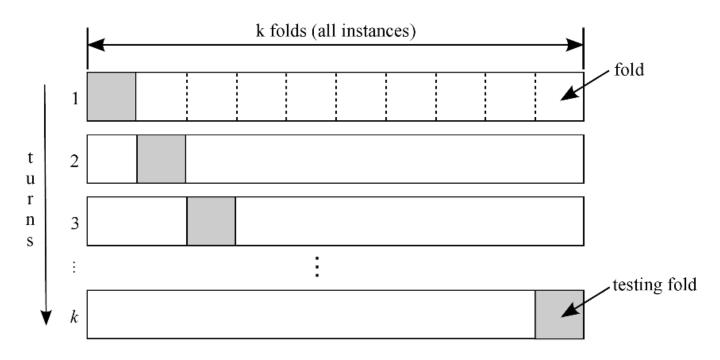


Problem:

• **Exhaustive**. We have to train and test $\binom{N}{p}$ times, where N is the # of training examples.

Variants of Cross-Validation

K-fold: Partition training data into K equally sized subsamples. For each fold, use the other K-1 subsamples as training data with the last subsample as validation.



K-fold Cross-Validation

• Think of it like leave-*p*-out but without combinatoric amounts of training/testing.

Advantages:

- All observations are used for both training and validation. Each observation is used for validation exactly once.
- Non-exhaustive: More tractable than leave-*p*-out

K-fold Cross-Validation

Problems:

• **Expensive** for large *N*, *K* (since we train/test *K* models on *N* examples).

- But there are some efficient hacks to save time...

- Can still **overfit** if we validate too many models!
 - Solution: Hold out an additional test set before doing any model selection, and check that the best model performs well on this additional set (*nested cross-validation*).
 Cross-Validception

Practical Tips for Using K-fold Cross-Val

- Q: How many folds do we need?
- A: With larger K, ...
- Error estimation tends to be more accurate
- But, computation time will be greater

In practice:

- Usually use *K* ≈ **10**
- BUT, larger dataset => choose smaller K