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Cross-Validation 



Cross-Validation: Why Validate? 

So far: 
 Learning as Optimization 
 Goal:  Optimize model complexity (for the task) 
   while minimizing under/overfitting 

 
We want our model to generalize well without 
overfitting. 
We can ensure this by validating the model. 



Types of Validation 
Hold-Out Validation: Split data into training and 
validation sets. 
• Usually 30% as hold-out set. 

 
 
 

Problems: 
• Waste of dataset 
• Estimation of error rate might be misleading 

Original Training Set 
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Types of Validation 
• Cross-Validation: Random subsampling 

 
 
 
 
 
 

Problem: 
• More computationally expensive than hold-

out validation. 
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Variants of Cross-Validation 
Leave-p-out: Use p examples as the validation set, and 
the rest as training; repeat for all configurations of 
examples. 
 
 
 
 
 
Problem: 
• Exhaustive. We have to train and test 𝑁

𝑝  times, 
where N is the # of training examples. 



Variants of Cross-Validation 
K-fold: Partition training data into K equally 
sized subsamples. For each fold, use the other K-
1 subsamples as training data with the last 
subsample as validation. 



K-fold Cross-Validation 

• Think of it like leave-p-out but without 
combinatoric amounts of training/testing. 

 
Advantages: 
• All observations are used for both training and 

validation. Each observation is used for 
validation exactly once. 

• Non-exhaustive: More tractable than leave-p-
out 



K-fold Cross-Validation 
Problems: 
• Expensive for large N, K (since we train/test K 

models on N examples). 
– But there are some efficient hacks to save time… 

• Can still overfit if we validate too many models! 
– Solution: Hold out an additional test set before doing 

any model selection, and check that the best model 
performs well on this additional set (nested cross-
validation).      =>     Cross-Validception 



Practical Tips for Using K-fold Cross-Val 

Q: How many folds do we need? 
A: With larger K, … 
• Error estimation tends to be more accurate 
• But, computation time will be greater 
 
In practice: 
• Usually use K ≈ 10 
• BUT, larger dataset => choose smaller K 


