Partial Derivatives Review

CSC311

September 18, 2020

Single-Variable Differentiation

Rule	$f(x)$	Scalar derivative notation with respect to x	Example
Constant	c	0	$\frac{d}{d x} 99=0$
Multiplication by	$c f$	$c \frac{d f}{d x}$	$\frac{d}{d x} 3 x=3$
constant	x^{n}	$n x^{n-1}$	$\frac{d}{d x} x^{3}=3 x^{2}$
Power Rule	$f+g$	$\frac{d f}{d x}+\frac{d g}{d x}$	$\frac{d}{d x}\left(x^{2}+3 x\right)=2 x+3$
Sum Rule	$f-g$	$\frac{d f}{d x}-\frac{d g}{d x}$	$\frac{d}{d x}\left(x^{2}-3 x\right)=2 x-3$
Difference Rule	$f g$	$f \frac{d g}{d x}+\frac{d f}{d x} g$	$\frac{d}{d x} x^{2} x=x^{2}+x 2 x=3 x^{2}$
Product Rule	$f(g(x))$	$\frac{d f(u)}{d u} \frac{d u}{d x}, l e t ~ u=g(x)$	$\frac{d}{d x} \ln \left(x^{2}\right)=\frac{1}{x^{2}} 2 x=\frac{2}{x}$
Chain Rule			

Partial Derivatives

- Multivariate functions have more than one variable:

$$
\text { e.g. } f\left(x_{1}, x_{2}, x_{3}\right)=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+b
$$

- Partial derivatives: derivative of one variable with all others fixed:

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}}\left[f\left(x_{1}, x_{2}, x_{3}\right)\right] & =a_{1} \\
\frac{\partial}{\partial x_{2}}\left[f\left(x_{1}, x_{2}, x_{3}\right)\right] & =a_{2} \\
\frac{\partial}{\partial x_{3}}\left[f\left(x_{1}, x_{2}, x_{3}\right)\right] & =a_{3}
\end{aligned}
$$

Partial Derivatives

- More Examples:

$$
\begin{gathered}
g\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} \\
\frac{\partial}{\partial x_{1}}\left[g\left(x_{1}, x_{2}\right)\right]=x_{2}^{2} \\
\frac{\partial}{\partial x_{2}}\left[g\left(x_{1}, x_{2}\right)\right]=2 x_{1} x_{2}
\end{gathered}
$$

Gradient

- Gradient: is a vector containing partial derivative i in position i.
- i.e.

$$
\left[\nabla f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]_{i}=\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{i}}
$$

- Equivalently,

$$
\nabla f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

Gradient

- Examples:

$$
\begin{gathered}
f\left(x_{1}, x_{2}, x_{3}\right)=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+b \\
\nabla f\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \\
g\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} \\
\nabla g\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
x_{2}^{2} \\
2 x_{1} x_{2}
\end{array}\right]
\end{gathered}
$$

Hessian Matrix

- We can define the second derivative of a function f, which is generally referred to as the Hessian of f. It is a matrix and its i-th, j-th entry is given by:

$$
\left[\nabla f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]_{i j}=\frac{\partial^{2} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{i} \partial x_{j}}
$$

- Equivalently, $H=\left[\begin{array}{ccc}\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}\end{array}\right]$

Hessian Matrix

- Example: find the gradient and hessian of:

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}-x_{1} x_{2}-3 x_{1}-9 x_{2}+3
$$

- Answer:

$$
\begin{gathered}
\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
2 x_{1}-x_{2}-3 \\
4 x_{2}-x_{1}-9
\end{array}\right] \\
H=\left[\begin{array}{cc}
2 & -1 \\
-1 & 4
\end{array}\right]
\end{gathered}
$$

