CSC 411 Lecture 11: Neural Networks II

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto

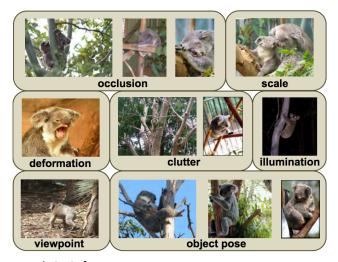
Neural Nets for Visual Object Recognition

- People are very good at recognizing shapes
 - Intrinsically difficult, computers are bad at it
- Why is it difficult?

CSC411 Lec11 2 / 43

Why is it a Problem?

Difficult scene conditions



[From: Grauman & Leibe]

CSC411 Lec11 3 / 43

Why is it a Problem?

• Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]

CSC411 Lec11 4 / 43

Why is it a Problem?

Tons of classes

[Biederman]

CSC411 Lec11 5 / 43

Neural Nets for Object Recognition

- People are very good at recognizing object
 - ▶ Intrinsically difficult, computers are bad at it
- Some reasons why it is difficult:
 - Segmentation: Real scenes are cluttered
 - Invariances: We are very good at ignoring all sorts of variations that do not affect class
 - Deformations: Natural object classes allow variations (faces, letters, chairs)
 - A huge amount of computation is required

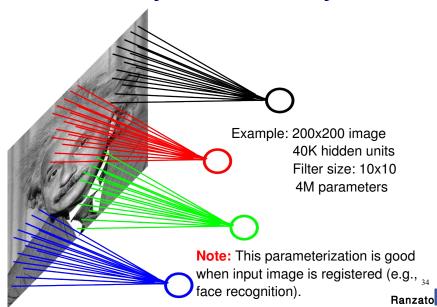
CSC411 Lec11 6 / 43

How to Deal with Large Input Spaces

- How can we apply neural nets to images?
- Images can have millions of pixels, i.e., x is very high dimensional
- How many parameters do I have?
- Prohibitive to have fully-connected layers
- What can we do?
- We can use a locally connected layer

CSC411 Lec11 7 / 43

Locally Connected Layer



CSC411 Lec11 8 / 43

When Will this Work?

When Will this Work?

• This is good when the input is (roughly) registered

CSC411 Lec11 9 / 43

General Images

• The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lec11 10 / 43

General Images

• The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lec11 11 /-

General Images

• The object can be anywhere

[Slide: Y. Zhu]

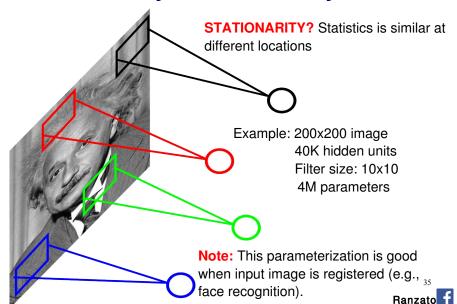
CSC411 Lec11 12 / 43

The Invariance Problem

- Our perceptual systems are very good at dealing with invariances
 - translation, rotation, scaling
 - deformation, contrast, lighting
- We are so good at this that its hard to appreciate how difficult it is
 - ▶ Its one of the main difficulties in making computers perceive
 - We still don't have generally accepted solutions

CSC411 Lec11 13 / 43

Locally Connected Layer

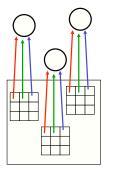


CSC411 Lec11 14 /

The replicated feature approach

5

The red connections all have the same weight.

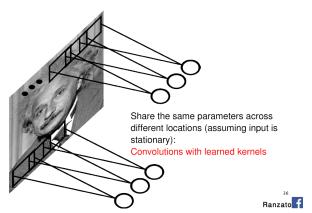


- Adopt approach apparently used in monkey visual systems
- Use many different copies of the same feature detector.
 - Copies have slightly different positions.
 - Could also replicate across scale and orientation.
 - Tricky and expensive
 - Replication reduces the number of free parameters to be learned.
- Use several **different feature types**, each with its own replicated pool of detectors.
 - Allows each patch of image to be represented in several ways.

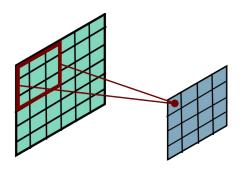
CSC411 Lec11 15 / 43

Convolutional Neural Net

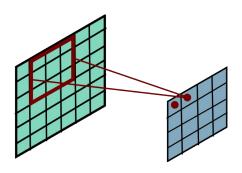
- Idea: statistics are similar at different locations (Lecun 1998)
- Connect each hidden unit to a small input patch and share the weight across space
- This is called a convolution layer and the network is a convolutional network



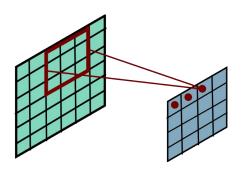
CSC411 Lec11 16 / 43



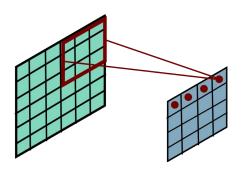
$$h_j^n = \max(0, \sum_{k=1}^K h_k^{n-1} * w_{jk}^n)$$



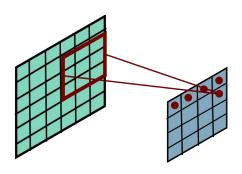
$$h_j^n = \max(0, \sum_{k=1}^K h_k^{n-1} * w_{jk}^n)$$



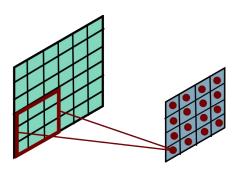
$$h_j^n = \max(0, \sum_{k=1}^K h_k^{n-1} * w_{jk}^n)$$



$$h_j^n = \max(0, \sum_{k=1}^K h_k^{n-1} * w_{jk}^n)$$



$$h_j^n = \max(0, \sum_{k=1}^K h_k^{n-1} * w_{jk}^n)$$



$$h_j^n = \max(0, \sum_{k=1}^K h_k^{n-1} * w_{jk}^n)$$

Convolution

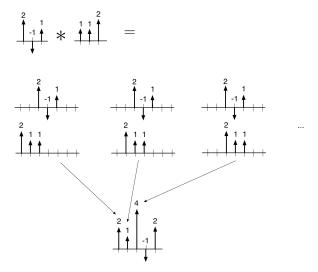
- Convolution layers are named after the convolution operation.
- If a and b are two arrays,

$$(a*b)_t = \sum_{\tau} a_{\tau} b_{t-\tau}.$$

CSC411 Lec11 17 / 43

Convolution

"Flip and Filter" interpretation:



CSC411 Lec11 18 / 43

2-D convolution is analogous:

$$(A*B)_{ij} = \sum_{s} \sum_{t} A_{st} B_{i-s,j-t}.$$

1	3	1		1	2
0	-1	1	*		2
2	2	-1		0	-1

			1 0				
1	3	1	× 2 1	1	5	7	2
0	-1	1		0	-2	-4	1
	'	'					' '
2	2	-1	•	2	6	4	-3
				0	-2	-2	1

CSC411 Lec11 19 / 43

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

0	1	0
1	4	1
0	1	0

CSC411 Lec11 20 / 43

What does this convolution kernel do?

0	-1	0
-1	8	-1
0	-1	0

What does this convolution kernel do?

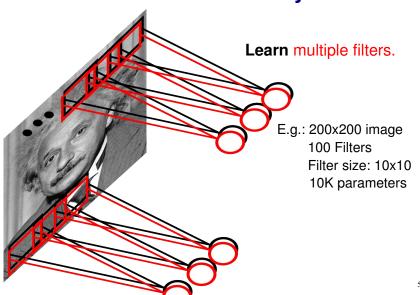
0	-1	0
-1	4	-1
0	-1	0

CSC411 Lec11 22 / 43

What does this convolution kernel do?

1	0	-1
2	0	-2
1	0	-1

CSC411 Lec11 23 / 43



Sanzato f

CSC411 Lec11 24

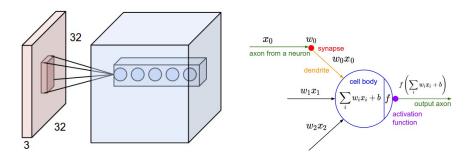


Figure: Left: CNN, right: Each neuron computes a linear and activation function

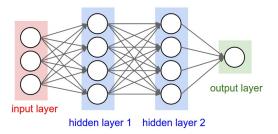
Hyperparameters of a convolutional layer:

- The number of filters (controls the **depth** of the output volume)
- The **stride**: how many units apart do we apply a filter spatially (this controls the spatial size of the output volume)
- The size $w \times h$ of the filters

[http://cs231n.github.io/convolutional-networks/]

CSC411 Lec11 25 / 43

MLP vs ConvNet



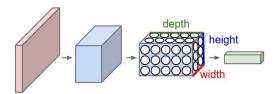
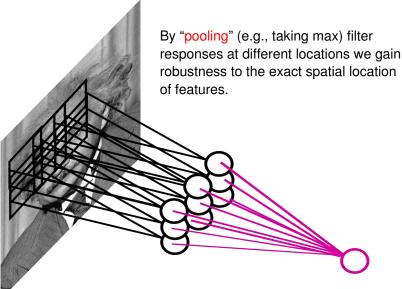


Figure : Top: MLP, bottom: Convolutional neural network

[http://cs231n.github.io/convolutional-networks/]

Pooling Layer



anzato **f**

CSC411 Lec11 26

Pooling Options

- Max Pooling: return the maximal argument
- Average Pooling: return the average of the arguments
- Other types of pooling exist.

CSC411 Lec11 27 / 43

Pooling

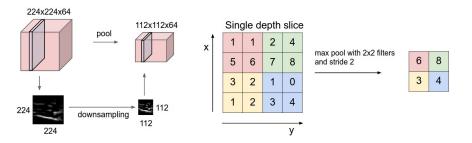


Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

- The spatial extent F
- The stride

[http://cs231n.github.io/convolutional-networks/]

CSC411 Lec11 28 / 43

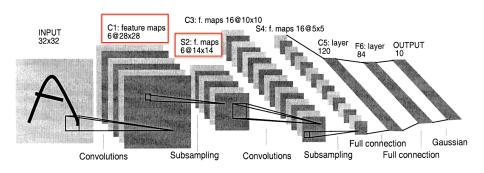
Backpropagation with Weight Constraints

- The backprop procedure from last lecture can be applied directly to conv nets.
- This is covered in csc421.
- As a user, you don't need to worry about the details, since they're handled by automatic differentiation packages.

CSC411 Lec11 29 / 43

LeNet

Here's the LeNet architecture, which was applied to handwritten digit recognition on MNIST in 1998:



CSC411 Lec11 30 / 43

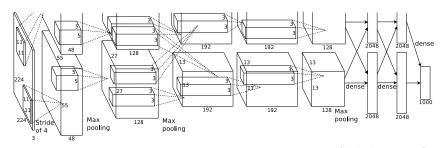
ImageNet

- Imagenet, biggest dataset for object classification: http://image-net.org/
- 1000 classes, 1.2M training images, 150K for test

CSC411 Lec11 31 / 43

AlexNet

 AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to guess the right category).



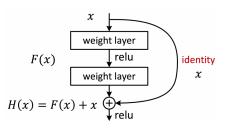
(Krizhevsky et al., 2012)

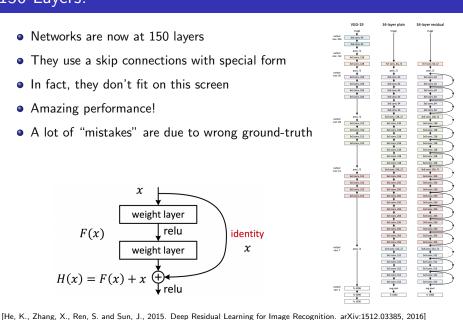
- The two processing pathways correspond to 2 GPUs. (At the time, the network couldn't fit on one GPU.)
- AlexNet's stunning performance on the ILSVRC is what set off the deep learning boom of the last 6 years.

CSC411 Lec11 32 / 43

150 Layers!

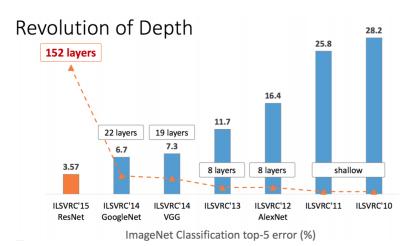
- Networks are now at 150 layers
- They use a skip connections with special form
- In fact, they don't fit on this screen
- Amazing performance!
- A lot of "mistakes" are due to wrong ground-truth





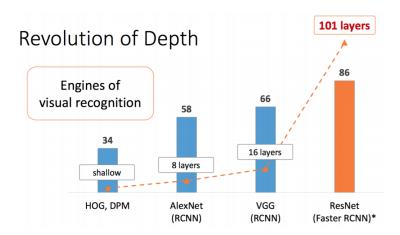
CSC411 Lec11

Results: Object Classification



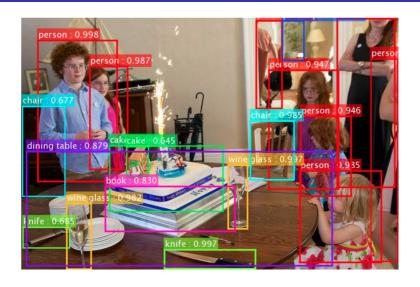
Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

CSC411 Lec11 34 / 43



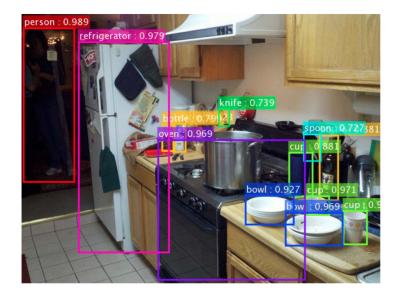
Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

CSC411 Lec11 35 / 43

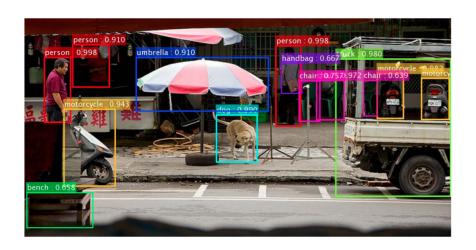


Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

CSC411 Lec11 36 / 43



CSC411 Lec11 37 / 43



Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

CSC411 Lec11 38 / 43

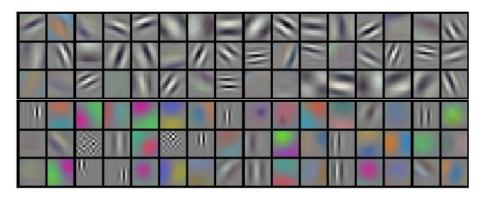


Figure: Filters in the first convolutional layer of Krizhevsky et al

CSC411 Lec11 39 / 43

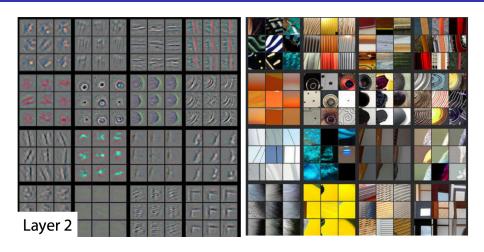


Figure: Filters in the second layer

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lec11 40 / 43

Figure: Filters in the third layer

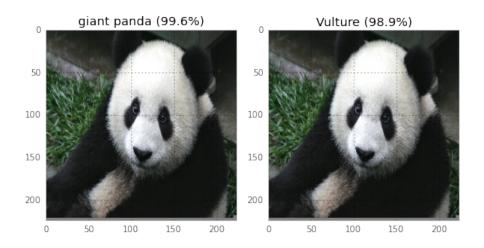
 $[\mathsf{http://arxiv.org/pdf/1311.2901v3.pdf}]$

CSC411 Lec11 41 / 43



CSC411 Lec11 42

Tricking a Neural Net

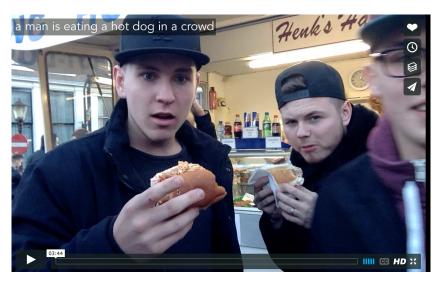


Read about it here (and try it!): https://codewords.recurse.com/issues/five/why-do-neural-networks-think-a-panda-is-a-vulture
Watch: https://www.youtube.com/watch?v=M2IebCN9Ht4

More on NNs

Figure : Generate images: http://arxiv.org/pdf/1511.06434v1.pdf

More on NNs



Generate text: https://vimeo.com/146492001, https://github.com/karpathy/neuraltalk2, https://github.com/ryankiros/visual-semantic-embedding

More on NNs

Figure: Compose music: https://www.youtube.com/watch?v=0VTI1BBLydE

Links

- Great course dedicated to NN: http://cs231n.stanford.edu
- Over source frameworks:
 - Pytorch http://pytorch.org/
 - ► Tensorflow https://www.tensorflow.org/
 - Caffe http://caffe.berkeleyvision.org/
- Most cited NN papers:

https://github.com/terryum/awesome-deep-learning-papers

43 / 43