CSC 311: Introduction to Machine Learning

Lecture 5 - Multiclass Classification \& Neural Networks

Amir-massoud Farahmand \& Emad A.M. Andrews

University of Toronto

Overview

- Classification: predicting a discrete-valued target
- Binary classification: predicting a binary-valued target
- Multiclass classification: predicting a discrete(>2)-valued target
- Examples of multi-class classification
- predict the value of a handwritten digit
- classify e-mails as spam, travel, work, personal

Multiclass Classification

- Classification tasks with more than two categories:
0001111112
2×20227323
3444445535
$4<77771888$
888894999

Multiclass Classification

- Targets form a discrete set $\{1, \ldots, K\}$.
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

$$
\mathbf{t}=\underbrace{(0, \ldots, 0,1,0, \ldots, 0)}_{\text {entry } k \text { is } 1} \in \mathbb{R}^{K}
$$

Multiclass Classification

- Now there are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix \mathbf{W}.
- Also, we have a K-dimensional vector \mathbf{b} of biases.
- Linear predictions:

$$
z_{k}=\sum_{j=1}^{D} w_{k j} x_{j}+b_{k} \text { for } k=1,2, \ldots, K
$$

- Vectorized:

$$
\mathbf{z}=\mathbf{W} \mathbf{x}+\mathbf{b}
$$

Multiclass Classification

- Predictions are like probabilities: want $1 \geq y_{k} \geq 0$ and $\sum_{k} y_{k}=1$
- A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

$$
y_{k}=\operatorname{softmax}\left(z_{1}, \ldots, z_{K}\right)_{k}=\frac{e^{z_{k}}}{\sum_{k^{\prime}} e^{z_{k^{\prime}}}}
$$

- The inputs z_{k} are called the logits.
- Properties:
- Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
- If one of the z_{k} is much larger than the others, $\operatorname{softmax}(\mathbf{z})_{k} \approx 1$ (behaves like argmax).
- Exercise: how does the case of $K=2$ relate to the logistic function?
- Note: sometimes $\sigma(\mathbf{z})$ is used to denote the softmax function; in this class, it will denote the logistic function applied elementwise.

Multiclass Classification

- If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(\mathbf{y}, \mathbf{t}) & =-\sum_{k=1}^{K} t_{k} \log y_{k} \\
& =-\mathbf{t}^{\top}(\log \mathbf{y})
\end{aligned}
$$

where the \log is applied elementwise.

- Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-entropy function.

Multiclass Classification

- Softmax regression:

$$
\begin{aligned}
\mathbf{z} & =\mathbf{W} \mathbf{x}+\mathbf{b} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{z}) \\
\mathcal{L}_{\mathrm{CE}} & =-\mathbf{t}^{\top}(\log \mathbf{y})
\end{aligned}
$$

- Gradient descent updates can be derived for each row of \mathbf{W} :

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial \mathbf{w}_{k}} & =\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial \mathbf{w}_{k}}=\left(y_{k}-t_{k}\right) \cdot \mathbf{x} \\
\mathbf{w}_{k} & \leftarrow \mathbf{w}_{k}-\alpha \frac{1}{N} \sum_{i=1}^{N}\left(y_{k}^{(i)}-t_{k}^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

- Similar to linear/logistic reg (no coincidence) (verify the update)

Limits of Linear Classification

- Visually, it's obvious that XOR is not linearly separable. But how to show this?

Limits of Linear Classification

Showing that XOR is not linearly separable (proof by contradiction)

- If two points lie in a half-space, line segment connecting them also lie in the same halfspace.
- Suppose there were some feasible weights (hypothesis). If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space.

- But the intersection can't lie in both half-spaces. Contradiction!

Limits of Linear Classification

- Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for XOR:

$\boldsymbol{\psi}(\mathbf{x})=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{1} x_{2}\end{array}\right)$					
x_{1}	x_{2}	$\psi_{1}(\mathbf{x})$	$\psi_{2}(\mathbf{x})$	$\psi_{3}(\mathbf{x})$	t
0	0	0	0	0	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	1	1	1	0

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions. Instead, we'll use neural nets to learn nonlinear hypotheses directly.

Neural Networks

Inspiration: The Brain

- Neurons receive input signals and accumulate voltage. After some threshold they will fire spiking responses.

[Pic credit: www.moleculardevices.com]

Inspiration: The Brain

- For neural nets, we use a much simpler model neuron, or unit:

activation function
- Compare with logistic regression: $y=\sigma\left(\mathbf{w}^{\top} \mathbf{x}+b\right)$

- By throwing together lots of these incredibly simplistic neuron-like processing units, we can do some powerful computations!

Multilayer Perceptrons

- We can connect lots of units together into a directed acyclic graph.
- Typically, units are grouped together into layers.
- This gives a feed-forward neural network. That's in contrast to recurrent neural networks, which can have cycles.

Multilayer Perceptrons

- Each hidden layer i connects N_{i-1} input units to N_{i} output units.
- In the simplest case, all input units are connected to all output units. We call this a fully connected layer. We'll consider other layer types later.
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.
- If we need to compute M outputs from N inputs, we can do so in parallel using matrix multiplication. This means we'll be using a $M \times N$ matrix
- The output units are a function of the input units:

$$
\mathbf{y}=f(\mathbf{x})=\phi(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

- A multilayer network consisting of fully connected layers is called a multilayer perceptron. Despite the name, it has nothing to do with perceptrons!

Multilayer Perceptrons

Some activation functions:

Identity

$$
y=z
$$

Soft ReLU

$$
y=\log 1+e^{z}
$$

Multilayer Perceptrons

Some activation functions:

Hard Threshold
$y= \begin{cases}1 & \text { if } z>0 \\ 0 & \text { if } z \leq 0\end{cases}$

Logistic

$$
y=\frac{1}{1+e^{-z}}
$$

Hyperbolic Tangent (tanh)

$$
y=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
$$

Multilayer Perceptrons

- Each layer computes a function, so the network computes a composition of functions:

$$
\begin{aligned}
\mathbf{h}^{(1)} & =f^{(1)}(\mathbf{x})=\phi\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right) \\
\mathbf{h}^{(2)} & =f^{(2)}\left(\mathbf{h}^{(1)}\right)=\phi\left(\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}\right) \\
& \vdots \\
\mathbf{y} & =f^{(L)}\left(\mathbf{h}^{(L-1)}\right)
\end{aligned}
$$

- Or more compactly:

$$
\mathbf{y}=f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x})
$$

- Neural nets provide modularity: we can

 implement each layer's computations as a black box.

Feature Learning

Last layer:

- If task is regression: choose

$$
\mathbf{y}=f^{(L)}\left(\mathbf{h}^{(L-1)}\right)=\left(\mathbf{w}^{(L)}\right)^{T} \mathbf{h}^{(L-1)}+b^{(L)}
$$

- If task is binary classification: choose

$$
\mathbf{y}=f^{(L)}\left(\mathbf{h}^{(L-1)}\right)=\sigma\left(\left(\mathbf{w}^{(L)}\right)^{T} \mathbf{h}^{(L-1)}+b^{(L)}\right)
$$

- Neural nets can be viewed as a way of learning features:
- The goal:

Feature Learning

- Suppose we're trying to classify images of handwritten digits. Each image is represented as a vector of $28 \times 28=784$ pixel values.
- Each first-layer hidden unit computes $\phi\left(\mathbf{w}_{i}^{T} \mathbf{x}\right)$. It acts as a feature detector.
- We can visualize w by reshaping it into an image. Here's an example that responds to a diagonal stroke.

Feature Learning

Here are some of the features learned by the first hidden layer of a handwritten digit classifier:

Expressive Power

- We've seen that there are some functions that linear classifiers can't represent. Are deep networks any better?
- Suppose a layer's activation function was the identity, so the layer just computes a affine transformation of the input
- We call this a linear layer
- Any sequence of linear layers can be equivalently represented with a single linear layer.

$$
\mathbf{y}=\underbrace{\mathbf{W}^{(3)} \mathbf{W}^{(2)} \mathbf{W}^{(1)}}_{\triangleq \mathbf{W}^{\prime}} \mathbf{x}
$$

- Deep linear networks are no more expressive than linear regression.

Expressive Power

- Multilayer feed-forward neural nets with nonlinear activation functions are universal function approximators: they can approximate any function arbitrarily well.
- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
- Even though ReLU is "almost" linear, it's nonlinear enough.

Multilayer Perceptrons

Designing a network to classify XOR:
Assume hard threshold activation function

Multilayer Perceptrons

- h_{1} computes $\mathbb{I}\left[x_{1}+x_{2}-0.5>0\right]$
- i.e. x_{1} OR x_{2}
- h_{2} computes $\mathbb{I}\left[x_{1}+x_{2}-1.5>0\right]$
- i.e. x_{1} AND x_{2}
- y computes $\mathbb{I}\left[h_{1}-h_{2}-0.5>0\right] \equiv \mathbb{I}\left[h_{1}+\left(1-h_{2}\right)-1.5>0\right]$
- i.e. h_{1} AND $\left(\right.$ NOT $\left.h_{2}\right)=x_{1}$ XOR x_{2}

Expressive Power

Universality for binary inputs and targets:

- Hard threshold hidden units, linear output
- Strategy: 2^{D} hidden units, each of which responds to one particular input configuration

- Only requires one hidden layer, though it needs to be extremely wide.

Expressive Power

- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:

- This is good: logistic units are differentiable, so we can train them with gradient descent.

Expressive Power

- Limits of universality
- You may need to represent an exponentially large network.
- How can you find the appropriate weights to represent a given function?
- If you can learn any function, you'll just overfit.
- We desire a compact representation.

Training Neural Networks with Backpropagation

Recap: Gradient Descent

- Recall: gradient descent moves opposite the gradient (the direction of steepest descent)

- Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in all the layers
- Conceptually, not any different from what we've seen so far - just higher dimensional and harder to visualize!
- We want to define a loss \mathcal{L} and compute the gradient of the cost $\mathrm{d} \mathcal{J} / \mathrm{d} \mathbf{w}$, which is the vector of partial derivatives.
- This is the average of $\mathrm{d} \mathcal{L} / \mathrm{d} \mathbf{w}$ over all the training examples, so in this lecture we focus on computing $\mathrm{d} \mathcal{L} / \mathrm{dw}$.

Univariate Chain Rule

- We've already been using the univariate Chain Rule.
- Recall: if $f(x)$ and $x(t)$ are univariate functions, then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(x(t))=\frac{\mathrm{d} f}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

Univariate Chain Rule

Recall: Univariate logistic least squares model

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

Let's compute the loss derivatives $\frac{\partial \mathcal{L}}{\partial w}, \frac{\partial \mathcal{L}}{\partial b}$

Univariate Chain Rule

How you would have done it in calculus class

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}(\sigma(w x+b)-t)^{2} \\
\frac{\partial \mathcal{L}}{\partial w} & =\frac{\partial}{\partial w}\left[\frac{1}{2}(\sigma(w x+b)-t)^{2}\right] \\
& =\frac{1}{2} \frac{\partial}{\partial w}(\sigma(w x+b)-t)^{2} \\
& =(\sigma(w x+b)-t) \frac{\partial}{\partial w}(\sigma(w x+b)-t) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) \frac{\partial}{\partial w}(w x+b) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) x
\end{aligned}
$$

What are the disadvantages of this approach?

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:
Computing the loss:

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y}=y-t \\
& \frac{\mathrm{~d} \mathcal{L}}{\mathrm{~d} z}=\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} z}=\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \sigma^{\prime}(z) \\
& \frac{\partial \mathcal{L}}{\partial w}=\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} z} \frac{\mathrm{~d} z}{\mathrm{~d} w}=\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} z} x \\
& \frac{\partial \mathcal{L}}{\partial b}=\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} z} \frac{\mathrm{~d} z}{\mathrm{~d} b}=\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} z}
\end{aligned}
$$

Remember, the goal isn't to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.

Univariate Chain Rule

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.

Compute Loss

Computing the loss:

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

Compute Derivatives

Univariate Chain Rule

A slightly more convenient notation:

- Use \bar{y} to denote the derivative $\mathrm{d} \mathcal{L} / \mathrm{d} y$, sometimes called the error signal.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:
Computing the derivatives:

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\bar{y} & =y-t \\
\bar{z} & =\bar{y} \sigma^{\prime}(z) \\
\bar{w} & =\bar{z} x \\
\bar{b} & =\bar{z}
\end{aligned}
$$

Multivariate Chain Rule

Problem: what if the computation graph has fan-out >1 ? This requires the multivariate Chain Rule!
L_{2}-Regularized regression

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2} \\
\mathcal{R} & =\frac{1}{2} w^{2} \\
\mathcal{L}_{\mathrm{reg}} & =\mathcal{L}+\lambda \mathcal{R}
\end{aligned}
$$

Softmax regression

$z_{\ell}=\sum_{j} w_{\ell j} x_{j}+b_{\ell}$
$y_{k}=\frac{e^{z_{k}}}{\sum_{\ell} e^{z_{\ell}}}$
$\mathcal{L}=-\sum_{k} t_{k} \log y_{k}$

Multivariate Chain Rule

- Suppose we have a function $f(x, y)$ and functions $x(t)$ and $y(t)$. (All the variables here are scalar-valued.) Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(x(t), y(t))=\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

- Example:

$$
\begin{aligned}
f(x, y) & =y+e^{x y} \\
x(t) & =\cos t \\
y(t) & =t^{2}
\end{aligned}
$$

- Plug in to Chain Rule:

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} t} & =\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
& =\left(y e^{x y}\right) \cdot(-\sin t)+\left(1+x e^{x y}\right) \cdot 2 t
\end{aligned}
$$

Multivariable Chain Rule

- In the context of backpropagation:

- In our notation:

$$
\bar{t}=\bar{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\bar{y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

Backpropagation

Full backpropagation algorithm:

Let v_{1}, \ldots, v_{N} be a topological ordering of the computation graph (i.e. parents come before children.)

v_{N} denotes the variable we're trying to compute derivatives of (e.g. loss).

$$
\begin{aligned}
\text { forward pass }
\end{aligned} \begin{array}{r}
\text { For } i=1, \ldots, N \\
\text { Compute } v_{i} \text { as a function of } \mathrm{Pa}\left(v_{i}\right) \\
\text { backward pass }
\end{array}\left[\begin{array}{r}
\overline{v_{N}}=1 \\
\text { For } i=N-1, \ldots, 1 \\
\overline{v_{i}}=\sum_{j \in \operatorname{Ch}\left(v_{i}\right)} \overline{j_{j}} \frac{\partial v_{j}}{\partial v_{i}}
\end{array}\right.
$$

Backpropagation

Example: univariate logistic least squares regression

Forward pass:

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2} \\
\mathcal{R} & =\frac{1}{2} w^{2} \\
\mathcal{L}_{\mathrm{reg}} & =\mathcal{L}+\lambda \mathcal{R}
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
& \overline{\mathcal{L}_{\text {reg }}}=1 \\
& \overline{\mathcal{R}}=\overline{\mathcal{L}_{\text {reg }}} \frac{\mathrm{d} \mathcal{L}_{\text {reg }}}{\mathrm{d} \mathcal{R}} \\
& =\overline{\mathcal{L}_{\text {reg }}} \lambda \\
& \overline{\mathcal{L}}=\overline{\mathcal{L}_{\text {reg }}} \frac{\mathrm{d} \mathcal{L}_{\text {reg }}}{\mathrm{d} \mathcal{L}} \\
& =\overline{\mathcal{L}_{\text {reg }}} \\
& \bar{y}=\overline{\mathcal{L}} \frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \\
& =\overline{\mathcal{L}}(y-t) \\
& \bar{z}=\bar{y} \frac{\mathrm{~d} y}{\mathrm{~d} z} \\
& =\bar{y} \sigma^{\prime}(z) \\
& \bar{w}=\bar{z} \frac{\partial z}{\partial w}+\overline{\mathcal{R}} \frac{\mathrm{d} \mathcal{R}}{\mathrm{~d} w} \\
& =\bar{z} x+\overline{\mathcal{R}} w \\
& \bar{b}=\bar{z} \frac{\partial z}{\partial b} \\
& =\bar{z}
\end{aligned}
$$

Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

$$
\begin{aligned}
z_{i} & =\sum_{j} w_{i j}^{(1)} x_{j}+b_{i}^{(1)} \\
h_{i} & =\sigma\left(z_{i}\right) \\
y_{k} & =\sum_{i} w_{k i}^{(2)} h_{i}+b_{k}^{(2)} \\
\mathcal{L} & =\frac{1}{2} \sum_{k}\left(y_{k}-t_{k}\right)^{2}
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\overline{\mathcal{L}} & =1 \\
\overline{y_{k}} & =\overline{\mathcal{L}}\left(y_{k}-t_{k}\right) \\
\overline{w_{k i}^{(2)}} & =\overline{y_{k}} h_{i} \\
\overline{b_{k}^{(2)}} & =\overline{y_{k}} \\
\overline{h_{i}} & =\sum_{k} \overline{y_{k}} w_{k i}^{(2)} \\
\overline{z_{i}} & =\overline{h_{i}} \sigma^{\prime}\left(z_{i}\right) \\
\overline{w_{i j}^{(1)}} & =\overline{z_{i}} x_{j} \\
\overline{b_{i}^{(1)}} & =\overline{z_{i}}
\end{aligned}
$$

Backpropagation

In vectorized form:

Forward pass:

$$
\begin{aligned}
\mathbf{z} & =\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)} \\
\mathbf{h} & =\sigma(\mathbf{z}) \\
\mathbf{y} & =\mathbf{W}^{(2)} \mathbf{h}+\mathbf{b}^{(2)} \\
\mathcal{L} & =\frac{1}{2}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\overline{\mathcal{L}} & =1 \\
\overline{\mathbf{y}} & =\overline{\mathcal{L}}(\mathbf{y}-\mathbf{t}) \\
\overline{\mathbf{W}^{(2)}} & =\overline{\mathbf{y}} \mathbf{h}^{\top} \\
\overline{\mathbf{b}^{(2)}} & =\overline{\mathbf{y}} \\
\overline{\mathbf{h}} & =\mathbf{W}^{(2) \top} \overline{\mathbf{y}} \\
\overline{\mathbf{z}} & =\overline{\mathbf{h}} \circ \sigma^{\prime}(\mathbf{z}) \\
\overline{\mathbf{W}^{(1)}} & =\overline{\mathbf{z}} \mathbf{x}^{\top} \\
\overline{\mathbf{b}^{(1)}} & =\overline{\mathbf{z}}
\end{aligned}
$$

Computational Cost

- Computational cost of forward pass: one add-multiply operation per weight

$$
z_{i}=\sum_{j} w_{i j}^{(1)} x_{j}+b_{i}^{(1)}
$$

- Computational cost of backward pass: two add-multiply operations per weight

$$
\begin{aligned}
\overline{w_{k i}^{(2)}} & =\overline{y_{k}} h_{i} \\
\overline{h_{i}} & =\sum_{k} \overline{y_{k}} w_{k i}^{(2)}
\end{aligned}
$$

- Rule of thumb: the backward pass is about as expensive as two forward passes.
- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

Backpropagation

- Backprop is used to train the overwhelming majority of neural nets today.
- Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.

