
CSC 311: Introduction to Machine Learning

Lecture 4 - Bias-Variance Decomposition,
Ensemble Method I: Bagging,

Linear Classification

Amir-massoud Farahmand & Emad A.M. Andrews

University of Toronto

Intro ML (UofT) CSC311-Lec4 1 / 70

Anthony Bonner

Classification with Linear Models

Intro ML (UofT) CSC311-Lec4 34 / 70

Overview

Classification: predicting a discrete-valued target
I Binary classification: predicting a binary-valued target

Examples
I predict whether a patient has a disease, given the presence or

absence of various symptoms
I classify e-mails as spam or non-spam
I predict whether a financial transaction is fraudulent

Intro ML (UofT) CSC311-Lec4 35 / 70

Overview

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t 2 {0, 1}
I Training examples with t = 1 are called positive examples, and

training examples with t = 0 are called negative examples.
I t 2 {0, 1} or t 2 {�1,+1} is for computational convenience.

linear: model is a linear function of x, followed by a threshold r:

z = w
T
x+ b

y =

⇢
1 if z � r

0 if z < r

Intro ML (UofT) CSC311-Lec4 36 / 70

Some Simplifications

Eliminating the threshold

We can assume without loss of generality (w.l.o.g.) that the
threshold is r = 0:

w
T
x+ b � r () w

T
x+ b� r| {z }

,w0

� 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The
weight w0 = b is equivalent to a bias (same as linear regression)

Simplified model

z = w
T
x

y =

⇢
1 if z � 0
0 if z < 0

Intro ML (UofT) CSC311-Lec4 37 / 70

Examples

Let us consider some simple examples to examine the properties of
our model

Forget about generalization and suppose we just want to learn
Boolean functions

Intro ML (UofT) CSC311-Lec4 38 / 70

Examples

NOT

x0 x1 t
1 0 1
1 1 0

This is our “training set”

What conditions are needed on w0, w1 to classify all examples?
I When x1 = 0, need: z = w0x0 + w1x1 > 0 () w0 > 0
I When x1 = 1, need: z = w0x0 + w1x1 < 0 () w0 + w1 < 0

Example solution: w0 = 1, w1 = �2
Is this the only solution?

Intro ML (UofT) CSC311-Lec4 39 / 70

Examples

AND

x0 x1 x2 t
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

z = w0x0 + w1x1 + w2x2

need: w0 < 0

need: w0 + w2 < 0

need: w0 + w1 < 0

need: w0 + w1 + w2 > 0

Example solution: w0 = �1.5, w1 = 1, w2 = 1

Intro ML (UofT) CSC311-Lec4 40 / 70

The Geometric Picture

Input Space, or Data Space for NOT example

x0 x1 t
1 0 1
1 1 0

Training examples are points

Weights (hypotheses) w can be represented by half-spaces
H+ = {x : wT

x � 0}, H� = {x : wT
x < 0}

I The boundaries of these half-spaces pass through the origin (why?)

The boundary is the decision boundary: {x : wT
x = 0}

I In 2-D, it is a line, but think of it as a hyperplane

If the training examples can be perfectly separated by a linear
decision rule, we say data is linearly separable.

Intro ML (UofT) CSC311-Lec4 41 / 70

The Geometric Picture

Weight Space

w0 > 0

w0 + w1 < 0

Weights (hypotheses) w are points

Each training example x specifies a half-space w must lie in to be
correctly classified: wT

x > 0 if t = 1.

For NOT example:
I x0 = 1, x1 = 0, t = 1 =) (w0, w1) 2 {w : w0 > 0}
I x0 = 1, x1 = 1, t = 0 =) (w0, w1) 2 {w : w0 + w1 < 0}

The region satisfying all the constraints is the feasible region; if
this region is nonempty, the problem is feasible, otw it is infeasible.

Intro ML (UofT) CSC311-Lec4 42 / 70

The Geometric Picture

The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look
at a 2-D slice.

The visualizations are similar.

I Feasible set will always have a corner at the origin.

Intro ML (UofT) CSC311-Lec4 43 / 70

The Geometric Picture

Visualizations of the AND example

Data Space

- Slice for x0 = 1 and
- example sol: w0=�1.5, w1=1, w2=1
- decision boundary:
w0x0+w1x1+w2x2=0
=) �1.5+x1+x2=0

Weight Space

- Slice for w0 = �1.5 for the
constraints
- w0 < 0
- w0 + w2 < 0
- w0 + w1 < 0
- w0 + w1 + w2 > 0

Intro ML (UofT) CSC311-Lec4 44 / 70

The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Intro ML (UofT) CSC311-Lec4 45 / 70

Overview

Recall: binary linear classifiers. Targets t 2 {0, 1}

z = w
T
x+ b

y =

⇢
1 if z � 0
0 if z < 0

How can we find good values for w, b?

If training set is separable, we can solve for w, b using linear
programming

If it’s not separable, the problem is harder
I data is almost never separable in real life.

Intro ML (UofT) CSC311-Lec4 46 / 70

Loss Functions

Instead: define loss function then try to minimize the resulting
cost function

I Recall: cost is loss averaged (or summed) over the training set

Seemingly obvious loss function: 0-1 loss

L0�1(y, t) =

⇢
0 if y = t

1 if y 6= t

= I[y 6= t]

Intro ML (UofT) CSC311-Lec4 47 / 70

Attempt 1: 0-1 Loss

Usually, the cost J is the averaged loss over training examples; for
0-1 loss, this is the misclassification rate/error:

J =
1

N

NX

i=1

I[y(i) 6= t
(i)]

Intro ML (UofT) CSC311-Lec4 48 / 70

Attempt 1: 0-1 Loss

Problem: how to optimize? In general, a hard problem (can be
NP-hard)

This is due to the step function (0-1 loss) not being nice
(continuous/smooth/convex etc)

Intro ML (UofT) CSC311-Lec4 49 / 70

Attempt 1: 0-1 Loss

Minimum of a function will be at its critical points.
Let’s try to find the critical point of 0-1 loss
Chain rule:

@L0�1

@wj
=

@L0�1

@z

@z

@wj

But @L0�1/@z is zero everywhere it is defined!

I @L0�1/@wj = 0 means that changing the weights by a very small
amount has no e↵ect on the loss (whenever the gradient of the loss
is defined)

I Almost any point has 0 gradient!
Intro ML (UofT) CSC311-Lec4 50 / 70

Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
that is easier to optimize. This is known as relaxation with a
smooth surrogate loss function.

One problem with L0�1 is that it is defined in terms of final
prediction, which inherently involves a discontinuity

Instead, define loss in terms of wT
x+ b directly

I Redo notation for convenience: z = w
T
x+ b

Intro ML (UofT) CSC311-Lec4 51 / 70

Attempt 2: Linear Regression

We already know how to fit a linear regression model using the
squared error loss. Can we use the same squared error loss instead?

z = w
>
x+ b

LSE(z, t) =
1

2
(z � t)2

Doesn’t matter that the targets are actually binary. Treat them as
continuous values.

For this loss function, it makes sense to make final predictions by
thresholding z at 1

2 (why?)

Intro ML (UofT) CSC311-Lec4 52 / 70

Attempt 2: Linear Regression

The problem:

The loss function penalizes you when you make correct predictions
with high confidence!

If t = 1, the loss is larger when z = 10 than when z = 0.

Intro ML (UofT) CSC311-Lec4 53 / 70

Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoid, or
S-shaped function:

�(z) =
1

1 + e�z

�
�1(y) = log(y/(1� y)) is called the logit.

A linear model with a logistic nonlinearity is known as log-linear:

z = w
>
x+ b

y = �(z)

LSE(y, t) =
1

2
(y � t)2.

Used in this way, � is called an activation function.

Intro ML (UofT) CSC311-Lec4 54 / 70

Attempt 3: Logistic Activation Function

The problem:

(plot of LSE as a function of z, assuming t = 1)

@L
@wj

=
@L
@z

@z

@wj

For z ⌧ 0, we have �(z) ⇡ 0.
@L
@z ⇡ 0 (check!) =) @L

@wj
⇡ 0 =) derivative w.r.t. wj is small

=) wj is like a critical point

If the prediction is really wrong, you should be far from a critical
point (which is your candidate solution).

Intro ML (UofT) CSC311-Lec4 55 / 70

Logistic Regression

Because y 2 [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were
much more wrong than the ones who were only 90% confident.

Cross-entropy loss (aka log loss) captures this intuition:

LCE(y, t) =

⇢
� log y if t = 1
� log(1� y) if t = 0

= �t log y � (1� t) log(1� y)

Intro ML (UofT) CSC311-Lec4 56 / 70

Logistic Regression

Logistic Regression:

z = w
>
x+ b

y = �(z)

=
1

1 + e�z

LCE = �t log y � (1� t) log(1� y)

Plot is for target t = 1.

Intro ML (UofT) CSC311-Lec4 57 / 70

Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z ⌧ 0)?

If y is small enough, it may be numerically zero. This can cause
very subtle and hard-to-find bugs.

y = �(z)) y ⇡ 0

LCE = �t log y � (1� t) log(1� y)) computes log 0

Instead, we combine the activation function and the loss into a
single logistic-cross-entropy function.

LLCE(z, t) = LCE(�(z), t) = t log(1 + e
�z) + (1� t) log(1 + e

z)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Intro ML (UofT) CSC311-Lec4 58 / 70

Logistic Regression

Comparison of loss functions: (for t = 1)

Intro ML (UofT) CSC311-Lec4 59 / 70

Gradient Descent

How do we minimize the cost J in this case? No direct solution.
I Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have

an explicit solution.

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

Intro ML (UofT) CSC311-Lec4 60 / 70

Gradient for Logistic Regression

Back to logistic regression:

LCE(y, t) =� t log(y)� (1� t) log(1� y)

y =1/(1 + e
�z) and z = w

T
x+ b

Therefore
@LCE

@wj
=

@LCE

@y
· @y

@z
· @z

@wj
=

✓
� t

y
+

1� t

1� y

◆
· y(1� y) · xj

=(y � t)xj

Exercise: Verify this!
Gradient descent (coordinatewise) update to find the weights of logistic
regression:

wj wj � ↵
@J
@wj

= wj �
↵

N

NX

i=1

(y(i) � t
(i))x

(i)
j

Intro ML (UofT) CSC311-Lec4 61 / 70

Logistic Regression

Comparison of gradient descent updates:

Linear regression (verify!):

w w � ↵

N

NX

i=1

(y(i) � t
(i))x(i)

Logistic regression:

w w � ↵

N

NX

i=1

(y(i) � t
(i))x(i)

Not a coincidence! These are both examples of generalized linear
models. But we won’t go in further detail.

Notice 1
N in front of sums due to averaged losses. This is why you

need smaller learning rate when we optimize the sum of losses
(↵0 = ↵/N).

Intro ML (UofT) CSC311-Lec4 62 / 70

Stochastic Gradient Descent

So far, the cost function J has been the average loss over the
training examples:

J (✓) =
1

N

NX

i=1

L(i) =
1

N

NX

i=1

L(y(x(i)
,✓), t(i)).

By linearity,

@J
@✓

=
1

N

NX

i=1

@L(i)

@✓
.

Computing the gradient requires summing over all of the training
examples. This is known as batch training.

Batch training is impractical if you have a large dataset N � 1
(e.g. millions of training examples)!

Intro ML (UofT) CSC311-Lec4 63 / 70

Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

1. Choose i uniformly at random

2. ✓ ✓ � ↵
@L(i)

@✓

Cost of each SGD update is independent of N .

SGD can make significant progress before even seeing all the data!

Mathematical justification: if you sample a training example uniformly
at random, the stochastic gradient is an unbiased estimate of the batch
gradient:

E

@L(i)

@✓

�
=

1

N

NX

i=1

@L(i)

@✓
=

@J
@✓

.

Problems:

I Variance in this estimate may be high
I If we only look at one training example at a time, we can’t exploit

e�cient vectorized operations.

Intro ML (UofT) CSC311-Lec4 64 / 70

Stochastic Gradient Descent

Compromise approach: compute the gradients on a randomly
chosen medium-sized set of training examples M ⇢ {1, . . . , N},
called a mini-batch.

Stochastic gradients computed on larger mini-batches have smaller
variance. This is similar to bagging.

The mini-batch size |M| is a hyperparameter that needs to be set.
I Too large: takes more computation, i.e. takes more memory to store

the activations, and longer to compute each gradient update
I Too small: can’t exploit vectorization, has high variance
I A reasonable value might be |M| = 100.

Intro ML (UofT) CSC311-Lec4 65 / 70

Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps
in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent

Intro ML (UofT) CSC311-Lec4 66 / 70

SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:
I Use a large learning rate early in training so you can get close to

the optimum
I Gradually decay the learning rate to reduce the fluctuations

Intro ML (UofT) CSC311-Lec4 67 / 70

SGD Learning Rate

Warning: by reducing the learning rate, you reduce the
fluctuations, which can appear to make the loss drop suddenly.
But this can come at the expense of long-run performance.

Intro ML (UofT) CSC311-Lec4 68 / 70

SGD and Non-convex optimization

Local minimum

Global minimum

�
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�
4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Stochastic Gradient descent
updates

Stochastic methods have a chance of escaping from bad minima.

Gradient descent with small step-size converges to first minimum
it finds.

Intro ML (UofT) CSC311-Lec4 69 / 70

Conclusion

Bias-Variance Decomposition
I The error of a machine learning algorithm can be decomposed to a

bias term and a variance term.
I Hyperparameters of an algorithm might allow us to tradeo↵

between these two.

Ensemble Methods
I Bagging as a simple way to reduce the variance of an estimation

method

Binary Classification
I 0� 1 loss is the di�cult to work with
I Use of surrogate loss functions such as the cross-entropy loss lead to

computationally feasible solutions
I Logistic regression as the result of using cross-entropy loss with a

linear model going through logistic nonlinearity
I No direct solution, but gradient descent can be used to minimize it
I Stochastic gradient descent

Intro ML (UofT) CSC311-Lec4 70 / 70

Anthony Bonner

