CSC 311: Introduction to Machine Learning

Lecture 4 - Bias—VartaneeDecomposttion;
Ensemble Method+Bageine:s

Linear Classification

Amir-massoud Farahmand & Emad A.M. Andrews

University of Toronto

Intro ML (UofT) CSC311-Lec4 1/ 70

Anthony Bonner

Classification with Linear Models

Intro ML (UofT) CSC311-Lec4 34 /70

Overview

o C(lassification: predicting a discrete-valued target
» Binary classification: predicting a binary-valued target

e Examples

» predict whether a patient has a disease, given the presence or
absence of various symptoms

» classify e-mails as spam or non-spam

» predict whether a financial transaction is fraudulent

Intro ML (UofT) CSC311-Lec4 35 /70

Overview

Binary linear classification
o classification: predict a discrete-valued target
e binary: predict a binary target ¢ € {0,1}
» Training examples with ¢ = 1 are called positive examples, and
training examples with ¢ = 0 are called negative examples.
» t€{0,1} or t € {—1,+1} is for computational convenience.

@ linear: model is a linear function of x, followed by a threshold r:
z=wlx+b

1 ifz>r
10 ifz<r

Intro ML (UofT) CSC311-Lec4 36 / 70

Some Simplifications

Eliminating the threshold
e We can assume without loss of generality (w.l.o.g.) that the
threshold is r = 0:
wix+b>r < wix+b—1r>0.
——
Lwo
Eliminating the bias

o Add a dummy feature zy which always takes the value 1. The
weight wo = b is equivalent to a bias (same as linear regression)

Simplified model

Z =W X
1 itz>0
Y=V 0 ifz<o

Intro ML (UofT) CSC311-Lec4 37 /70

Examples

@ Let us consider some simple examples to examine the properties of
our model

e Forget about generalization and suppose we just want to learn
Boolean functions

Intro ML (UofT) CSC311-Lec4 38 / 70

Examples

This is our “training set”

e What conditions are needed on wg, w; to classify all examples?
» When 1 =0, need: z = woxg + w1z >0 <= wy >0
» When z; =1, need: z = wozg + w11 <0 <= wog+w; <0

o Example solution: wg =1,w; = —2

@ Is this the only solution?

Intro ML (UofT) CSC311-Lec4 39 / 70

Examples

AND
ro T X2 |t 2 = WoTo + WiT1 + waTo
1 0 00 need: wg <0
1 0 110 4@ 0
1 1 0 lo need: wo + wg <
1 111 need: wo +wi <0
need: wg + wy + wo > 0
Example solution: wg = —1.5, w1 =1, wy =1

Intro ML (UofT) CSC311-Lec4 40 / 70

The Geometric Picture

Input Space, or Data Space for NOT example

Training examples are points

Weights (hypotheses) w can be represented by half-spaces
H, ={x:wix>0}, H. = {x: wi'x < 0}
» The boundaries of these half-spaces pass through the origin (why?)
o The boundary is the decision boundary: {x: w’x =0}
» In 2-D, it is a line, but think of it as a hyperplane

If the training examples can be perfectly separated by a linear
decision rule, we say data is linearly separable.

Intro ML (UofT) CSC311-Lec4 41 / 70

The Geometric Picture

Weight Space

wop > 0
wo +wp <0

Weights (hypotheses) w are points

e Each training example x specifies a half-space w must lie in to be
correctly classified: w’/x > 0if t = 1.
For NOT example:

» =171 =0,t=1 = (wp,w1) € {w:wy > 0}

> zo=121=1t=0 = (wo,w1) € {w:wo+w; <0}

The region satisfying all the constraints is the feasible region; if
this region is nonempty, the problem is feasible, otw it is infeasible.

Intro ML (UofT) CSC311-Lec4 42 / 70

The Geometric Picture

@ The AND example requires three dimensions, including the dummy one.

@ To visualize data space and weight space for a 3-D example, we can look
at a 2-D slice.

@ The visualizations are similar.

» Feasible set will always have a corner at the origin.

Intro ML (UofT) CSC311-Lec4 43 / 70

The Geometric Picture

Visualizations of the AND example

Weight Space

w2

Data Space

w1
-+

- Slice for wg = —1.5 for the

- Slice for zg = 1 and

constraints
- example sol: wop=—1.5, w1 =1, we=1 Cwe < 0
- decision boundary: 0
-wy+we <0
woTo+wix1+wers =0 “we 4wy <0

= — 1.5+ +22=0 - wo +wy +wy >0

Intro ML (UofT) CSC311-Lec4 44 / 70

The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Intro ML (UofT) CSC311-Lec4 45 / 70

Overview

e Recall: binary linear classifiers. Targets ¢t € {0,1}
z=wix+b

(1 ifz>0
Y=V 0 ifz<o

e How can we find good values for w, b?

If training set is separable, we can solve for w, b using linear
programming

If it’s not separable, the problem is harder
» data is almost never separable in real life.

Intro ML (UofT) CSC311-Lec4 46 / 70

Loss Functions

o Instead: define loss function then try to minimize the resulting
cost function

» Recall: cost is loss averaged (or summed) over the training set

e Seemingly obvious loss function: 0-1 loss

Lo-1(y,t) = { ? ig ;i
=lly # ¢]

Intro ML (UofT) CSC311-Lec4 47 / 70

Attempt 1: 0-1 Loss

e Usually, the cost J is the averaged loss over training examples; for
0-1 loss, this is the misclassification rate/error:

N

1 i i
T =52 1y #]

=1

Intro ML (UofT) CSC311-Lec4 48 / 70

Attempt 1: 0-1 Loss

e Problem: how to optimize? In general, a hard problem (can be
NP-hard)

e This is due to the step function (0-1 loss) not being nice
(continuous/smooth /convex etc)

Intro ML (UofT) CSC311-Lec4 49 / 70

Attempt 1: 0-1 Loss

Minimum of a function will be at its critical points.
Let’s try to find the critical point of 0-1 loss
e Chain rule:

350_1 o 8[,0_1 0z

ow; 0z 0w

But 0Lp_1/0z is zero everywhere it is defined!

10

08

~ 06
|

-20 -15 -10 -05 00 05 10 15 20
z

» 0Ly—1/0w; = 0 means that changing the weights by a very small
amount has no effect on the loss (whenever the gradient of the loss
is defined)

» Almost any point has 0 gradient!

Intro ML (UofT) CSC311-Lec4 50 / 70

Attempt 2: Linear Regression

e Sometimes we can replace the loss function we care about with one
that is easier to optimize. This is known as relaxation with a
smooth surrogate loss function.

@ One problem with L£y_1 is that it is defined in terms of final
prediction, which inherently involves a discontinuity

o Instead, define loss in terms of w’x + b directly

» Redo notation for convenience: z = w’x + b

Intro ML (UofT) CSC311-Lec4 51 /70

Attempt 2: Linear Regression

e We already know how to fit a linear regression model using the
squared error loss. Can we use the same squared error loss instead?

s=w'x+b
1
Lsg(z,t) = 5(7; — t)2

o Doesn’t matter that the targets are actually binary. Treat them as
continuous values.

e For this loss function, it makes sense to make final predictions by
thresholding z at £ (why?)

Intro ML (UofT) CSC311-Lec4 52 / 70

Attempt 2: Linear Regression

The problem:

large
residual

@ The loss function penalizes you when you make correct predictions
with high confidence!

o If t =1, the loss is larger when z = 10 than when z = 0.

Intro ML (UofT) CSC311-Lec4 53 / 70

Attempt 3: Logistic Activation Function

e There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

@ The logistic function is a kind of sigmoid, or 1
S-shaped function: 08

1 >

U(Z) = 1 n oz N

R - 0 2 3
2

o o1 (y) =log(y/(1 —y)) is called the logit.
@ A linear model with a logistic nonlinearity is known as log-linear:

2=w'x+0b
y =o(z)
1
Lse(y,t) = 5(?/ —t)°.

@ Used in this way, o is called an activation function.
CSC311-Lec4 54 / 70

Attempt

3: Logistic Activation Function

The problem:
(plot of Lgg as a function of z, assuming ¢ = 1)

0.4
0.3
0.2

loss

0.1
0.0
-0.1
-0.2

05 _

oL L 02

Ju, ~ 9z 0w,

10 -8 -6 -4 -2 0 2 4

e For z < 0, we have o(z) ~ 0.

° ‘g—f ~ 0 (check!) =

% ~ (0 = derivative w.r.t. w; is small

= wj is like a critical point

o If the prediction is really wrong, you should be far from a critical
point (which is your candidate solution).

Intro ML

(UofT) CSC311-Lec4 55 / 70

Logistic Regression

@ Because y € [0,1], we can interpret it as the estimated probability
that t = 1.

e The pundits who were 99% confident Clinton would win were
much more wrong than the ones who were only 90% confident.

e Cross-entropy loss (aka log loss) captures this intuition:

5

4
| —logy ift=1 —é
Lep(y,t) = { —log(l—y) ift=0 53 1 =0
= —tlogy — (1—t)log(1—y) &’
“1
8.0 0.2 0.4 0.6 0.8 1.0

Intro ML (UofT) CSC311-Lec4 56 / 70

Logistic Regression

Logistic Regression:

— logistic + CE

2=w x+b
y=o(z)
1
1+e %
Lcg = —tlogy — (1 —t)log(1 —y)

Plot is for target t = 1.

Intro ML (UofT) CSC311-Lec4 57 / 70

Logistic Regression

@ Problem: what if ¢ = 1 but you’re really confident it’s a negative
example (z < 0)7

o If y is small enough, it may be numerically zero. This can cause
very subtle and hard-to-find bugs.

Lcg = —tlogy — (1 —t)log(1 —y) = computes log0

o Instead, we combine the activation function and the loss into a
single logistic-cross-entropy function.

Lice(z,t) = Lep(o(z),t) = tlog(l+e%) + (1 —t) log(1 + €7)

e Numerically stable computation:
E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Intro ML (UofT) CSC311-Lec4 58 / 70

Logistic Regression

Comparison of loss functions: (for ¢t = 1)

3.0 —
- |east squares
2.5 1 = logistic + LS
- logistic + CE
2.0
%]
E 1.5
1.0
0.5
0.0

CSO811-Lecd 59 /70

Gradient Descent

o How do we minimize the cost J in this case? No direct solution.
» Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have
an explicit solution.

o Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

o Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

o We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.

Intro ML (UofT) CSC311-Lec4 60 / 70

Gradient for Logistic Regression

Back to logistic regression:
Leor(y,t) = —tlog(y) — (1 —1)log(1 — y)
y=1/(1+e¢?) and z=wlx+b
Therefore

OLcy _ OLce Dy 0x (b 1oty
ow; dy 0z Ow; Y vt

Exercise: Verify this!

Gradient descent (coordinatewise) update to find the weights of logistic
regression:

«Q i i i
:wj_NZ(y()_t())xg)

i=1

Intro ML (UofT) CSC311-Lec4 61 / 70

Logistic Regression

Comparison of gradient descent updates:

e Linear regression (verify!):

N
o _() x (@)
W — W NZ t\

e Logistic regression:

e Not a coincidence! These are both examples of generalized linear
models. But we won’t go in further detail.

o Notice % in front of sums due to averaged losses. This is why you
need smaller learning rate when we optimize the sum of losses
(o/ = a/N).

Intro ML (UofT) CSC311-Lec4 62 / 70

Stochastic Gradient Descent

@ So far, the cost function J has been the average loss over the
training examples:

1M =

N
1 1 , A
— () — — E (@) (@)

=1

o By linearity,
0T 1 LaLh

‘%‘N,lw‘

1=

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

e Batch training is impractical if you have a large dataset N > 1
(e.g. millions of training examples)!

Intro ML (UofT) CSC311-Lec4 63 / 70

Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,
1. Choose i uniformly at random

oL
2. 0+ 60—-a%5;

Cost of each SGD update is independent of N.

@ SGD can make significant progress before even seeing all the data!

@ Mathematical justification: if you sample a training example uniformly
at random, the stochastic gradient is an unbiased estimate of the batch
gradient:

[acw} 1AL ag

0 | N 06 06

@ Problems:

» Variance in this estimate may be high
» If we only look at one training example at a time, we can’t exploit
efficient vectorized operations.

Intro ML (UofT) CSC311-Lec4 64 / 70

Stochastic Gradient Descent

e Compromise approach: compute the gradients on a randomly
chosen medium-sized set of training examples M C {1,..., N},
called a mini-batch.

e Stochastic gradients computed on larger mini-batches have smaller
variance. This is similar to bagging.
e The mini-batch size | M| is a hyperparameter that needs to be set.

» Too large: takes more computation, i.e. takes more memory to store
the activations, and longer to compute each gradient update

» Too small: can’t exploit vectorization, has high variance

» A reasonable value might be |M| = 100.

Intro ML (UofT) CSC311-Lec4 65 / 70

Stochastic Gradient Descent

e Batch gradient descent moves directly downhill. SGD takes steps
in a noisy direction, but moves downhill on average.

® ©

batch gradient descent stochastic gradient descent

Intro ML (UofT) CSC311-Lec4 66 / 70

SGD Learning Rate

o In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

e

o Typical strategy:
» Use a large learning rate early in training so you can get close to
the optimum
» Gradually decay the learning rate to reduce the fluctuations

Intro ML (UofT) CSC311-Lec4 67 / 70

SGD Learning Rate

e Warning: by reducing the learning rate, you reduce the
fluctuations, which can appear to make the loss drop suddenly.
But this can come at the expense of long-run performance.

reduce
learning rate

error

epoch

Intro ML (UofT) CSC311-Lec4 68 / 70

SGD and Non-convex optimization

Stochastic Gradient descent
updates

Local minimum

Global minimum

@ Stochastic methods have a chance of escaping from bad minima.

o Gradient descent with small step-size converges to first minimum
it finds.

Intro ML (UofT) CSC311-Lec4 69 / 70

Conclusion

e Binary Classification

» 0 — 1 loss is the difficult to work with

» Use of surrogate loss functions such as the cross-entropy loss lead to
computationally feasible solutions

» Logistic regression as the result of using cross-entropy loss with a
linear model going through logistic nonlinearity

» No direct solution, but gradient descent can be used to minimize it

» Stochastic gradient descent

Intro ML (UofT) CSC311-Lec4 70 / 70

Anthony Bonner

