CSC 311: Introduction to Machine Learning Lecture 3 - Linear Regression & Gradient Descent for Optimization

Amir-massoud Farahmand & Emad A.M. Andrews

University of Toronto

Modular Approach to ML Algorithm Design

- So far, we have talked about *procedures* for learning.
 - ▶ KNN and decision trees.
- For the remainder of this course, we will take a more modular approach:
 - choose a model describing the relationships between variables of interest
 - define a loss function quantifying how bad the fit to the data is
 - choose a regularizer saying how much we prefer different candidate models (or explanations of data)
 - ▶ fit the model that minimizes the loss function and satisfy the constraint/penalty imposed by the regularizer, possibly using an optimization algorithm
- Mixing and matching these modular components gives us a lot of new ML methods.

The Supervised Learning Setup

Recall that in supervised learning:

- There is target $t \in \mathcal{T}$ (also called response, outcome, output, class)
- There are features $\mathbf{x} \in \mathcal{X}$ (also called inputs and covariates)
- Objective is to learn a function $f: \mathcal{X} \to \mathcal{T}$ such that

$$t \approx y = f(x)$$

based on some data $\mathcal{D} = \{(\mathbf{x}^{(i)}, t^{(i)}) \text{ for } i = 1, 2, ..., N\}.$

• Model: In linear regression, we use linear functions of the inputs $\mathbf{x} = (x_1, \dots, x_D)$ to make predictions y of the target value t:

$$y = f(\mathbf{x}) = \sum_{j} w_j x_j + b$$

- y is the prediction
- w is the weights
- ▶ b is the bias (or intercept) (do not confuse with the bias-variance tradeoff in the next lecture)
- \bullet w and b together are the parameters
- We hope that our prediction is close to the target: $y \approx t$.

What is Linear? 1 Feature vs. D Features

- If we have only 1 feature: y = wx + b where $w, x, b \in \mathbb{R}$.
- y is linear in x.

- If we have D features: $y = \mathbf{w}^{\top} \mathbf{x} + b$ where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{D}$, $b \in \mathbb{R}$
- y is linear in **x**.

Relation between the prediction y and inputs \mathbf{x} is linear in both cases.

Linear Regression

We have a dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, t^{(i)}) \text{ for } i = 1, 2, ..., N\}$ where,

• $\mathbf{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, ..., x_D^{(i)})^\top \in \mathbb{R}^D$ are the inputs, e.g., age, height.

- $t^{(i)} \in \mathbb{R}$ is the target or response (e.g. income),
- predict $t^{(i)}$ with a linear function of $\mathbf{x}^{(i)}$:

- $t^{(i)} \approx y^{(i)} = \mathbf{w}^\top \mathbf{x}^{(i)} + b$
- Find the "best" line (\mathbf{w}, b) .
- minimize $\sum_{i=1}^{N} \mathcal{L}(y^{(i)}, t^{(i)})$

Linear Regression – Loss Function

- How to quantify the quality of the fit to data?
- A loss function $\mathcal{L}(y,t)$ defines how bad it is if, for some example **x**, the algorithm predicts y, but the target is actually t.
- Squared error loss function:

$$\mathcal{L}(y,t) = \frac{1}{2}(y-t)^2$$

• y - t is the residual, and we want to make its magnitude small

- The $\frac{1}{2}$ factor is just to make the calculations convenient.
- Cost function: loss function averaged over all training examples

$$\begin{aligned} \mathcal{J}(\mathbf{w}, b) &= \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - t^{(i)} \right)^2 \\ &= \frac{1}{2N} \sum_{i=1}^{N} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - t^{(i)} \right)^2 \end{aligned}$$

• The terminology is not universal. Some might call "loss" *pointwise* loss and the "cost function" the *empirical loss* or *average loss*.

Intro ML (UofT)

Vector Notation

• We can organize all the training examples into a design matrix **X** with one row per training example, and all the targets into the target vector **t**.

one feature across

all training examples

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}^{(1)\top} \\ \mathbf{x}^{(2)\top} \\ \mathbf{x}^{(3)\top} \end{pmatrix} = \begin{pmatrix} 8 & 0 & 3 & 0 \\ 6 & -1 & 5 & 3 \\ 2 & 5 & -2 & 8 \end{pmatrix} \xrightarrow{\text{on}}_{\text{examples}}$$

one training example (vector)

• Computing the predictions for the whole dataset:

$$\mathbf{X}\mathbf{w} + b\mathbf{1} = \begin{pmatrix} \mathbf{w}^T \mathbf{x}^{(1)} + b \\ \vdots \\ \mathbf{w}^T \mathbf{x}^{(N)} + b \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{pmatrix} = \mathbf{y}$$

Vectorization

• Computing the squared error cost across the whole dataset:

$$\mathbf{y} = \mathbf{X}\mathbf{w} + b\mathbf{1}$$

 $\mathcal{J} = \frac{1}{2N} \|\mathbf{y} - \mathbf{t}\|^2$

- Note that sometimes we may use $\mathcal{J} = \frac{1}{2} ||\mathbf{y} \mathbf{t}||^2$, without normalizer. That would correspond to the sum of losses, and not the average loss. The minimizer does not depend on N.
- We can also add a column of 1s to the design matrix, combine the bias and the weights, and conveniently write

$$\mathbf{X} = \begin{bmatrix} 1 & [\mathbf{x}^{(1)}]^{\top} \\ 1 & [\mathbf{x}^{(2)}]^{\top} \\ 1 & \vdots \end{bmatrix} \in \mathbb{R}^{N \times D + 1} \text{ and } \mathbf{w} = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \end{bmatrix} \in \mathbb{R}^{D + 1}$$

Then, our predictions reduce to $\mathbf{y} = \mathbf{X}\mathbf{w}$.

Intro ML (UofT)

Error Surface: $\ell(\mathbf{w}) = w_0^2 + w_1^2$

Solving the Minimization Problem

- We defined a cost function. This is what we would like to minimize.
- Recall from your calculus class: minimum of a smooth function (if it exists) occurs at a critical point, i.e., point where the derivative is zero.
- Multivariate generalization: set the partial derivatives to zero (or equivalently the gradient).
- We would like to find a point where the gradient is (close to) zero. How can we do it?
 - ▶ Sometimes it is possible to directly find the parameters that make the gradient zero in a closed-form. We call this the direct solution.
 - ▶ We may also use optimization techniques that iteratively get us closer to the solution. We will get back to this soon.

Partial Derivatives

More Examples:

$$g(x_1, x_2) = x_1 x_2^2$$
$$\frac{\partial}{\partial x_1} [g(x_1, x_2)] = x_2^2$$
$$\frac{\partial}{\partial x_2} [g(x_1, x_2)] = 2x_1 x_2$$

Direct Solution

• Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$\frac{\partial}{\partial x_1} f(x_1, x_2) = \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y

$$\frac{\partial y}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\sum_{j'} w_{j'} x_{j'} + b \right]$$
$$= x_j$$
$$\frac{\partial y}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{j'} w_{j'} x_{j'} + b \right]$$
$$= 1$$

Direct Solution

• Chain rule for derivatives:

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial w_j} &= \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} \frac{\partial y}{\partial w_j} \\ &= \frac{\mathrm{d}}{\mathrm{d}y} \left[\frac{1}{2} (y-t)^2 \right] \cdot x_j \\ &= (y-t)x_j \\ \frac{\partial \mathcal{L}}{\partial b} &= y-t \end{aligned}$$

• Cost derivatives (average over data points):

$$\frac{\partial \mathcal{J}}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x_j^{(i)}$$
$$\frac{\partial \mathcal{J}}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} - t^{(i)}$$

• The minimum must occur at a point where the partial derivatives are zero, i.e.,

$$\frac{\partial \mathcal{J}}{\partial w_j} = 0 \quad (\forall j), \qquad \frac{\partial \mathcal{J}}{\partial b} = 0.$$

- If $\partial \mathcal{J}/\partial w_j \neq 0$, you could reduce the cost by changing w_j .
- This turns out to give a system of linear equations, which we can solve efficiently. Full derivation in the preliminaries.pdf.
- Optimal weights:

$$\mathbf{w}^{\mathrm{LS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$

• Linear regression is one of only a handful of models in this course that permit direct solution.

Feature Mapping (Basis Expansion)

• The relation between the input and output may not be linear.

- We can still use linear regression by mapping the input feature to another space using feature mapping (or basis expansion) $\psi(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}^d$ and treat the mapped feature (in \mathbb{R}^d) as the input of a linear regression procedure.
- Let us see how it works when $\mathbf{x} \in \mathbb{R}$ and we use polynomial feature mapping.

Intro ML (UofT)

Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^M w_i x^i$$

- Here the feature mapping is $\psi(x) = [1, x, x^2, ...]^{\top}$.
- We can still use least squares to find \mathbf{w} since $y = \boldsymbol{\psi}(x)^{\top} \mathbf{w}$ is linear in w_0, w_1, \dots
- In general, $\boldsymbol{\psi}$ can be any function. Another example: $\boldsymbol{\psi} = [1, \sin(2\pi x), \cos(2\pi x), \sin(4\pi x), \cos(4\pi x), \sin(6\pi x), \cos(6\pi x), \cdots]^{\top}$.

Intro ML (UofT)

 $y = w_0$

-Pattern Recognition and Machine Learning, Christopher Bishop.

$$y = w_0 + w_1 x$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \ldots + w_9 x^9$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Model Complexity and Generalization

Underfitting (M=0): model is too simple — does not fit the data. Overfitting (M=9): model is too complex — fits perfectly.

Good model (M=3): Achieves small test error (generalizes well).

Model Complexity and Generalization

- As *M* increases, the magnitude of coefficients gets larger.
- For M = 9, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

Regularization for Controlling the Model Complexity

- The degree of the polynomial M controls the complexity of the model.
- The value of M is a hyperparameter for polynomial expansion, just like k in KNN. We can tune it using a validation set.
- Restricting the number of parameters of a model (M here) is a crude approach to control the complexity of the model.
- A better solution: keep the number of parameters of the model large, but enforce "simpler" solutions within the same space of parameters.
- This is done through regularization or penalization.
 - ▶ Regularizer (or penalty): a function that quantifies how much we prefer one hypothesis vs. another
- Q: How?!

ℓ_2 (or L^2) Regularization

• We can encourage the weights to be small by choosing as our regularizer the ℓ_2 (or L^2) penalty.

$$\mathcal{R}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_2^2 = \frac{1}{2} \sum_j w_j^2.$$

▶ Note: To be precise, we are regularizing the squared ℓ_2 norm.

• The regularized cost function makes a tradeoff between fit to the data and the norm of the weights:

$$\mathcal{J}_{\mathrm{reg}}(\mathbf{w}) = \mathcal{J}(\mathbf{w}) + \lambda \mathcal{R}(\mathbf{w}) = \mathcal{J}(\mathbf{w}) + \frac{\lambda}{2} \sum_{j} w_{j}^{2}.$$

- The basic idea is that "simpler" functions have smaller l₂-norm of their weights w, and we prefer them to functions with larger l₂-norms.
- If you fit training data poorly, \mathcal{J} is large. If your optimal weights have high values, \mathcal{R} is large.
- Large λ penalizes weight values more.
- Here, λ is a hyperparameter that we can tune with a validation set.

Intro ML (UofT)

ℓ_2 Regularized Least Squares: Ridge Regression

For the least squares problem, we have $\mathcal{J}(\mathbf{w}) = \frac{1}{2N} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|^2$.

• When $\lambda > 0$ (with regularization), regularized cost gives

$$\begin{split} \mathbf{w}_{\lambda}^{\text{Ridge}} &= \operatorname*{argmin}_{\mathbf{w}} \mathcal{J}_{\text{reg}}(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{2N} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} \\ &= (\mathbf{X}^{T}\mathbf{X} + \lambda N\mathbf{I})^{-1} \mathbf{X}^{T} \mathbf{t} \end{split}$$

- The case $\lambda = 0$ (no regularization) reduces to least squares solution!
- Q: What happens when $\lambda \to \infty$?
- Note that it is also common to formulate this problem as $\operatorname{argmin}_{\mathbf{w}} \|\mathbf{X}\mathbf{w} \mathbf{t}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$ in which case the solution is $\mathbf{w}_{\lambda}^{\text{Ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{t}.$

ℓ_1 vs. ℓ_2 Regularization

- The ℓ_1 norm, or sum of absolute values, is another regularizer that encourages weights to be exactly zero. (How can you tell?)
- We can design regularizers based on whatever property we'd like to encourage.

- Bishop, Pattern Recognition and Machine Learning

Probabilistic Interpretation of the Squared Error

For the least squares: we minimize the sum of the squares of the errors between the predictions for each data point $\mathbf{x}^{(i)}$ and the corresponding target values $t^{(i)}$, i.e.,

$$\underset{(\mathbf{w},\mathbf{w}_0)}{\text{minimize}} \sum_{i=1}^n (\mathbf{w}^\top \mathbf{x}^{(i)} + b - t^{(i)})^2$$

•
$$t \approx \mathbf{x}^{\top} \mathbf{w} + b, \ (\mathbf{w}, b) \in \mathbb{R}^D \times \mathbb{R}$$

- We measure the quality of the fit using the squared error loss. Why?
- Even though the squared error loss looks natural, we did not really justify it.
- We provide a probabilistic perspective here.
- There are other justifications too; we get to them in the next lecture.

Probabilistic Interpretation of the Squared Error

• Suppose that our model arose from a statistical model (b=0 for simplicity):

$$y^{(i)} = \mathbf{w}^\top \mathbf{x}^{(i)} + \epsilon^{(i)}$$

where $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ is independent of anything else.

Thus,
$$y^{(i)} | \mathbf{x}^{(i)} \sim p(y | \mathbf{x}^{(i)}, \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top} \mathbf{x}^{(i)}, \sigma^2).$$

Gaussian Distribution

- Aka the normal distribution
- Widely used model for the distribution of continuous variables
- In the case of a single variable x, the Gaussian distribution can be written in the form

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

- where μ is the mean and σ^2 is the variance

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

• Suppose that the input data $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\}$ are given and the outputs are independently drawn from

$$y^{(i)} \sim p(y|x^{(i)}, \mathbf{w})$$

with an unknown parameter **w**. So the dataset is $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}.$

- The likelihood function is $\Pr(\mathcal{D}|\mathbf{w})$.
- The maximum likelihood estimation (MLE) is the "principle" that suggests we have to find a parameter $\hat{\mathbf{w}}$ that maximizes the likelihood, i.e.,

$$\hat{\mathbf{w}} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \Pr(\mathcal{D}|\mathbf{w}).$$

Maximum likelihood estimation: after observing the data samples $(\mathbf{x}^{(i)}, y^{(i)})$ for i = 1, 2, ..., N, we should choose **w** that maximizes the likelihood.

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

• For independent samples, the likelihood function of samples \mathcal{D} is the product of their likelihoods

$$p(y^{(1)}, y^{(2)}, ..., y^{(n)} | x^{(1)}, x^{(2)}, ..., x^{(N)}, \mathbf{w}) = \prod_{i=1}^{N} p(y^{(i)} | x^{(i)}, \mathbf{w}) = L(\mathbf{w}).$$

- Product of N terms is not easy to minimize. Taking log reduces it to a sum! Two objectives are equivalent since log is strictly increasing.
- Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:

$$\ell(\mathbf{w}) = -\log L(\mathbf{w}) = -\log \prod_{i=1}^{N} p(z^{(i)} | \mathbf{w}) = -\sum_{i=1}^{n} \log p(z^{(i)} | \mathbf{w})$$

Maximum Likelihood Estimator (MLE)

After observing $z^{(i)} = (\mathbf{x}^{(i)}, y^{(i)})$ for i = 1, ..., n i.i.d. samples from $p(z|\mathbf{w})$, MLE is

$$\mathbf{w}^{\text{MLE}} = \underset{\mathbf{w}}{\operatorname{argmin}} \quad l(\mathbf{w}) = -\sum_{i=1}^{n} \log p(z^{(i)} | \mathbf{w}).$$

Intro ML (UofT

Probabilistic Interpretation of the Squared Error: From MLE to Squared Error

• Suppose that our model arose from a statistical model:

$$y^{(i)} = \mathbf{w}^\top x^{(i)} + \epsilon^{(i)}$$

where $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ is independent of anything else. • $p(y^{(i)}|x^{(i)}, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y^{(i)} - \mathbf{w}^{\top}x^{(i)})^2\right\}$

- $\log p(y^{(i)}|x^{(i)}, \mathbf{w}) = -\frac{1}{2\sigma^2}(y^{(i)} \mathbf{w}^\top x^{(i)})^2 \log(\sqrt{2\pi\sigma^2})$
- The MLE solution is

$$\mathbf{w}^{\text{MLE}} = \underset{\mathbf{w}}{\operatorname{argmin}} \ \mathcal{L}(\mathbf{w}) = \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\top} x^{(i)})^2 + C.$$

• As C and σ do not depend on **w**, they do not contribute to the minimization.

 $\mathbf{w}^{\text{MLE}} = \mathbf{w}^{\text{LS}}$ when we work with Gaussian densities.

Gradient Descent

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

• Observe:

- if $\partial \mathcal{J}/\partial w_j > 0$, then increasing w_j increases \mathcal{J} .
- if $\partial \mathcal{J} / \partial w_j < 0$, then increasing w_j decreases \mathcal{J} .
- The following update decreases the cost function:

$$w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{J}}{\partial w_j}$$

= $w_j - \frac{\alpha}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) x_j^{(i)}$

• α is a learning rate. The larger it is, the faster **w** changes.

▶ We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001

Gradient Descent

• This gets its name from the gradient:

$$\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial \mathcal{J}}{\partial w_1} \\ \vdots \\ \frac{\partial \mathcal{J}}{\partial w_D} \end{pmatrix}$$

- This is the direction of fastest increase in \mathcal{J} .
- Update rule in vector form:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}$$
$$= \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

- Hence, gradient descent updates the weights in the direction of fastest *decrease*.
- Observe that once it converges, we get a critical point, i.e. $\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = 0$.

Intro ML (UofT)

- Even for linear regression, where there is a direct solution, we sometimes need to use GD.
- Why gradient descent, if we can find the optimum directly?
 - ▶ GD can be applied to a much broader set of models
 - ▶ GD can be easier to implement than direct solutions
 - ▶ For regression in high-dimensional spaces, GD is more efficient than direct solution
 - Linear regression solution: $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$
 - matrix inversion is an $\mathcal{O}(D^3)$ algorithm
 - each GD update costs O(ND)
 - Huge difference if $D \gg 1$

Gradient Descent under the ℓ_2 Regularization

• Recall the gradient descent update:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}$$

• The gradient descent update of the regularized cost $\mathcal{J} + \lambda \mathcal{R}$ has an interesting interpretation as weight decay:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}} \right)$$
$$= \mathbf{w} - \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \mathbf{w} \right)$$
$$= (1 - \alpha \lambda) \mathbf{w} - \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}$$

Learning Rate (Step Size)

 In gradient descent, the learning rate α is a hyperparameter we need to tune. Here are some things that can go wrong:

 $\begin{array}{ccc} \alpha \text{ too small:} & \alpha \text{ too large:} & \alpha \text{ much too large:} \\ \text{slow progress} & \text{oscillations} & \text{instability} \end{array}$

• Good values are typically between 0.001 and 0.1. You should do a grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, ...).

Training Curves

• To diagnose optimization problems, it's useful to look at training curves: plot the training cost as a function of iteration.

iteration #

• Warning: it's very hard to tell from the training curves whether an optimizer has converged. They can reveal major problems, but they can't guarantee convergence.

Brief Matrix and Vector Calculus

- For a function $f : \mathbb{R}^p \to \mathbb{R}, \nabla f(z)$ denotes the gradient at z which points in the direction of the greatest rate of increase.
- $\nabla f(x) \in \mathbb{R}^p$ is a vector with $[\nabla f(x)]_i = \frac{\partial}{\partial x_i} f(x)$.
- $\nabla^2 f(x) \in \mathbb{R}^{p \times p}$ is a matrix with $[\nabla^2 f(x)]_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} f(x)$
- At any minimum of a function f, we have $\nabla f(\mathbf{w}) = 0$, $\nabla^2 f(\mathbf{w}) \succeq 0$.
- Consider the problem minimize $\ell(\mathbf{w}) = \frac{1}{2} \|y X\mathbf{w}\|_2^2$,
- $\nabla \ell(\mathbf{w}) = X^{\top}(X\mathbf{w} y) = 0 \implies \hat{\mathbf{w}} = (X^{\top}X)^{-1}X^{\top}y$ (assuming $X^{\top}X$ is invertible)

At an arbitrary point x (old/new observation), our prediction is $y = \hat{\mathbf{w}}^{\top} x$.

• Computing the prediction using a for loop:

```
y = b
for j in range(M):
    y += w[j] * x[j]
```

• For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$\mathbf{w} = (w_1, \dots, w_D)^T$$
 $\mathbf{x} = (x_1, \dots, x_D)$
 $y = \mathbf{w}^T \mathbf{x} + b$

• This is simpler and much faster:

$$y = np.dot(w, x) + b$$

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
 - Cut down on Python interpreter overhead
 - Use highly optimized linear algebra libraries
 - Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the minimization problem using one of two strategies
 - direct solution (set derivatives to zero)
 - ▶ gradient descent (see appendix)
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- improve the generalization by adding a regularizer
- Probabilistic Interpretation as MLE with Gaussian noise model