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Modular Approach to ML Algorithm Design

So far, we have talked about procedures for learning.
I KNN and decision trees.

For the remainder of this course, we will take a more modular
approach:

I choose a model describing the relationships between variables of
interest

I define a loss function quantifying how bad the fit to the data is
I choose a regularizer saying how much we prefer di↵erent candidate

models (or explanations of data)
I fit the model that minimizes the loss function and satisfy the

constraint/penalty imposed by the regularizer, possibly using an
optimization algorithm

Mixing and matching these modular components gives us a lot of
new ML methods.
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The Supervised Learning Setup

Recall that in supervised learning:

There is target t 2 T (also called response, outcome, output, class)

There are features x 2 X (also called inputs and covariates)

Objective is to learn a function f : X ! T such that

t ⇡ y = f(x)

based on some data D = {(x(i), t(i)) for i = 1, 2, ..., N}.
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Linear Regression – Model

Model: In linear regression, we use linear functions of the inputs
x = (x1, . . . , xD) to make predictions y of the target value t:

y =f(x) =
X

j

wjxj + b

I y is the prediction
I w is the weights
I b is the bias (or intercept) (do not confuse with the bias-variance

tradeo↵ in the next lecture)

w and b together are the parameters

We hope that our prediction is close to the target: y ⇡ t.
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What is Linear? 1 Feature vs. D Features

If we have only 1 feature:
y = wx+ b where w, x, b 2 R.
y is linear in x.

If we have D features:
y = w>x+ b where w,x 2 RD,
b 2 R
y is linear in x.

Relation between the prediction y and inputs x is linear in both cases.
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Linear Regression

We have a dataset D = {(x(i), t(i)) for i = 1, 2, ..., N} where,

x(i) = (x(i)1 , x(i)2 , ..., x(i)D )> 2 RD are the inputs, e.g., age, height.

t(i) 2 R is the target or response (e.g. income),

predict t(i) with a linear function of x(i):

t(i) ⇡ y(i) = w>x(i) + b

Find the “best” line (w, b).

minimize
(w,b)

PN
i=1 L(y(i), t(i))
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Linear Regression – Loss Function

How to quantify the quality of the fit to data?
A loss function L(y, t) defines how bad it is if, for some example x,
the algorithm predicts y, but the target is actually t.
Squared error loss function:

L(y, t) = 1
2(y � t)2

y � t is the residual, and we want to make its magnitude small
The 1

2 factor is just to make the calculations convenient.
Cost function: loss function averaged over all training examples

J (w, b) =
1

2N

NX

i=1

⇣
y(i) � t(i)

⌘2

=
1

2N

NX

i=1

⇣
w>x(i) + b� t(i)

⌘2

The terminology is not universal. Some might call “loss” pointwise
loss and the “cost function” the empirical loss or average loss.
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Vector Notation

We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

0

B@
wTx(1) + b

...
wTx(N) + b

1

CA =

0

B@
y(1)

...
y(N)

1

CA = y
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Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2N
ky � tk2

Note that sometimes we may use J = 1
2ky � tk2, without

normalizer. That would correspond to the sum of losses, and not
the average loss. The minimizer does not depend on N .
We can also add a column of 1s to the design matrix, combine the
bias and the weights, and conveniently write

X =

2

64
1 [x(1)]>

1 [x(2)]>

1
...

3

75 2 RN⇥D+1 and w =

2

6664

b
w1

w2
...

3

7775
2 RD+1

Then, our predictions reduce to y = Xw.
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Error	Surface:			l (w)	=	w0
2	+	w1

2
	



Solving the Minimization Problem

We defined a cost function. This is what we would like to
minimize.

Recall from your calculus class: minimum of a smooth function (if
it exists) occurs at a critical point, i.e., point where the derivative
is zero.

Multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient).

We would like to find a point where the gradient is (close to) zero.
How can we do it?

I Sometimes it is possible to directly find the parameters that make
the gradient zero in a closed-form. We call this the direct solution.

I We may also use optimization techniques that iteratively get us
closer to the solution. We will get back to this soon.
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Partial Derivatives

§ More Examples:

g "#, "% = "#"%%
+
+"#

, "#, "% = "%%
+
+"%

, "#, "% = 2"#"%



Direct Solution

Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

@

@x1
f(x1, x2) = lim

h!0

f(x1 + h, x2)� f(x1, x2)

h

To compute, take the single variable derivatives, pretending the
other arguments are constant.
Example: partial derivatives of the prediction y

@y

@wj
=

@

@wj

2

4
X

j0
wj0xj0 + b

3

5

= xj

@y

@b
=

@

@b

2

4
X

j0
wj0xj0 + b

3

5

= 1
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Direct Solution

Chain rule for derivatives:

@L
@wj

=
dL
dy

@y

@wj

=
d

dy


1

2
(y � t)2

�
· xj

= (y � t)xj

@L
@b

= y � t

Cost derivatives (average over data points):

@J
@wj

=
1

N

NX

i=1

(y(i) � t(i))x
(i)
j

@J
@b

=
1

N

NX

i=1

y(i) � t(i)
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Direct Solution

The minimum must occur at a point where the partial derivatives
are zero, i.e.,

@J
@wj

= 0 (8j), @J
@b

= 0.

If @J /@wj 6= 0, you could reduce the cost by changing wj .

This turns out to give a system of linear equations, which we can
solve e�ciently. Full derivation in the preliminaries.pdf.

Optimal weights:
wLS = (XTX)�1XT t

Linear regression is one of only a handful of models in this course
that permit direct solution.
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Feature Mapping (Basis Expansion)

The relation between the input and output may not be linear.

We can still use linear regression by mapping the input feature to
another space using feature mapping (or basis expansion)
 (x) : RD ! Rd and treat the mapped feature (in Rd) as the
input of a linear regression procedure.

Let us see how it works when x 2 R and we use polynomial feature
mapping.
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Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

y = w0 + w1x+ w2x
2 + ...+ wMxM =

MX

i=0

wix
i

Here the feature mapping is  (x) = [1, x, x2, ...]>.

We can still use least squares to find w since y =  (x)>w is linear
in w0, w1, ....

In general,  can be any function. Another example:  =
[1, sin(2⇡x), cos(2⇡x), sin(4⇡x), cos(4⇡x), sin(6⇡x), cos(6⇡x), · · · ]>.
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Polynomial Feature Mapping with M = 0

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M = 1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M = 3

y = w0 + w1x+ w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M = 9

y = w0 + w1x+ w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Model Complexity and Generalization

Underfitting (M=0): model is too simple — does not fit the data.
Overfitting (M=9): model is too complex — fits perfectly.

x

t

M = 0

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Good model (M=3): Achieves small test error (generalizes well).

x

t

M = 3

0 1

−1

0

1
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Model Complexity and Generalization

x

t

M = 9

0 1

−1

0

1

As M increases, the magnitude of coe�cients gets larger.

For M = 9, the coe�cients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.
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Regularization for Controlling the Model Complexity

The degree of the polynomial M controls the complexity of the
model.

The value of M is a hyperparameter for polynomial expansion,
just like k in KNN. We can tune it using a validation set.

Restricting the number of parameters of a model (M here) is a
crude approach to control the complexity of the model.

A better solution: keep the number of parameters of the model
large, but enforce “simpler” solutions within the same space of
parameters.

This is done through regularization or penalization.
I Regularizer (or penalty): a function that quantifies how much we

prefer one hypothesis vs. another

Q: How?!
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`2 (or L2) Regularization

We can encourage the weights to be small by choosing as our regularizer
the `2 (or L2) penalty.

R(w) = 1
2kwk

2
2 =

1

2

X

j

w2
j .

I Note: To be precise, we are regularizing the squared `2 norm.

The regularized cost function makes a tradeo↵ between fit to the data
and the norm of the weights:

Jreg(w) = J (w) + �R(w) = J (w) +
�

2

X

j

w2
j .

The basic idea is that “simpler” functions have smaller `2-norm of their
weights w, and we prefer them to functions with larger `2-norms.

If you fit training data poorly, J is large. If your optimal weights have
high values, R is large.

Large � penalizes weight values more.

Here, � is a hyperparameter that we can tune with a validation set.
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`2 Regularized Least Squares: Ridge Regression

For the least squares problem, we have J (w) = 1
2N kXw � tk2.

When � > 0 (with regularization), regularized cost gives

wRidge
� = argmin

w
Jreg(w) = argmin

w

1

2N
kXw � tk22 +

�

2
kwk22

=(XTX+ �NI)�1XT t

The case � = 0 (no regularization) reduces to least squares solution!

Q: What happens when �!1?

Note that it is also common to formulate this problem as
argminw kXw � tk22 + �

2 kwk
2
2 in which case the solution is

wRidge
� = (XTX+ �I)�1XT t.
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`1 vs. `2 Regularization

The `1 norm, or sum of absolute values, is another regularizer that encourages

weights to be exactly zero. (How can you tell?)

We can design regularizers based on whatever property we’d like to encourage.

— Bishop, Pattern Recognition and Machine Learning
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Probabilistic Interpretation of the Squared Error

For the least squares: we minimize the sum of the squares of the errors
between the predictions for each data point x(i) and the corresponding
target values t(i), i.e.,

minimize
(w,w0)

nX

i=1

(w>x(i) + b� t(i))2

t ⇡ x>w + b, (w, b) 2 RD ⇥ R
We measure the quality of the fit using the
squared error loss. Why?

Even though the squared error loss looks
natural, we did not really justify it.

We provide a probabilistic perspective here.

There are other justifications too; we get to
them in the next lecture.
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Probabilistic Interpretation of the Squared Error

Suppose that our model arose from a
statistical model (b=0 for simplicity):

y(i) = w>x(i) + ✏(i)

where ✏(i) ⇠ N (0,�2) is independent
of anything else.

Thus, y(i)|x(i) ⇠ p(y|x(i),w) =
N (w>x(i),�2).
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Gaussian Distribution

• Aka the normal distribution
• Widely used model for the distribution of continuous variables
• In the case of a single variable x, the Gaussian distribution can be 

written in the form

• where μ is the mean and σ2 is the variance

Continuous Distribution



Probabilistic Interpretation of the Squared Error:
Maximum Likelihood Estimation

Suppose that the input data {x(1),x(2), . . . ,x(N)} are given and
the outputs are independently drawn from

y(i) ⇠ p(y|x(i),w)

with an unknown parameter w. So the dataset is
D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))}.
The likelihood function is Pr(D|w).
The maximum likelihood estimation (MLE) is the “principle” that
suggests we have to find a parameter ŵ that maximizes the
likelihood, i.e.,

ŵ argmax
w

Pr(D|w).

Maximum likelihood estimation: after observing the data samples
(x(i), y(i)) for i = 1, 2, ..., N , we should choose w that maximizes the
likelihood.
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Probabilistic Interpretation of the Squared Error:
Maximum Likelihood Estimation

For independent samples, the likelihood function of samples D is the product

of their likelihoods

p(y
(1)

, y
(2)

, ..., y
(n)

|x
(1)

, x
(2)

, ..., x
(N)

,w) =

NY

i=1

p(y
(i)
|x

(i)
,w) = L(w).

Product of N terms is not easy to minimize. Taking log reduces it to a sum!

Two objectives are equivalent since log is strictly increasing.

Maximizing the likelihood is equivalent to minimizing the negative

log-likelihood:

`(w) = � logL(w) = � log

NY

i=1

p(z
(i)
|w) = �

nX

i=1

log p(z
(i)
|w)

Maximum Likelihood Estimator (MLE)

After observing z
(i)

= (x(i)
, y

(i)
) for i = 1, ..., n i.i.d. samples from p(z|w), MLE is

wMLE
= argmin

w
l(w) = �

nX

i=1

log p(z
(i)
|w).
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Probabilistic Interpretation of the Squared Error: From
MLE to Squared Error

Suppose that our model arose from a statistical model:

y(i) = w>x(i) + ✏(i)

where ✏(i) ⇠ N (0,�2) is independent of anything else.

p(y(i)|x(i),w) = 1p
2⇡�2

exp
�
� 1

2�2 (y(i) �w>x(i))2
 

log p(y(i)|x(i),w) = � 1
2�2 (y(i) �w>x(i))2 � log(

p
2⇡�2)

The MLE solution is

wMLE = argmin
w

L(w) = 1
2�2

NX

i=1

(y(i) �w>x(i))2 + C.

As C and � do not depend on w, they do not contribute to the
minimization.

wMLE = wLS when we work with Gaussian densities.
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Gradient Descent
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Gradient Descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.
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Gradient Descent

Observe:
I if @J /@wj > 0, then increasing wj increases J .
I if @J /@wj < 0, then increasing wj decreases J .

The following update decreases the cost function:

wj  wj � ↵
@J
@wj

= wj �
↵

N

NX

i=1

(y(i) � t(i))x(i)j

↵ is a learning rate. The larger it is, the faster w changes.
I We’ll see later how to tune the learning rate, but values are

typically small, e.g. 0.01 or 0.0001
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Gradient Descent

This gets its name from the gradient:

@J
@w

=

0

B@

@J
@w1
...

@J
@wD

1

CA

I This is the direction of fastest increase in J .

Update rule in vector form:

w w � ↵
@J
@w

= w � ↵

N

NX

i=1

(y(i) � t(i))x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.
Observe that once it converges, we get a critical point, i.e. @J

@w = 0.
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Gradient Descent for Linear regression

Even for linear regression, where there is a direct solution, we
sometimes need to use GD.

Why gradient descent, if we can find the optimum directly?
I GD can be applied to a much broader set of models
I GD can be easier to implement than direct solutions
I For regression in high-dimensional spaces, GD is more e�cient than

direct solution
I Linear regression solution: (XTX)

�1XT t
I matrix inversion is an O(D

3
) algorithm

I each GD update costs O(ND)

I Huge di↵erence if D � 1
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Gradient Descent under the `2 Regularization

Recall the gradient descent update:

w w � ↵
@J
@w

The gradient descent update of the regularized cost J + �R has
an interesting interpretation as weight decay:

w w � ↵

✓
@J
@w

+ �
@R
@w

◆

= w � ↵

✓
@J
@w

+ �w

◆

= (1� ↵�)w � ↵
@J
@w
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Learning Rate (Step Size)

In gradient descent, the learning rate ↵ is a hyperparameter we
need to tune. Here are some things that can go wrong:

↵ too small:
slow progress

↵ too large:
oscillations

↵ much too large:
instability

Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try
0.1, 0.03, 0.01, . . .).
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Training Curves

To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

Warning: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but
they can’t guarantee convergence.
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Brief Matrix and Vector Calculus

For a function f : Rp ! R, rf(z) denotes the gradient at z which
points in the direction of the greatest rate of increase.

rf(x) 2 Rp is a vector with [rf(x)]i = @
@xi

f(x).

r2f(x) 2 Rp⇥p is a matrix with [r2f(x)]ij =
@2

@xi@xj
f(x)

At any minimum of a function f , we have rf(w) = 0,
r2f(w) ⌫ 0.

Consider the problem minimize
w

`(w) = 1
2ky �Xwk22,

r`(w) = X>(Xw � y) = 0 =) ŵ = (X>X)�1X>y (assuming
X>X is invertible)

At an arbitrary point x (old/new observation), our prediction is
y = ŵ>x.
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Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by
expressing them in terms of vectors and matrices.

w = (w1, . . . , wD)
T x = (x1, . . . , xD)

y = wTx+ b

This is simpler and much faster:
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Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!

Vectorized code is much faster
I Cut down on Python interpreter overhead
I Use highly optimized linear algebra libraries
I Matrix multiplication is very fast on a Graphics Processing Unit

(GPU)
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Conclusion

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the minimization problem using one of two strategies
I direct solution (set derivatives to zero)
I gradient descent (see appendix)

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer

Probabilistic Interpretation as MLE with Gaussian noise model
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