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Modular Approach to ML Algorithm Design

e So far, we have talked about procedures for learning.
» KNN and decision trees.

e For the remainder of this course, we will take a more modular
approach:

» choose a model describing the relationships between variables of
interest

» define a loss function quantifying how bad the fit to the data is

» choose a regularizer saying how much we prefer different candidate
models (or explanations of data)

» fit the model that minimizes the loss function and satisfy the
constraint /penalty imposed by the regularizer, possibly using an
optimization algorithm

e Mixing and matching these modular components gives us a lot of
new ML methods.

Intro ML (UofT) CSC311-Lec3 2 /42



The Supervised Learning Setup
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Recall that in supervised learning;:
e There is target ¢t € T (also called response, outcome, output, class)
e There are features x € X’ (also called inputs and covariates)
e Objective is to learn a function f : X — T such that

~y = f(z)
based on some data D = {(x¥,t®) for i = 1,2,..., N}.
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Linear Regression — Model

@ Model: In linear regression, we use linear functions of the inputs
x = (x1,...,2p) to make predictions y of the target value ¢:

y =f(x) :ijxj+b
J

» y is the prediction

» w is the weights

» b is the bias (or intercept) (do not confuse with the bias-variance
tradeoff in the next lecture)

e w and b together are the parameters

e We hope that our prediction is close to the target: y ~ t.
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What is Linear? 1 Feature vs. D Features

If we have only 1 feature:
y = wx + b where w, x,b € R.

@ y is linear in x.

o If we have D features:
y=Ww' X+ bwhere w,x € RP,
beR

@ y is linear in x.

X,

Relation between the prediction y and inputs x is linear in both cases.
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Linear Regression

We have a dataset D = {(x®,t®) for i = 1,2, ..., N} where,
o x(0) = (x; @) mg), . x%))T € RP are the inputs, e.g., age, height.
o t() € R is the target or response (e.g. income),

o predict t) with a linear function of x(*:

2.0 — Fitted line L[]
® Data

e Find the “best” line (w,b).
e minimize Zfil L(y@, 1)

(W’

y: response
)
o

x: features
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Linear Regression — Loss Function

e How to quantify the quality of the fit to data?

e A loss function L£(y,t) defines how bad it is if, for some example x,
the algorithm predicts y, but the target is actually ¢.

@ Squared error loss function:

e y —t is the residual, and we want to make its magnitude small

o The % factor is just to make the calculations convenient.
e Cost function: loss function averaged over all training examples

N 2

s
Il
-

@ The terminology is not universal. Some might call “loss” pointwise
loss and the “cost function” the empirical loss or average loss.
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Vector Notation

@ We can organize all the training examples into a design matrix X
with one row per training example, and all the targets into the
target vector t.

one feature across
all training examples

x(DT 810 3 0
traini
X — xg; = g —51 52 2 examplo (veoton
" =

e Computing the predictions for the whole dataset:

wlxM 4 b y)
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Vectorization

e Computing the squared error cost across the whole dataset:

y = Xw + b1
J——%W*HF

o Note that sometimes we may use J = 1||y — t||%, without
normalizer. That would correspond to the sum of losses, and not
the average loss. The minimizer does not depend on N.

e We can also add a column of 1s to the design matrix, combine the
bias and the weights, and conveniently write

1 [X(l)]T b
w
X =1 [X(Q)]T e RV*PHL and w = w; c RP+1
) )

Then, our predictions reduce to y = Xw.
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Error Surface: 4(w) =w,?+w,?
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Solving the Minimization Problem

We defined a cost function. This is what we would like to
minimize.

Recall from your calculus class: minimum of a smooth function (if
it exists) occurs at a critical point, i.e., point where the derivative
is zero.

Multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient).

We would like to find a point where the gradient is (close to) zero.
How can we do it?

» Sometimes it is possible to directly find the parameters that make
the gradient zero in a closed-form. We call this the direct solution.

» We may also use optimization techniques that iteratively get us
closer to the solution. We will get back to this soon.
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Partial Derivatives

= More Examples:

g(xy, x2) = x1x%

d
Ix. [g(xq, x2)] = x5
d
0_x2 g (x1, x2)] = 2x1x,
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Direct Solution

e Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

— v J@it b)) — f(m,22)
8$1 (.'1:17372) - }{E)I%) h

e To compute, take the single variable derivatives, pretending the
other arguments are constant.
e Example: partial derivatives of the prediction y

w; i

Oy
= 811)] |:Z:’w 1T +b:|

0
5 =70 |:ij/le +b:|
j/

=1
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Direct Solution

@ Chain rule for derivatives:

oL  dL oy
w;  dy dw;
o]
= (y —t)z;
oL
W YTt

e Cost derivatives (average over data points):

07 1 i i (%)

aiwjfﬁz:(()_t())xj
=1

0T _ 1« OO

b ’Ng -t
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Direct Solution

@ The minimum must occur at a point where the partial derivatives
are zero, i.e.,

oJ oJ

8wj N ob N

o If 07 /0w; # 0, you could reduce the cost by changing w;.

0 (v)), 0.

e This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the preliminaries.pdf.

e Optimal weights:
WLS — (XTX)—IXTt

e Linear regression is one of only a handful of models in this course
that permit direct solution.
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Feature Mapping (Basis Expansion)

@ The relation between the input and output may not be linear.

o We can still use linear regression by mapping the input feature to
another space using feature mapping (or basis expansion)
¥(x) : RP — R? and treat the mapped feature (in R?) as the
input of a linear regression procedure.

@ Let us see how it works when x € R and we use polynomial feature
mapping.
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Polynomial Feature Mapping

Fit the data using a degree-M polynomial function of the form:

M
Yy = wo + wix + ngQ + ...+ waM = Zwixi
i=0
e Here the feature mapping is ¥ (z) = [1, 2,22, ...]T.
o We can still use least squares to find w since y = v (z) " w is linear
m wo, Wiy ...
e In general, 1) can be any function. Another example: ¥ =

[1,sin(27z), cos(2mz), sin(4nx), cos(4mx), sin(67x), cos(67x), - - -] .
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Polynomial Feature Mapping with M = 0

Yy = wo

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M =1

Y = wo + wix

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M = 3

Y = wo +w1T + w2x2 + w3x3

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Polynomial Feature Mapping with M =9

y:w0+w1x—|—w2x2—|—w3m3—|—...—|—w9x9

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Model Complexity and Generalization

): model is too simple — does not fit the data.

Underfitting (M=0
): model is too complex — fits perfectly.

Overfitting (M=9

—©— Training
—6— Test 1 o o0 M=0 1 M=9
t

1

1 0
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Model Complexity and Generalization

M=0 M=1 M=3 M=9
wg | 019 082 031 035
wy 2127 7.99 232.37
ws -25.43 -5321.83 f
wh 17.37 48568.31
wy -231639.30
ws 640042.26

wg
wi
wg

wy

@ As M increases, the magnitude of coefficients gets larger.

-1061800.52
1042400.18
-557682.99

125201.43

e For M =9, the coefficients have become finely tuned to the data.

o Between data points, the function exhibits large oscillations.

Intro ML

(Uo

CSC311-Lec3
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Regularization for Controlling the Model Complexity

@ The degree of the polynomial M controls the complexity of the
model.

@ The value of M is a hyperparameter for polynomial expansion,
just like k£ in KNN. We can tune it using a validation set.

o Restricting the number of parameters of a model (M here) is a
crude approach to control the complexity of the model.

@ A better solution: keep the number of parameters of the model
large, but enforce “simpler” solutions within the same space of
parameters.

e This is done through regularization or penalization.

» Regularizer (or penalty): a function that quantifies how much we
prefer one hypothesis vs. another

e Q: How?!
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{5 (or L?) Regularization

@ We can encourage the weights to be small by choosing as our regularizer
the 5 (or L?) penalty.

1
R(w) = 4wl = 5> w?.
J

» Note: To be precise, we are regularizing the squared 5 norm.

@ The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights:

Treg(W) = T (W) + AR(w) = T(w) + 5

@ The basic idea is that “simpler” functions have smaller ¢o-norm of their
weights w, and we prefer them to functions with larger /5-norms.

o If you fit training data poorly, J is large. If your optimal weights have
high values, R is large.

@ Large A penalizes weight values more.

@ Here, )\ is a hyperparameter that we can tune with a validation set.
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ls Regularized Least Squares: Ridge Regression

For the least squares problem, we have J(w) = 5% [ Xw — t[|%.

@ When A > 0 (with regularization), regularized cost gives

2

i . o1 A
w? dge _ argmin Jyeg (W) = argmin ﬁHXW — t||% + EHWHz

=(XTX + ANT)"1XTt

@ The case A = 0 (no regularization) reduces to least squares solution!
@ Q: What happens when A — 00?

@ Note that it is also common to formulate this problem as
argminy, | Xw — t||2 4+ 3 |/w||2 in which case the solution is

w98 — (XTX 4 AI)~'XTt,
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01 vs. U5 Regularization

@ The ¢; norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we’d like to encourage.

wy woy

25

; i
K/ B )

15

10

05 L2 regularization L1 regularization

§ 2 _ E
-20 -15 -10 -05 00 05 10 15 20 R = w; R = |w7|
7 i

— Bishop, Pattern Recognition and Machine Learning
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Probabilistic Interpretation of the Squared Error

For the least squares: we minimize the sum of the squares of the errors
between the predictions for each data point x(* and the corresponding
target values t@ i.e.,

minimize Y (w'x@ + b — )2

) ot~x'w+b (w,b) e RP xR
. o We measure the quality of the fit using the
/ squared error loss. Why?

] o Even though the squared error loss looks

/ natural, we did not really justify it.
We provide a probabilistic perspective here.

42" e There are other justifications too; we get to
them in the next lecture.
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Probabilistic Interpretation of the Squared Error

y @ Suppose that our model arose from a
statistical model (b=0 for simplicity):

YO = wTx 4 (O

where ¢ ~ N(0,0?) is independent
of anything else.

o Thus, y@|x" ~ p(yx"), w) =
T T N(WTX(Z), 0.2) .
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Continuous Distribution

Gaussian Distribution

e Aka the normal distribution

* Widely used model for the distribution of continuous variables

* In the case of a single variable x, the Gaussian distribution can be

written in the form

. 1 P
N(zlp,0") = ——=mexp —5 3@ —n)

(2wo2)™ 20°

* where pis the mean and o? is the variance

/" \




Probabilistic Interpretation of the Squared Error:
Maximum Likelihood Estimation

the outputs are independently drawn from

@ Suppose that the input data {x(l),x@) . ,X(N)} are given and

y ~ p(yla™, w)
with an unknown parameter w. So the dataset is
D = {(xM, M), (x@ y@), . (xN) 4y (),
e The likelihood function is Pr(D|w).
@ The maximum likelihood estimation (MLE) is the “principle” that
suggests we have to find a parameter w that maximizes the
likelihood, i.e.,

W < argmax Pr(D|w).
w

Maximum likelihood estimation: after observing the data samples

(x4 for i = 1,2,..., N, we should choose w that maximizes the
likelihood.
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Probabilistic Interpretation of the Squared Error:
Maximum Likelihood Estimation

@ For independent samples, the likelihood function of samples D is the product
of their likelihoods

N
py™ y®, oy )22 e W) = T e, w) = L(w).

@ Product of N terms is not easy to minimize. Taking log reduces it to a sum!
Two objectives are equivalent since log is strictly increasing.

@ Maximizing the likelihood is equivalent to minimizing the negative
log-likelihood:

L(w) = —log L(w long Z)|W Zlogp >|w

Maximum Likelihood Estimator (MLE)

After observing z() = (x(i)7y(i)) fori=1,...,n iid. samples from p(z|w), MLE is

wEE — argmm l(w Z log p(z

i1
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Probabilistic Interpretation of the Squared Error: From
MLE to Squared Error

@ Suppose that our model arose from a statistical model:
Yy =wz® 40
where € ~ N (0 o ) is independent of anything else.
o p(yW|z), w) = p{ y( ) —wlz)? }

o logp(y®|z®, ):—m(y(” w2®)? — log(V2m0?)
@ The MLE solution is

wMEE — aremin L(w) = 515 Z(y(i) — WT.T(i))z + C.

202
w
@ As C and o do not depend on w, they do not contribute to the
minimization.

wMLE — WIS when we work with Gaussian densities. J
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Gradient Descent
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Gradient Descent

o Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

o Gradient descent is an iterative algorithm, which means we apply
an update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros)
and repeatedly adjust them in the direction of steepest descent.
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Gradient Descent

o Observe:
» if 0J/Ow; > 0, then increasing w; increases J.
» if 0J/0w; < 0, then increasing w; decreases J.

@ The following update decreases the cost function:

N
U]j F'LUJ a(‘)iw]
N

— 1 i ?

=y — 23 - 1))
=1

@ « is a learning rate. The larger it is, the faster w changes.
» We'll see later how to tune the learning rate, but values are
typically small, e.g. 0.01 or 0.0001
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Gradient Descent

o This gets its name from the gradient:
T

og ™™
ow o
owp

» This is the direction of fastest increase in 7.
e Update rule in vector form:

0T
W W

8W

W_fz — 4000y ()

e Hence, gradient descent updates the weights in the direction of
fastest decrease.

e Observe that once it converges, we get a critical point, i.e. g—g =
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Gradient Descent for Linear regression

e Even for linear regression, where there is a direct solution, we
sometimes need to use GD.
e Why gradient descent, if we can find the optimum directly?

» GD can be applied to a much broader set of models
» GD can be easier to implement than direct solutions
» For regression in high-dimensional spaces, GD is more efficient than
direct solution
» Linear regression solution: (X7X)™'XTt
> matrix inversion is an O(D?) algorithm
» each GD update costs O(ND)
» Huge difference if D > 1
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Gradient Descent under the /5 Regularization

@ Recall the gradient descent update:
oJ

$— J— R
W W o
e The gradient descent update of the regularized cost J + AR has

an interesting interpretation as weight decay:

oJ oR
W~ W— o (8w +/\aw>
=W —« <aj+)\w>
ow
- 07
—(1—a)\)w—ozaw
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Learning Rate (Step Size)

e In gradient descent, the learning rate « is a hyperparameter we
need to tune. Here are some things that can go wrong:

a too large: «a much too large:
oscillations instability

a too small:
slow progress

e Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try
0.1,0.03,0.01,...).
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Training Curves

e To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

o Warning: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but
they can’t guarantee convergence.
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Brief Matrix and Vector Calculus

e For a function f: RP — R, V f(z) denotes the gradient at z which
points in the direction of the greatest rate of increase.

o Vf(x) € RP is a vector with [V f(z)]; = %f(x)

o V2f(z) € RP*P is a matrix with [V2f(z)];; = #;x]f(:p)
e At any minimum of a function f, we have V f(w) =0,
V2f(w) = 0.

o Consider the problem minimize ((w) = 3|ly — Xw][3,
W

o V(W) =X"T(Xw—-9y)=0 = W= (X"X)"'XTy (assuming
X TX is invertible)

T

At an arbitrary point x (old/new observation), our prediction is J
Yy=WwW' .
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Vectorization

e Computing the prediction using a for loop:
y=>b
for j in range(M):
y += w[3jl * x[j]
e For-loops in Python are slow, so we vectorize algorithms by
expressing them in terms of vectors and matrices.

T

w = (wy,...,wp) x = (21,...,2Dp)

y=wlx+b

e This is simpler and much faster:
y = np.dot(w, xX) + b
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Vectorization

Why vectorize?

@ The equations, and the code, will be simpler and more readable.
Gets rid of dummy variables/indices!
@ Vectorized code is much faster

» Cut down on Python interpreter overhead

» Use highly optimized linear algebra libraries

» Matrix multiplication is very fast on a Graphics Processing Unit
(GPU)
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Conclusion

Linear regression exemplifies recurring themes of this course:

@ choose a model and a loss function

formulate an optimization problem

solve the minimization problem using one of two strategies

» direct solution (set derivatives to zero)
» gradient descent (see appendix)

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer

Probabilistic Interpretation as MLE with Gaussian noise model
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