CSC 311: Introduction to Machine Learning
 Lecture 3 - Linear Regression \& Gradient Descent for Optimization

Amir-massoud Farahmand \& Emad A.M. Andrews

University of Toronto

Modular Approach to ML Algorithm Design

- So far, we have talked about procedures for learning.
- KNN and decision trees.
- For the remainder of this course, we will take a more modular approach:
- choose a model describing the relationships between variables of interest
- define a loss function quantifying how bad the fit to the data is
- choose a regularizer saying how much we prefer different candidate models (or explanations of data)
- fit the model that minimizes the loss function and satisfy the constraint/penalty imposed by the regularizer, possibly using an optimization algorithm
- Mixing and matching these modular components gives us a lot of new ML methods.

The Supervised Learning Setup

Recall that in supervised learning:

- There is target $t \in \mathcal{T}$ (also called response, outcome, output, class)
- There are features $\mathbf{x} \in \mathcal{X}$ (also called inputs and covariates)
- Objective is to learn a function $f: \mathcal{X} \rightarrow \mathcal{T}$ such that

$$
t \approx y=f(x)
$$

based on some data $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right.$ for $\left.i=1,2, \ldots, N\right\}$.

Linear Regression - Model

- Model: In linear regression, we use linear functions of the inputs $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$ to make predictions y of the target value t :

$$
y=f(\mathbf{x})=\sum_{j} w_{j} x_{j}+b
$$

- y is the prediction
- w is the weights
- b is the bias (or intercept) (do not confuse with the bias-variance tradeoff in the next lecture)
- w and b together are the parameters
- We hope that our prediction is close to the target: $y \approx t$.

What is Linear? 1 Feature vs. D Features

- If we have only 1 feature:
$y=w x+b$ where $w, x, b \in \mathbb{R}$.
- y is linear in x.
- If we have D features:
$y=\mathbf{w}^{\top} \mathbf{x}+b$ where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{D}$, $b \in \mathbb{R}$
- y is linear in \mathbf{x}.

Relation between the prediction y and inputs \mathbf{x} is linear in both cases.

Linear Regression

We have a dataset $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right.$ for $\left.i=1,2, \ldots, N\right\}$ where,

- $\mathbf{x}^{(i)}=\left(x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{D}^{(i)}\right)^{\top} \in \mathbb{R}^{D}$ are the inputs, e.g., age, height.
- $t^{(i)} \in \mathbb{R}$ is the target or response (e.g. income),
- predict $t^{(i)}$ with a linear function of $\mathbf{x}^{(i)}$:

- $t^{(i)} \approx y^{(i)}=\mathbf{w}^{\top} \mathbf{x}^{(i)}+b$
- Find the "best" line (\mathbf{w}, b).
- $\underset{(\mathbf{w}, b)}{\operatorname{minimize}} \sum_{i=1}^{N} \mathcal{L}\left(y^{(i)}, t^{(i)}\right)$ (w,b)

Linear Regression - Loss Function

- How to quantify the quality of the fit to data?
- A loss function $\mathcal{L}(y, t)$ defines how bad it is if, for some example \mathbf{x}, the algorithm predicts y, but the target is actually t.
- Squared error loss function:

$$
\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- $y-t$ is the residual, and we want to make its magnitude small
- The $\frac{1}{2}$ factor is just to make the calculations convenient.
- Cost function: loss function averaged over all training examples

$$
\begin{aligned}
\mathcal{J}(\mathbf{w}, b) & =\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right)^{2} \\
& =\frac{1}{2 N} \sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}+b-t^{(i)}\right)^{2}
\end{aligned}
$$

- The terminology is not universal. Some might call "loss" pointwise loss and the "cost function" the empirical loss or average loss.

Vector Notation

- We can organize all the training examples into a design matrix \mathbf{X} with one row per training example, and all the targets into the target vector \mathbf{t}.

$$
\begin{aligned}
& \text { one feature across } \\
& \text { all training examples }
\end{aligned}
$$

$$
\mathbf{X}=\binom{\mathbf{x}^{(1) \top} \mathbf{x}^{(2) \top}}{\mathbf{x}^{(3) \top}}=\left(\begin{array}{c|c|cc}
\cline { 2 - 4 } & 0 & 3 & 0 \\
\hline 6 & -1 & 5 & 3 \\
\hline 2 & 5 & -2 & 8
\end{array}\right) \quad \begin{gathered}
\text { one training } \\
\text { example (vector) }
\end{gathered}
$$

- Computing the predictions for the whole dataset:

$$
\mathbf{X} \mathbf{w}+b \mathbf{1}=\left(\begin{array}{c}
\mathbf{w}^{T} \mathbf{x}^{(1)}+b \\
\vdots \\
\mathbf{w}^{T} \mathbf{x}^{(N)}+b
\end{array}\right)=\left(\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(N)}
\end{array}\right)=\mathbf{y}
$$

Vectorization

- Computing the squared error cost across the whole dataset:

$$
\begin{aligned}
& \mathbf{y}=\mathbf{X} \mathbf{w}+b \mathbf{1} \\
& \mathcal{J}=\frac{1}{2 N}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

- Note that sometimes we may use $\mathcal{J}=\frac{1}{2}\|\mathbf{y}-\mathbf{t}\|^{2}$, without normalizer. That would correspond to the sum of losses, and not the average loss. The minimizer does not depend on N.
- We can also add a column of 1 s to the design matrix, combine the bias and the weights, and conveniently write

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & {\left[\mathbf{x}^{(1)}\right]^{\top}} \\
1 & {\left[\mathbf{x}^{(2)}\right]^{\top}} \\
1 & \vdots
\end{array}\right] \in \mathbb{R}^{N \times D+1} \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
b \\
w_{1} \\
w_{2} \\
\vdots
\end{array}\right] \in \mathbb{R}^{D+1}
$$

Then, our predictions reduce to $\mathbf{y}=\mathbf{X w}$.

Error Surface: $\ell(\mathbf{w})=w_{0}{ }^{2}+w_{1}{ }^{2}$

Solving the Minimization Problem

- We defined a cost function. This is what we would like to minimize.
- Recall from your calculus class: minimum of a smooth function (if it exists) occurs at a critical point, i.e., point where the derivative is zero.
- Multivariate generalization: set the partial derivatives to zero (or equivalently the gradient).
- We would like to find a point where the gradient is (close to) zero. How can we do it?
- Sometimes it is possible to directly find the parameters that make the gradient zero in a closed-form. We call this the direct solution.
- We may also use optimization techniques that iteratively get us closer to the solution. We will get back to this soon.

Partial Derivatives

- More Examples:

$$
\begin{gathered}
g\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} \\
\frac{\partial}{\partial x_{1}}\left[g\left(x_{1}, x_{2}\right)\right]=x_{2}^{2} \\
\frac{\partial}{\partial x_{2}}\left[g\left(x_{1}, x_{2}\right)\right]=2 x_{1} x_{2}
\end{gathered}
$$

Direct Solution

- Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{h}
$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y

$$
\begin{aligned}
\frac{\partial y}{\partial w_{j}} & =\frac{\partial}{\partial w_{j}}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =x_{j} \\
\frac{\partial y}{\partial b} & =\frac{\partial}{\partial b}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =1
\end{aligned}
$$

Direct Solution

- Chain rule for derivatives:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \frac{\partial y}{\partial w_{j}} \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left[\frac{1}{2}(y-t)^{2}\right] \cdot x_{j} \\
& =(y-t) x_{j} \\
\frac{\partial \mathcal{L}}{\partial b} & =y-t
\end{aligned}
$$

- Cost derivatives (average over data points):

$$
\begin{aligned}
\frac{\partial \mathcal{J}}{\partial w_{j}} & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)} \\
\frac{\partial \mathcal{J}}{\partial b} & =\frac{1}{N} \sum_{i=1}^{N} y^{(i)}-t^{(i)}
\end{aligned}
$$

Direct Solution

- The minimum must occur at a point where the partial derivatives are zero, i.e.,

$$
\frac{\partial \mathcal{J}}{\partial w_{j}}=0 \quad(\forall j), \quad \frac{\partial \mathcal{J}}{\partial b}=0
$$

- If $\partial \mathcal{J} / \partial w_{j} \neq 0$, you could reduce the cost by changing w_{j}.
- This turns out to give a system of linear equations, which we can solve efficiently. Full derivation in the preliminaries.pdf.
- Optimal weights:

$$
\mathbf{w}^{\mathrm{LS}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{t}
$$

- Linear regression is one of only a handful of models in this course that permit direct solution.

Feature Mapping (Basis Expansion)

- The relation between the input and output may not be linear.

- We can still use linear regression by mapping the input feature to another space using feature mapping (or basis expansion) $\boldsymbol{\psi}(\mathbf{x}): \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$ and treat the mapped feature (in \mathbb{R}^{d}) as the input of a linear regression procedure.
- Let us see how it works when $\mathbf{x} \in \mathbb{R}$ and we use polynomial feature mapping.

Polynomial Feature Mapping

Fit the data using a degree- M polynomial function of the form:

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{i=0}^{M} w_{i} x^{i}
$$

- Here the feature mapping is $\boldsymbol{\psi}(x)=\left[1, x, x^{2}, \ldots\right]^{\top}$.
- We can still use least squares to find \mathbf{w} since $y=\boldsymbol{\psi}(x)^{\top} \mathbf{w}$ is linear in w_{0}, w_{1}, \ldots.
- In general, $\boldsymbol{\psi}$ can be any function. Another example: $\boldsymbol{\psi}=$ $[1, \sin (2 \pi x), \cos (2 \pi x), \sin (4 \pi x), \cos (4 \pi x), \sin (6 \pi x), \cos (6 \pi x), \cdots]^{\top}$.

Polynomial Feature Mapping with $M=0$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Polynomial Feature Mapping with $M=1$

$$
y=w_{0}+w_{1} x
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Polynomial Feature Mapping with $M=3$

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Polynomial Feature Mapping with $M=9$

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots+w_{9} x^{9}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Model Complexity and Generalization

Underfitting $(\mathrm{M}=0)$: model is too simple - does not fit the data. Overfitting ($M=9$): model is too complex - fits perfectly.

Good model $(\mathrm{M}=3)$: Achieves small test error (generalizes well).

Model Complexity and Generalization

- As M increases, the magnitude of coefficients gets larger.
- For $M=9$, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

Regularization for Controlling the Model Complexity

- The degree of the polynomial M controls the complexity of the model.
- The value of M is a hyperparameter for polynomial expansion, just like k in KNN. We can tune it using a validation set.
- Restricting the number of parameters of a model (M here) is a crude approach to control the complexity of the model.
- A better solution: keep the number of parameters of the model large, but enforce "simpler" solutions within the same space of parameters.
- This is done through regularization or penalization.
- Regularizer (or penalty): a function that quantifies how much we prefer one hypothesis vs. another
- Q: How?!

$\ell_{2}\left(\right.$ or $\left.L^{2}\right)$ Regularization

- We can encourage the weights to be small by choosing as our regularizer the ℓ_{2} (or L^{2}) penalty.

$$
\mathcal{R}(\mathbf{w})=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}=\frac{1}{2} \sum_{j} w_{j}^{2} .
$$

- Note: To be precise, we are regularizing the squared ℓ_{2} norm.
- The regularized cost function makes a tradeoff between fit to the data and the norm of the weights:

$$
\mathcal{J}_{\mathrm{reg}}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\lambda \mathcal{R}(\mathbf{w})=\mathcal{J}(\mathbf{w})+\frac{\lambda}{2} \sum_{j} w_{j}^{2}
$$

- The basic idea is that "simpler" functions have smaller ℓ_{2}-norm of their weights \mathbf{w}, and we prefer them to functions with larger ℓ_{2}-norms.
- If you fit training data poorly, \mathcal{J} is large. If your optimal weights have high values, \mathcal{R} is large.
- Large λ penalizes weight values more.
- Here, λ is a hyperparameter that we can tune with a validation set.

ℓ_{2} Regularized Least Squares: Ridge Regression

For the least squares problem, we have $\mathcal{J}(\mathbf{w})=\frac{1}{2 N}\|\mathbf{X w}-\mathbf{t}\|^{2}$.

- When $\lambda>0$ (with regularization), regularized cost gives

$$
\begin{aligned}
\mathbf{w}_{\lambda}^{\text {Ridge }}=\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{J}_{\text {reg }}(\mathbf{w}) & =\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2 N}\|\mathbf{X} \mathbf{w}-\mathbf{t}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}+\lambda N \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{t}
\end{aligned}
$$

- The case $\lambda=0$ (no regularization) reduces to least squares solution!
- Q: What happens when $\lambda \rightarrow \infty$?
- Note that it is also common to formulate this problem as $\operatorname{argmin}_{\mathbf{w}}\|\mathbf{X w}-\mathbf{t}\|_{2}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}$ in which case the solution is $\mathbf{w}_{\lambda}^{\text {Ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{t}$.

ℓ_{1} vs. ℓ_{2} Regularization

- The ℓ_{1} norm, or sum of absolute values, is another regularizer that encourages weights to be exactly zero. (How can you tell?)
- We can design regularizers based on whatever property we'd like to encourage.

L2 regularization
L1 regularization

$$
\mathcal{R}=\sum_{i} w_{i}^{2}
$$

$$
\mathcal{R}=\sum_{i}\left|w_{i}\right|
$$

- Bishop, Pattern Recognition and Machine Learning

Probabilistic Interpretation of the Squared Error

For the least squares: we minimize the sum of the squares of the errors between the predictions for each data point $\mathbf{x}^{(i)}$ and the corresponding target values $t^{(i)}$, i.e.,

$$
\underset{\left(\mathbf{w}, \mathbf{w}_{0}\right)}{\operatorname{minimize}} \sum_{i=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}^{(i)}+b-t^{(i)}\right)^{2}
$$

- $t \approx \mathbf{x}^{\top} \mathbf{w}+b,(\mathbf{w}, b) \in \mathbb{R}^{D} \times \mathbb{R}$
- We measure the quality of the fit using the squared error loss. Why?
- Even though the squared error loss looks natural, we did not really justify it.
- We provide a probabilistic perspective here.
- There are other justifications too; we get to them in the next lecture.

Probabilistic Interpretation of the Squared Error

Gaussian Distribution

- Aka the normal distribution
- Widely used model for the distribution of continuous variables
- In the case of a single variable x, the Gaussian distribution can be written in the form

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

- where μ is the mean and σ^{2} is the variance

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

- Suppose that the input data $\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(N)}\right\}$ are given and the outputs are independently drawn from

$$
y^{(i)} \sim p\left(y \mid x^{(i)}, \mathbf{w}\right)
$$

with an unknown parameter \mathbf{w}. So the dataset is

$$
\mathcal{D}=\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right), \ldots,\left(\mathbf{x}^{(N)}, y^{(N)}\right)\right\}
$$

- The likelihood function is $\operatorname{Pr}(\mathcal{D} \mid \mathbf{w})$.
- The maximum likelihood estimation (MLE) is the "principle" that suggests we have to find a parameter $\hat{\mathbf{w}}$ that maximizes the likelihood, i.e.,

$$
\hat{\mathbf{w}} \leftarrow \underset{\mathbf{w}}{\operatorname{argmax}} \operatorname{Pr}(\mathcal{D} \mid \mathbf{w}) .
$$

Maximum likelihood estimation: after observing the data samples $\left(\mathbf{x}^{(i)}, y^{(i)}\right)$ for $i=1,2, \ldots, N$, we should choose \mathbf{w} that maximizes the likelihood.

Probabilistic Interpretation of the Squared Error: Maximum Likelihood Estimation

- For independent samples, the likelihood function of samples \mathcal{D} is the product of their likelihoods

$$
p\left(y^{(1)}, y^{(2)}, \ldots, y^{(n)} \mid x^{(1)}, x^{(2)}, \ldots, x^{(N)}, \mathbf{w}\right)=\prod_{i=1}^{N} p\left(y^{(i)} \mid x^{(i)}, \mathbf{w}\right)=L(\mathbf{w})
$$

- Product of N terms is not easy to minimize. Taking log reduces it to a sum! Two objectives are equivalent since log is strictly increasing.
- Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:

$$
\ell(\mathbf{w})=-\log L(\mathbf{w})=-\log \prod_{i=1}^{N} p\left(z^{(i)} \mid \mathbf{w}\right)=-\sum_{i=1}^{n} \log p\left(z^{(i)} \mid \mathbf{w}\right)
$$

Maximum Likelihood Estimator (MLE)

After observing $z^{(i)}=\left(\mathbf{x}^{(i)}, y^{(i)}\right)$ for $i=1, \ldots, n$ i.i.d. samples from $p(z \mid \mathbf{w})$, MLE is

$$
\mathbf{w}^{\mathrm{MLE}}=\underset{\mathbf{w}}{\operatorname{argmin}} l(\mathbf{w})=-\sum_{i-1}^{n} \log p\left(z^{(i)} \mid \mathbf{w}\right)
$$

Probabilistic Interpretation of the Squared Error: From MLE to Squared Error

- Suppose that our model arose from a statistical model:

$$
y^{(i)}=\mathbf{w}^{\top} x^{(i)}+\epsilon^{(i)}
$$

where $\epsilon^{(i)} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of anything else.

- $p\left(y^{(i)} \mid x^{(i)}, \mathbf{w}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y^{(i)}-\mathbf{w}^{\top} x^{(i)}\right)^{2}\right\}$
- $\log p\left(y^{(i)} \mid x^{(i)}, \mathbf{w}\right)=-\frac{1}{2 \sigma^{2}}\left(y^{(i)}-\mathbf{w}^{\top} x^{(i)}\right)^{2}-\log \left(\sqrt{2 \pi \sigma^{2}}\right)$
- The MLE solution is

$$
\mathbf{w}^{\mathrm{MLE}}=\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{L}(\mathbf{w})=\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y^{(i)}-\mathbf{w}^{\top} x^{(i)}\right)^{2}+C .
$$

- As C and σ do not depend on \mathbf{w}, they do not contribute to the minimization.

[^0]
Gradient Descent

Gradient Descent

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

Gradient Descent

- Observe:
- if $\partial \mathcal{J} / \partial w_{j}>0$, then increasing w_{j} increases \mathcal{J}.
- if $\partial \mathcal{J} / \partial w_{j}<0$, then increasing w_{j} decreases \mathcal{J}.
- The following update decreases the cost function:

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}} \\
& =w_{j}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

- α is a learning rate. The larger it is, the faster \mathbf{w} changes.
- We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001

Gradient Descent

- This gets its name from the gradient:

$$
\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- This is the direction of fastest increase in \mathcal{J}.
- Update rule in vector form:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

- Hence, gradient descent updates the weights in the direction of fastest decrease.
- Observe that once it converges, we get a critical point, i.e. $\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=0$.

Gradient Descent for Linear regression

- Even for linear regression, where there is a direct solution, we sometimes need to use GD.
- Why gradient descent, if we can find the optimum directly?
- GD can be applied to a much broader set of models
- GD can be easier to implement than direct solutions
- For regression in high-dimensional spaces, GD is more efficient than direct solution
- Linear regression solution: $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{t}$
- matrix inversion is an $\mathcal{O}\left(D^{3}\right)$ algorithm
- each GD update costs $O(N D)$
- Huge difference if $D \gg 1$

Gradient Descent under the ℓ_{2} Regularization

- Recall the gradient descent update:

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

- The gradient descent update of the regularized cost $\mathcal{J}+\lambda \mathcal{R}$ has an interesting interpretation as weight decay:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}}\right) \\
& =\mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \mathbf{w}\right) \\
& =(1-\alpha \lambda) \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
\end{aligned}
$$

Learning Rate (Step Size)

- In gradient descent, the learning rate α is a hyperparameter we need to tune. Here are some things that can go wrong:

α too small:
slow progress

α too large: oscillations

α much too large: instability
- Good values are typically between 0.001 and 0.1 . You should do a grid search if you want good performance (i.e. try $0.1,0.03,0.01, \ldots)$.

Training Curves

- To diagnose optimization problems, it's useful to look at training curves: plot the training cost as a function of iteration.

- Warning: it's very hard to tell from the training curves whether an optimizer has converged. They can reveal major problems, but they can't guarantee convergence.

Brief Matrix and Vector Calculus

- For a function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}, \nabla f(z)$ denotes the gradient at z which points in the direction of the greatest rate of increase.
- $\nabla f(x) \in \mathbb{R}^{p}$ is a vector with $[\nabla f(x)]_{i}=\frac{\partial}{\partial x_{i}} f(x)$.
- $\nabla^{2} f(x) \in \mathbb{R}^{p \times p}$ is a matrix with $\left[\nabla^{2} f(x)\right]_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)$
- At any minimum of a function f, we have $\nabla f(\mathbf{w})=0$, $\nabla^{2} f(\mathbf{w}) \succeq 0$.
- Consider the problem $\underset{\mathbf{w}}{\operatorname{minimize}} \ell(\mathbf{w})=\frac{1}{2}\|y-X \mathbf{w}\|_{2}^{2}$,
- $\nabla \ell(\mathbf{w})=X^{\top}(X \mathbf{w}-y)=0 \Longrightarrow \hat{\mathbf{w}}=\left(X^{\top} X\right)^{-1} X^{\top} y$ (assuming $X^{\top} X$ is invertible)

At an arbitrary point x (old/new observation), our prediction is $y=\hat{\mathbf{w}}^{\top} x$.

Vectorization

- Computing the prediction using a for loop:

$$
\begin{aligned}
& y=b \\
& \text { for } j \text { in range(M): } \\
& y+=w[j]^{*} \times[j]
\end{aligned}
$$

- For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$
\begin{gathered}
\mathbf{w}=\left(w_{1}, \ldots, w_{D}\right)^{T} \quad \mathbf{x}=\left(x_{1}, \ldots, x_{D}\right) \\
y=\mathbf{w}^{T} \mathbf{x}+b
\end{gathered}
$$

- This is simpler and much faster:

$$
y=n p \cdot \operatorname{dot}(w, x)+b
$$

Vectorization

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
- Cut down on Python interpreter overhead
- Use highly optimized linear algebra libraries
- Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Conclusion

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the minimization problem using one of two strategies
- direct solution (set derivatives to zero)
- gradient descent (see appendix)
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- improve the generalization by adding a regularizer
- Probabilistic Interpretation as MLE with Gaussian noise model

[^0]: $\mathbf{w}^{\mathrm{MLE}}=\mathbf{w}^{\mathrm{LS}}$ when we work with Gaussian densities.

