CSC 311: Introduction to Machine Learning Lecture 2 - Decision Trees

Amir-massoud Farahmand & Emad A.M. Andrews

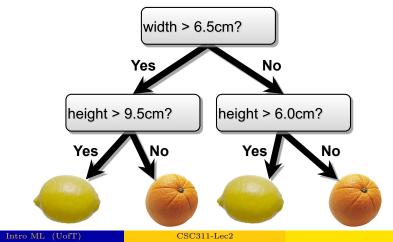
University of Toronto

• Decision Trees

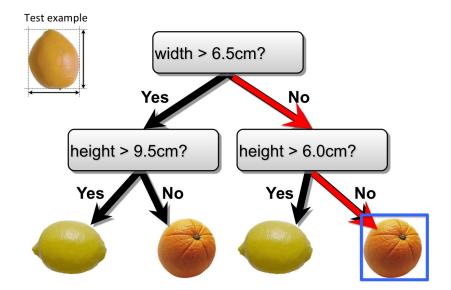
- ▶ Simple but powerful learning algorithm
- One of the most widely used learning algorithms in Kaggle competitions
- ▶ Lets us introduce ensembles, a key idea in ML
- Useful information theoretic concepts (entropy, mutual information, etc.)

Decision Trees

- **Decision trees** make predictions by recursively splitting on different attributes according to a tree structure.
- Example: classifying fruit as an orange or lemon based on height and width

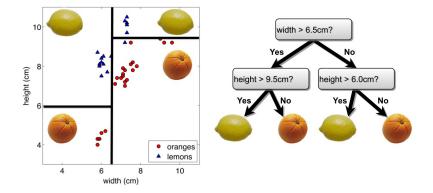


Decision Trees



Decision Trees

- For continuous attributes, split based on less than or greater than some threshold
- Thus, input space is divided into regions with boundaries parallel to axes



Example with Discrete Inputs

۲	What	if the	attributes	are	discrete?
---	------	--------	------------	-----	-----------

Example	Input Attributes										Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = \mathit{No}$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = \mathit{No}$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
з.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

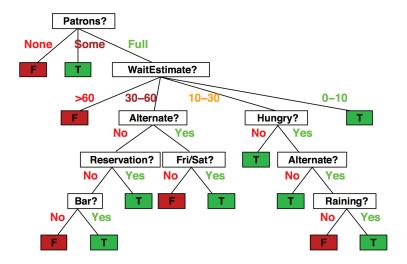
Attributes:

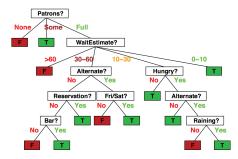
Intro ML (UofT)

CSC311-Lec2

Decision Tree: Example with Discrete Inputs

• Possible tree to decide whether to wait (T) or not (F)

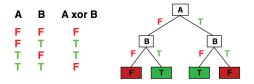




- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (predictions)

• Discrete-input, discrete-output case:

- Decision trees can express any function of the input attributes
- \blacktriangleright Example: For Boolean functions, the truth table row \rightarrow path to leaf



• Continuous-input, continuous-output case:

- Can approximate any function arbitrarily closely
- Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

[Slide credit: S. Russell]

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

• Classification tree:

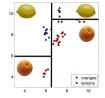
- discrete output
- ► leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

• Regression tree:

- continuous output
- leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Note: We will focus on classification

CSC311-Lec2



• How do we construct a useful decision tree?

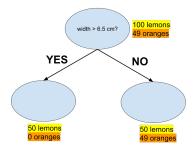
Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies training set is an NP complete problem (if you are interested, check: Hyafil & Rivest'76).

- Resort to a **greedy heuristic**! Start with empty decision tree and complete training set
 - ▶ Split on the "best" attribute, i.e. partition dataset
 - Recurse on subpartitions
- When should we stop?
- Which attribute is the "best" (and where should we split, if continuous)?
 - Choose based on accuracy?
 - ▶ Loss: misclassification error
 - Say region R is split in R_1 and R_2 based on loss L(R).
 - Accuracy gain is $L(R) \frac{|R_1|L(R_1)+|R_2|L(R_2)|}{|R_1|+|R_2|}$

Choosing a Good Split

- Why isn't accuracy a good measure?
- Classify by the majority, loss is the misclassification error.



• Is this split good? Zero accuracy gain

$$L(R) - \frac{|R_1|L(R_1) + |R_2|L(R_2)}{|R_1| + |R_2|} = \frac{49}{149} - \frac{50 \times 0 + 99 \times \frac{49}{99}}{149} = 0$$

• But we have reduced our uncertainty about whether a fruit is a lemon!

- How can we quantify uncertainty in prediction for a given leaf node?
 - ▶ All examples in leaf have the same class: good (low uncertainty)
 - Each class has the same number of examples in leaf: bad (high uncertainty)
- Idea: Use counts at leaves to define probability distributions, and use information theory to measure uncertainty

Q: Which coin is more uncertain?

```
Sequence 1:
000100000000000100...?
Sequence 2:
010101110100110101...?
     16
                            10
                       8
              versus
          2
     0
          1
                        0
                            1
```

Quantifying Uncertainty

Entropy is a measure of expected "surprise": How uncertain are we of the value of a draw from this distribution?

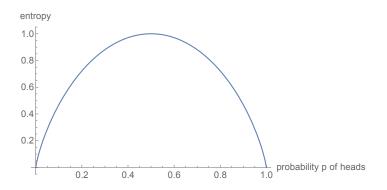
$$H(X) = -\mathbb{E}_{X \sim p}[\log_2 p(X)] = -\sum_{x \in X} p(x) \log_2 p(x)$$

$$-\frac{8}{9}\log_2\frac{8}{9} - \frac{1}{9}\log_2\frac{1}{9} \approx \frac{1}{2} \qquad -\frac{4}{9}\log_2\frac{4}{9} - \frac{5}{9}\log_2\frac{5}{9} \approx 0.99$$

- Averages over information content of each observation
- Unit = **bits** (based on the base of logarithm)
- A fair coin flip has 1 bit of entropy

Intro ML (UofT)

Quantifying Uncertainty



Intro ML (UofT)

CSC311-Lec2

Entropy

• "High Entropy":

- ▶ Variable has a uniform like distribution
- Flat histogram
- ▶ Values sampled from it are less predictable

• "Low Entropy"

- Distribution of variable has peaks and valleys
- Histogram has lows and highs
- ▶ Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]

Entropy of a Joint Distribution

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

= $-\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$
 ≈ 1.56 bits

Specific Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = \text{raining}) = -\sum_{y \in Y} p(y|\text{raining}) \log_2 p(y|\text{raining})$$
$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$
$$\approx 0.24 \text{bits}$$

• We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row) Intro ML (Uoff) CSC311-Lec2

Conditional Entropy

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

$$H(Y|X) = \mathbb{E}_{X \sim p(x)}[H(Y|X)]$$
(1)
$$= \sum_{x \in X} p(x)H(Y|X = x)$$

$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x)$$

$$= -\mathbb{E}_{(X,Y) \sim p(x,y)}[\log_2 p(Y|X)]$$

Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

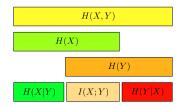
• What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$\begin{split} H(Y|X) &= \sum_{x \in X} p(x) H(Y|X=x) \\ &= \frac{1}{4} H(\text{cloudy}|\text{raining}) + \frac{3}{4} H(\text{cloudy}|\text{not raining}) \\ &\approx 0.75 \text{ bits} \end{split}$$

Intro ML (UofT)

CSC311-Lec2

Conditional Entropy



• Some useful properties for the discrete case:

- ► *H* is always non-negative.
- Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X).
- If X and Y independent, then X does not tell us anything about Y: H(Y|X) = H(Y).
- If X and Y independent, then H(X, Y) = H(X) + H(Y).
- But Y tells us everything about Y: H(Y|Y) = 0.
- ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y).$

Exercise: Verify these!

The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and \dots .

Intro ML (UofT)

Information Gain

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• How much information about cloudiness do we get by discovering whether it is raining?

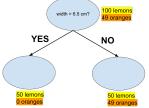
$$IG(Y|X) = H(Y) - H(Y|X)$$

 $\approx 0.25 \text{ bits}$

- This is called the **information gain** in Y due to X, or the **mutual information** of Y and X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)Intro ML (UoT) CSC311-Lec2

Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!
- What is the information gain of this split?

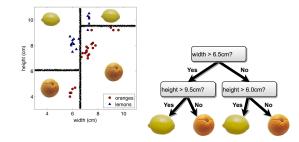


- Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left or right split taken, and treat counts as probabilities.
- Root entropy: $H(Y) = -\frac{49}{149} \log_2(\frac{49}{149}) \frac{100}{149} \log_2(\frac{100}{149}) \approx 0.91$
- Leafs entropy: $H(Y|B = \text{left}) = 0, H(Y|B = \text{right}) \approx 1.$

•
$$IG(Y|B) = H(Y) - H(Y|B)$$

= $H(Y) - \{H(Y|B = \text{left})\mathbb{P}(B = \text{left}) + H(Y|B = \text{right})\mathbb{P}(B = \text{right})\}$
 $\approx 0.91 - (0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3}) \approx 0.24 > 0$

Constructing Decision Trees



- At each level, one must choose:
 - 1. Which variable to split.
 - 2. Possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose attribute that gives the **best** gain)

- Simple, greedy, recursive approach, builds up tree node-by-node
- Start with empty decision tree and complete training set
 - ▶ Split on the most informative attribute, partitioning dataset
 - Recurse on subpartitions
- Possible termination condition: end if all examples in current subpartition share the same class

Back to Our Example

Example	Input Attributes									Goal	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Y_{es}$

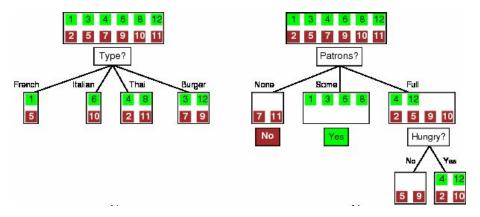
1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
З.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). $[fro$

Attributes:

[from: Russell & Norvig]

Intro ML (UofT)

Attribute Selection



$$IG(Y) = H(Y) - H(Y|X)$$

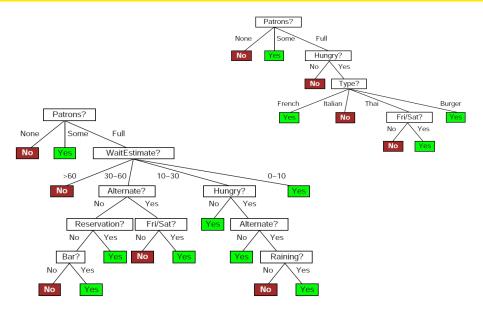
$$IG(type) = 1 - \left[\frac{2}{12}H(Y|\text{Fr.}) + \frac{2}{12}H(Y|\text{It.}) + \frac{4}{12}H(Y|\text{Thai}) + \frac{4}{12}H(Y|\text{Bur.})\right] = 0$$

$$IG(Patrons) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6},\frac{4}{6})\right] \approx 0.541$$

$$IU(PR) = 0$$

$$CSC3114 ec^{2}$$

Which Tree is Better?



What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
 - ▶ Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

- Problems:
 - ▶ You have exponentially less data at lower levels
 - A large tree can overfit the data
 - ▶ Greedy algorithms don't necessarily yield the global optimum
 - ▶ Mistakes at top-level propagate down tree
- Handling continuous attributes
 - ▶ Split based on a threshold, chosen to maximize information gain
- There are other criteria used to measure the quality of a split, e.g., Gini index
- Trees can be pruned in order to make them less complex
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Advantages of decision trees over k-NN

- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs; only depends on ordering
- Good when there are lots of attributes, but only a few are important
- Fast at test time
- More interpretable

Advantages of k-NN over decision trees

- Able to handle attributes/features that interact in complex ways
- Can incorporate interesting distance measures, e.g., shape contexts.