CSC 311: Introduction to Machine Learning

 Lecture 2 - Decision TreesAmir-massoud Farahmand \& Emad A.M. Andrews

University of Toronto

Today

- Decision Trees
- Simple but powerful learning algorithm
- One of the most widely used learning algorithms in Kaggle competitions
- Lets us introduce ensembles, a key idea in ML
- Useful information theoretic concepts (entropy, mutual information, etc.)

Decision Trees

- Decision trees make predictions by recursively splitting on different attributes according to a tree structure.
- Example: classifying fruit as an orange or lemon based on height and width

Decision Trees

Test example

Decision Trees

- For continuous attributes, split based on less than or greater than some threshold
- Thus, input space is divided into regions with boundaries parallel to axes

Example with Discrete Inputs

- What if the attributes are discrete?

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=$ Yes
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=N_{0}$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y$ es
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y e s$
x_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_{5}=N_{0}$
x_{6}	No	Yes	No	Yes	Some	\$	Yes	Yes	Italian	0-10	$y_{6}=Y$ Yes
x_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
x_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_{8}=Y$ es
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{0}$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10}=N_{o}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{0}$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

Attributes:

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range ($\$, \$ \$, \$ \$ \$$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Decision Tree: Example with Discrete Inputs

- Possible tree to decide whether to wait (T) or not (F)

Decision Trees

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (predictions)

Expressiveness

- Discrete-input, discrete-output case:
- Decision trees can express any function of the input attributes
- Example: For Boolean functions, the truth table row \rightarrow path to leaf

A	B	A xor \mathbf{B}
F	F	F
F	T	T
T	F	T
T	T	F

- Continuous-input, continuous-output case:
- Can approximate any function arbitrarily closely
- Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
[Slide credit: S. Russell]

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(x^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(x^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}

- Classification tree:
- discrete output
- leaf value y^{m} typically set to the most common value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$
- Regression tree:
- continuous output
- leaf value y^{m} typically set to the mean value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$

Note: We will focus on classification

How do we Learn a DecisionTree?

- How do we construct a useful decision tree?

Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies training set is an NP complete problem (if you are interested, check: Hyafil \& Rivest'76).

- Resort to a greedy heuristic! Start with empty decision tree and complete training set
- Split on the "best" attribute, i.e. partition dataset
- Recurse on subpartitions
- When should we stop?
- Which attribute is the "best" (and where should we split, if continuous)?
- Choose based on accuracy?
- Loss: misclassification error
- Say region R is split in R_{1} and R_{2} based on loss $L(R)$.
- Accuracy gain is $L(R)-\frac{\left|R_{1}\right| L\left(R_{1}\right)+\left|R_{2}\right| L\left(R_{2}\right)}{\left|R_{1}\right|+\left|R_{2}\right|}$

Choosing a Good Split

- Why isn't accuracy a good measure?
- Classify by the majority, loss is the misclassification error.

- Is this split good? Zero accuracy gain

$$
L(R)-\frac{\left|R_{1}\right| L\left(R_{1}\right)+\left|R_{2}\right| L\left(R_{2}\right)}{\left|R_{1}\right|+\left|R_{2}\right|}=\frac{49}{149}-\frac{50 \times 0+99 \times \frac{49}{99}}{149}=0
$$

- But we have reduced our uncertainty about whether a fruit is a lemon!

Choosing a Good Split

- How can we quantify uncertainty in prediction for a given leaf node?
- All examples in leaf have the same class: good (low uncertainty)
- Each class has the same number of examples in leaf: bad (high uncertainty)
- Idea: Use counts at leaves to define probability distributions, and use information theory to measure uncertainty

Flipping Two Different Coins

Q: Which coin is more uncertain?
Sequence 1:
$000100000000000100 \ldots$?
Sequence 2:
$010101110100110101 \ldots$?

0
versus

Quantifying Uncertainty

Entropy is a measure of expected "surprise": How uncertain are we of the value of a draw from this distribution?

$$
H(X)=-\mathbb{E}_{X \sim p}\left[\log _{2} p(X)\right]=-\sum_{x \in X} p(x) \log _{2} p(x)
$$

$$
-\frac{8}{9} \log _{2} \frac{8}{9}-\frac{1}{9} \log _{2} \frac{1}{9} \approx \frac{1}{2} \quad-\frac{4}{9} \log _{2} \frac{4}{9}-\frac{5}{9} \log _{2} \frac{5}{9} \approx 0.99
$$

- Averages over information content of each observation
- Unit = bits (based on the base of logarithm)
- A fair coin flip has 1 bit of entropy

Quantifying Uncertainty

$$
H(X)=-\sum_{x \in X} p(x) \log _{2} p(x)
$$

Entropy

- "High Entropy":
- Variable has a uniform like distribution
- Flat histogram
- Values sampled from it are less predictable
- "Low Entropy"
- Distribution of variable has peaks and valleys
- Histogram has lows and highs
- Values sampled from it are more predictable
[Slide credit: Vibhav Gogate]

Entropy of a Joint Distribution

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

$$
\begin{aligned}
H(X, Y) & =-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2} p(x, y) \\
& =-\frac{24}{100} \log _{2} \frac{24}{100}-\frac{1}{100} \log _{2} \frac{1}{100}-\frac{25}{100} \log _{2} \frac{25}{100}-\frac{50}{100} \log _{2} \frac{50}{100} \\
& \approx 1.56 \mathrm{bits}
\end{aligned}
$$

Specific Conditional Entropy

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness Y, given that it is raining?

$$
\begin{aligned}
H(Y \mid X=\text { raining }) & =-\sum_{y \in Y} p(y \mid \text { raining }) \log _{2} p(y \mid \text { raining }) \\
& =-\frac{24}{25} \log _{2} \frac{24}{25}-\frac{1}{25} \log _{2} \frac{1}{25} \\
& \approx 0.24 \mathrm{bits}
\end{aligned}
$$

- We used: $p(y \mid x)=\frac{p(x, y)}{p(x)}$, and $p(x)=\sum_{y} p(x, y) \quad$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- The expected conditional entropy:

$$
\begin{align*}
H(Y \mid X) & =\mathbb{E}_{X \sim p(x)}[H(Y \mid X)] \tag{1}\\
& =\sum_{x \in X} p(x) H(Y \mid X=x) \\
& =-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2} p(y \mid x) \\
& =-\mathbb{E}_{(X, Y) \sim p(x, y)}\left[\log _{2} p(Y \mid X)\right]
\end{align*}
$$

Conditional Entropy

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in X} p(x) H(Y \mid X=x) \\
& =\frac{1}{4} H(\text { cloudy } \mid \text { raining })+\frac{3}{4} H(\text { cloudy } \mid \text { not raining }) \\
& \approx 0.75 \text { bits }
\end{aligned}
$$

Conditional Entropy

- Some useful properties for the discrete case:
- H is always non-negative.
- Chain rule: $H(X, Y)=H(X \mid Y)+H(Y)=H(Y \mid X)+H(X)$.
- If X and Y independent, then X does not tell us anything about Y : $H(Y \mid X)=H(Y)$.
- If X and Y independent, then $H(X, Y)=H(X)+H(Y)$.
- But Y tells us everything about $Y: H(Y \mid Y)=0$.
- By knowing X, we can only decrease uncertainty about Y : $H(Y \mid X) \leq H(Y)$.

Exercise: Verify these!
The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and

Information Gain

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- How much information about cloudiness do we get by discovering whether it is raining?

$$
\begin{aligned}
I G(Y \mid X) & =H(Y)-H(Y \mid X) \\
& \approx 0.25 \mathrm{bits}
\end{aligned}
$$

- This is called the information gain in Y due to X, or the mutual information of Y and X
- If X is completely uninformative about $Y: I G(Y \mid X)=0$
- If X is completely informative about $Y: I G(Y \mid X)=H(Y)$

Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!
- What is the information gain of this split?

- Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left or right split taken, and treat counts as probabilities.
- Root entropy: $H(Y)=-\frac{49}{149} \log _{2}\left(\frac{49}{149}\right)-\frac{100}{149} \log _{2}\left(\frac{100}{149}\right) \approx 0.91$
- Leafs entropy: $H(Y \mid B=$ left $)=0, H(Y \mid B=$ right $) \approx 1$.
- $I G(Y \mid B)=H(Y)-H(Y \mid B)$
$=H(Y)-\{H(Y \mid B=$ left $) \mathbb{P}(B=$ left $)+H(Y \mid B=$ right $) \mathbb{P}(B=$ right $)\}$
$\approx 0.91-\left(0 \cdot \frac{1}{3}+1 \cdot \frac{2}{3}\right) \approx 0.24>0$

Constructing Decision Trees

- At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

- Choose them based on how much information we would gain from the decision! (choose attribute that gives the best gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
- Start with empty decision tree and complete training set
- Split on the most informative attribute, partitioning dataset
- Recurse on subpartitions
- Possible termination condition: end if all examples in current subpartition share the same class

Back to Our Example

Example	Input Attributes										Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
x_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=$ Yes
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=N_{0}$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y$ es
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y$ es
x_{5}	Yes	No	Yes	No	Full	\$\$8	No	Yes	French	> 60	$y_{5}=N_{o}$
\mathbf{x}_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_{6}=Y e s$
x_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
X_{8}	No	No	No	Yes	Some	\$ $\$$	Yes	Yes	Thai	0-10	$y_{8}=$ Yes
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N o$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$8	No	Yes	Italian	10-30	$y_{10}=N_{o}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{o}$
x_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

Attributes:

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host ($0-10$ minutes, $10-30,30-60,>60$).

Attribute Selection

$$
I G(Y)=H(Y)-H(Y \mid X)
$$

$$
I G(\text { type })=1-\left[\frac{2}{12} H(Y \mid \text { Fr. })+\frac{2}{12} H(Y \mid \text { it. })+\frac{4}{12} H(Y \mid \text { Thai })+\frac{4}{12} H(Y \mid \text { Bur. })\right]=0
$$

$$
I G(\text { Patrons })=1-\left[\frac{2}{12} H(0,1)+\frac{4}{12} H(1,0)+\frac{6}{12} H\left(\frac{2}{6}, \frac{4}{6}\right)\right] \approx 0.541
$$

Which Tree is Better?

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
- Computational efficiency (avoid redundant, spurious attributes)
- Avoid over-fitting training examples
- Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
- Useful principle, but hard to formalize (how to define simplicity?)
- See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

Decision Tree Miscellany

- Problems:
- You have exponentially less data at lower levels
- A large tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Mistakes at top-level propagate down tree
- Handling continuous attributes
- Split based on a threshold, chosen to maximize information gain
- There are other criteria used to measure the quality of a split, e.g., Gini index
- Trees can be pruned in order to make them less complex
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Comparison to k-NN

Advantages of decision trees over k-NN

- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs; only depends on ordering
- Good when there are lots of attributes, but only a few are important
- Fast at test time
- More interpretable

Comparison to k-NN

Advantages of k-NN over decision trees

- Able to handle attributes/features that interact in complex ways
- Can incorporate interesting distance measures, e.g., shape contexts.

