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Abstract

Variational inference is one of the tools that now lies at the heart of the modern data analysis lifecycle.
Variational inference is the term used to encompass approximation techniques for the solution of
intractable integrals and complex distributions and operates by transforming the hard problem of
integration into one of optimisation. As a result, using variational inference we are now able to derive
algorithms that allow us to apply increasingly complex probabilistic models to ever larger data sets on
ever more powerful computing resources.

This tutorial is meant as a broad introduction to modern approaches for approximate, large-scale
inference and reasoning in probabilistic models. It is designed to be of interest to both new and
experienced researchers in machine learning, statistics and engineering and is intended to leave
everyone with an understanding of an invaluable tool for probabilistic inference and its connections to a
broad range of fields, such as Bayesian analysis, deep learning, information theory, and statistical
mechanics.

The tutorial will begin by motivating probabilistic data analysis and the problem of inference for
statistical applications, such as density estimation, missing data imputation and model selection, and
for industrial problems in search and recommendation, text mining and community discovery. We will
then examine importance sampling as one widely-used Monte Carlo inference mechanism and from
this begin our journey towards the variational approach for inference. The principle of variational
inference and basic tools from variational calculus will be introduced, as well as the class of latent
Gaussian models that will be used throughout the tutorial as a running example. Using this foundation,
we shall discuss different approaches for approximating posterior distributions, the smorgasbord of
techniques for optimising the variational objective function, a discussion of implementation and large-
scale applications, a brief look at the available theory for variational methods, and an overview of other
variational problems in machine learning and statistics.
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Probabilistic Reasoning
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Probabilistic Inference
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In probabilistic models, we must reason over the probability of events.

Statistical Inference

Any mechanism by which we deduce the probabilities
in our model based on data.

Inference links the observed data with our statistical assumptions and allows us
to ask questions of our data: predictions, visualisation, model selection.
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Part I:

Probabilistic modelling and
the variational principle

Part 11:

Design and implementation of
variational algorithms
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Modelling and Inference

%D@

Regression: Linear combination
of inputs to give response.

[Probabilistic modelling will involve:

- Decide on a priori beliefs.

- Posit an explanation of how the .
observed data is generated, i.e. provide a | @
probabilistic description.

n=1,...N

Bayes’ rule highlights many of the inferential problems we will face.

g O
/ ,2)dz

Marginal likelihood/
Model evidence
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Inferential problems

g S
! /p(y,Z)dZ

Marginal likelihood/
Model evidence

Most inference problems will be one of:

p(y) = / ply. 6)ds
Wil = [ Fwpllady

poess) = [ Plyenloplu)dn




Different Communities

Machine learning makes a distinction

- between inference and learning:
Statistics, no

distinction between - Inference: reason about (and compute)

learning and inference - 1 S :
only inference (or unknown probability distributions.

estimation).

- (Parameter) Learning is inding point
estimates of quantities in the model.

Bayesian statistics, all

quantities are probability
distributions, so there is Decision making and Al,

refer to learning in general as
the means of understanding

and acting based on past

experience (data).

only the problem of
inference.

Software engineering,
inference is the forward

evaluation of a trained model (to
\get Predictiory
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A Smorgasbord of Inference Methods

For a given model, there are many competing inference methods.

Exact methods (conjugacy, enumeration)
Numerical integration (Quadrature)
Generalised method of moments
Maximum likelihood (ML)

Maximum a posteriori (MAP)

Laplace approximation

Integrated nested Laplace approximations
(INLA)

Monte Carlo methods (MCMC, SMC, ABC)
Cavity Methods (EP)

Variational methods
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Model Case Study

Latent Gaussian Models

General class of models that is widely used
throughout machine learning and statistics.

Models with Gaussian latent variables.
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Latent Gaussian Models

Regression and Classification

@,%@ 000

Generalised Linear Models Gaussian process regression
z ~ N(z|p, X) 2~ N(p(X), X(X, X))
Y NN(y\zT:L‘,U;) Y NN(y\z,ai)
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Latent Gaussian Models

Density Estimation

@’@ D -

n=1,..,.N

Factor Analysis / PCA Latent Gaussian Graphical Models

2~ N (2, 5) 2~ N2, 5)
y~N(@yWz,o1) y ~N(ylz,0;)
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Latent Gaussian Models

Temporal and Spatial Models
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o OE - @)

Gaussian Linear State Space Model Latent Gaussian Cox Point Process
Kalman Filter
2 . . . .
2t NN(Zt‘AZt—laa'zI) 33’\“/\[(5’3‘#(@7])»2(%]))

(@

@@

000

ye ~ N (y¢| Bz, 053]) yij ~ P(cexp(zi;))
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Exponential Family Factor Models

Look at two specific instances of this model class:
- Bayesian exponential tamily PCA (BXPCA)
- Deep Latent Gaussian Models (DLGM)

Latent Variable @ @
z ~ N (z|p, )
Observation Model
n=Wz+Db /®
A

y ~ Expon(y|n)

Exponential family with
natural parameters ).
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Exponential Family Factor Models

)
()

Rich extension of previous model using deep neural networks:
Deep Latent Gaussian Model (DLGM).

= Latent Variables (Stochastic layers)
z; ~ N(zi|fi(z141), )
)

fi(z) = c(Wh(z) + b)

Deterministic layers

h;(x) = oc(Ax + c)

'y
~

QOO0
® e

=

Observation Model

n=Wh; +b
y ~ Expon(y|n)

Can also use non-exponential family.
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Exponential Family Factor Models

Our inferential tasks are:

I

2. Make predictions:

p(y*ly) = / p(y* |2, W)p(aly, W)dz

3. Choose the best model

p(y|W) = / p(y|2, W)p(2)dz
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Progress ...
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What is a Variational Method?

* Variational Principle
General family of methods for approximating :
mplicated densities by a simpler class of densities.

CO

K L|q(z]y)||p(z]y)] Approximation class

True posterior

Deterministic approximation procedures
with bounds on probabilities of interest.

Fit the variational parameters.
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Variational Calculus

Called a variational method because it derives from the
Calculus of Variations.

Functions: |
¢ \ariables as input, output is a value.

df

e Full and partial derivatives o

e E.g., Maximise likelihood p(x|6) w.rt. |

parameters 6 Functionals: |

* Functions as input, output is a value. |

OF
¢ Functional derivatives 5f

o E£.g., Maximise the entropy H[p(x)] |
 wrtpx)

We exploit both types of derivatives
in variational inference.
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Variational Calculus

Two basic rules

0f(x)

;"  Functional derivative: — 5 (:E — :1:’)

o f(a

)
5 ofta) _ 9 5f
of(x') Ox Ox 6 f(x')

I - Commutative rule:

Simple example: Maximise the entropy w.r.t. p(x)

: )
Hip(z)] = —/p(ai) log p(z)dx E (@) /p(x) log p(x)dz

: 1
Compute: 22 p(z) o / p(z)
op() |
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Inferential problems

g S
! /p(y,Z)dZ

Marginal likelihood/
Model evidence

Most inference problems will be one of:

py) = / by, 0)ds
Wil = [ Fwpllady
poess) = [ Plyenloplu)dn

Variational Inference



Importance Sampling

Basic idea:
Transtform the integral

Into an expectation over a p(y) = /p(y|z)p(z)dz

distribution.
p(y) = / p(yIZ)p(Z)-dz

q(2)

fz) Importance Weight lEdEIES /p(y‘z).Q(Z)dZ

o _ p2)
—— - w()_@ 2 ~ q(2)
Conditions 1 (o) o
@ — —
* 4(z)>0, when f(z)p(z) # 0. p(y) S Zw p(y|z )

» Easy to sample from ¢(z).
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Importance Sampling

1 S S
p) =5 ) wp(yl=")

2
') = Zﬁ 29~ g(2)

q(2)

Properties:
- Unbiased estimate of the expectation.
- No independent samples from the posterior distribution.

- Many draws from proposal needed, especially in high
dimensions.
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Importance Sampling

1 S S
p) =5 ) wp(yl=")

2
') = Zﬁ 25~ g(2)

q(2)

Can we take inspiration from importance sampling, but instead:
 Obtain a deterministic algorithm,
» Scaled up to high-dimensional and large data problem:s,

o Easy convergence assessment.

Now, from importance sampling to variational inference ...
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Importance Sampling

p(0) = [ plyle)p(a)iz

o) = | p<y|z>p<z>,z)dz

Importance Weight (IS /p(y‘z)lq(z)dz

~ Instead of Monte

i Carlo integration, can
| we manipulate the |
| integral usinga |
| different technique? }
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Jensen’s Inequality

An important result from convex analysis:

1f(x)

D

For concave functions f(.)

f(Elz]) =

Logarithms are strictly concave allowing us to use Jensen’s inequality.

./ ).d:z; / )log g(x)dx

Instead of Monte Carlo Integration, use Jensen’s inequality.
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From IS to Variational Inference

Integral problem

e p<y|z>.q<z>dz
- . p(2)
logp(y) = [ a(2)log  p(yl2), =3 ) d

log [ p(a)g(e)de > [ p(o)logg(a)do

— [t ogplule) - [ a2)10s L

Variational lower bound
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Variational Inference

This bound is exactly of the form we are looking for.

» Variational free energy: We obtain a functional and are free to choose
the distribution g(z) that best matches the true posterior.

 Evidence lower bound (ELBO): principled bound on the
marginal likelihood, or model evidence.

« Certain choices of g(z) makes this quantity easier to
compute. Examples to come.

Variational Inference



Variational Inference

Approx. Posterio Penalty

Interpreting the bound:

« Approximate posterior distribution q(z): Best match to true posterior
p(z|y), one of the unknown inferential quantities of interest to us.

« Reconstruction cost: The expected log-likelihood measure how well
samples from g(z) are able to explain the data y.

 Penalty: Ensures the the explanation of the data g(z) doesn’t deviate too
far from your beliefs p(z). A mechanism for realising Okham’s razor.

Variational Inference



Variational Inference

Some comments on g:
e Integration is now optimisation: optimise for g(z) directly.
o [ write g(z) to simplify the notation, but it depends on the data, q(z|y).

» Easy convergence assessment since we wait until the free energy (loss)
reaches convergence.

» Variational parameters: parameters of g(z)
o E.g., if a Gaussian, variational parameters are mean and variance.

« Optimisation allows us to tighten the bound and get as close as possible
to the true marginal likelihood.

Variational Inference



Minimum Description Length (MDL)

Hypothesis code

Stochastic encoder Data code-length

Stochastic encoder-decoder systems implement variational inference.

. : . Z z2~q(zly)
Regularity in our data that can be explained with = o =
latent variables, implies that the data is compressible. *

MDL: inference seen as a problem of compression —

we must find the ideal shortest message of our data y: Decoder | | Encoder

. R | !
marginal likelihood. p(ylz) q(zly)

Must introduce an approximation to the ideal
message. i
. . ° . ° ~ -
Encoder: variational distribution g(z|y), Y1)
ata y

Decoder: likelihood p(y|z).
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Denoising Auto-encoders (DAE)

Stochastic encoder Reconstruction

Stochastic encoder-decoder systems implement variational inference.

. : : Z z~q(zly)
- DAE: A mechanism for finding representations or | i | :

features of data (i.e. latent variable explanations).

- Encoder: variational distribution g(z|y),
Decoder Encoder

-+ Decoder: likelihood p(y|2). 20 ) 1)

The variational approach requires you to be explicit *

—
about your assumptions. Penalty is derived from your y~py1z)
model and does not need to be designed.

Variational Inference



Variational Inference vs. Variational Bayes

Variational Inference (VI) Variational Bayesian Inference (VB)

Apply the variational principle only

All unknown quantities are
to some parts of the model.

probability distributions and use a

. variational approximation for all
Widely-used case: latent variables are : posterior distributions.

assigned probability distributions;
maximum likelihood estimates for
others.

a(2); O (.60l

Inference  Learning Inference

Variational Inference




Designing Variational Algorithms

Approx. Posterior

1. Choice of the variational distribution q(z):

VI or VB? Specification of g, what structure does it have?

2. Computation of expectations and gradients:

Expectation might be difficult to compute in general. How to efficiently
compute it.

Rest of the tutorial, we’ll discuss these two options and how to
implement them.

Variational Inference



Why Variational Inference?

Disadvantages:

An approximate posterior only - not always
guaranteed to find exact posterior in the limit.

Difficulty in optimisation — can get stuck in
local minima.

Typically under-estimates the variance of
the posterior and can bias maximum
likelihood parameter estimates.

Limited theory and guarantees for
variational methods.

Variational Inference




Why Variational Inference?

Advantages:

Applicable to almost all
probabilistic models: non-linear,
non-conjugate, high-dimensional,
directed and undirected.

Transtorms problem of integration
into one of optimisation.

Easy convergence assessment.

Principled and scalable approach
for model selection.

Compact representation of the
posterior distribution.

Can be faster to converge than
competing methods.

Numerically stable.

Can be used on modern

computing architectures (CPUs
and GPUs)

Variational Inference



In Review ...

Explored the central role of statistical inference
in Machine Learning and data science.

Approximation class

A

Looked at the variational approach as —
one powerful and compelling method
for inference.

Moved from importance sampling to
variational inference by applying the
variational principle giving us the
variational lower bound.

Approx. Posterior Reconstruction Penalty

Variational Inference



Progress ...

) -f:
. Probabilistic modelling and
@ Variational Inference : the variational principle

Next:

Design and implementation of
variational algorithms

Variational Inference



Progress ...

Part I:

Probabilistic modelling and
the variational principle

Now:

Design and implementation of |
variational algorithms

Variational Inference



Approx. Posterior

What exactly is q(z)?
How do we find the variational parameters?
How do we optimise the model parameters?

How do we compute the gradients?

Variational Inference



Free-form and Fixed-form

Free-form variational method solves for the exact distribution setting the
functional derivative to zero.

5F (y,q) Great! The optimal solution is
=~ =0 s.t. / q(z)dz =1 the true posterior distribution.
0q(z) ,\
But solving for the normalisation |
q(2) x p(z) exp(logp(y|z,0)) ' is our original problem. |

Fixed-form variational method specifies an explicit form of the
g-disribution.

- This is ideally a rich class of
q(b(z) = f(Z, ) distributions. Parameters ¢ are
called variational parameters.
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Mean-field Variational Inference

Mean-field methods assume that the distribution is factorised.
1

a(z) = | [ ai(=:) .
2 05|
Restricted class of approximations: every dimension (or
subset of dimensions) of the posterior is independent.

A
#

Variational Inference



Structured Mean-field

Structured mean-field: introduce dependencies into our factorisation.

Autoregressive approximation: One very useful
and powerful structured specification is to
condition on all previous variables.

A\ q(z) = H qi(2il2<i)

Variational Inference



Fixed-form approximations

Require flexible approximations for the types of posteriors we are likely to see.

.

Variational Inference




Variational Latent Gaussian Models

Examples: GP regression, BXPCA or DLGM.

2~ N(2]0,1) y ~ p(yl|fo(z)) q(z) = | [N (zilwi, 07)

F(y,q) = Eq2)[logp(y|2)] — KL[q(z)||p(2)]

F(y.q) = Eq»)[logp(yl2)] = >  KL[q(z:)|lp(2:)]

F(y,a) = gy llogpy|2)] = > KLIN (2] i, o) IV (20, 1)

Variational Inference



Data Visualisation

Binary data set of votes in the US senate.

Latent Factor Embedding

Factor 2

Factor Analysis

Factor 1

Variational Inference
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Data Visualisation

MNIST Handwritten digits

Samples from 2D latent model Labels in 2D latent space

Variational Inference



Visualizing MNIST in 3D
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Missing Data Imputation

Original Data unobserved pixels Inferred Image

10%
observed

50%
observed
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Missing Data Imputation
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Model Selection

Get marginal likelihood estimates that allow for model selection.

GP Regression

NeglLoglik

log(o)

PredError

log(o)

2
log(s)

(a) Logit-HMC

A

NeglLoglik

4
290

260

2 0

230
0

200

PredError

0

2
log(s)

(b) Logit-Boh

4

290

260
2

230

200

NeglLoglik

4

0 2 4

PredError

9 4 .
5 2 .
10 .
. 0 4 .

2
log(s)

(c) Logit-Blei

4
290

260

2
230

0
200

NeglLoglik

4

PredError

0 4

2
log(s)

(d) Probit-VB

290

230

200

260
2

4

NeglLoglik

0 2 4

PredError

2
log(s)

(e) Stick-PW

%

290

260

230

200
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Optimising the Variational Objective

Approx. Posterior

- Variational EM ;
T (7 T
(BB
»  Stochastic Variational Inference | |

A7 10 A
+ Doubly Stochastic Variational Inference 1 /@ L/ O\ |

. Amortised Inference

Variational Inference



Optimising the Variational Objective

Example of variational optimisation for a simple 2D density.

(b)

(d)

What optimisation schemes can we use to achieve this?

Variational Inference



Variational Expectation Maximisation

Alternating optimisation for the variational parameters and then model

@
‘

parameters (VEM).

Repeat:
Estep ¢ X VyF(y,q)
M-step 6 oc Vo F (y, q)

Initialisation

Variational Inference

Var. params

Model params




Variational EM

Involves computation over the entire data set.

e, (Inference)

- «qub (2) log po(yn|2n)| — V¢KL[Q(Zn) [p(zn)]

(Parameter Learning)

' “3%(2) [VG log pg (yn |Zn)]
| logp(y)—A—

Variational Inference



Stochastic Variational Inference

Instead use a stochastic gradient based on a mini-batch of data.

Many names: online EM, stochastic approximation EM, stochastic variational inference.

N is a mini-batch:

sampled with
Repeat: replacement from the full
.. data set or received
 Fori=1,..N |

Lo () 108 Do (Yn|2n)| — VoK L|g(2n)|[p(2n))

Scalable - only need to
operate on a small batch at a

{"qu (2) [VQ IOg Po (yn ‘ Zn)] time. Can operate on large

Variational Inference



Doubly Stochastic Variational Inference

VEM and SVI assume easy computation of the expected log-likelihood
(and KL).

E-step: ¢, X Vg 4]%(2) [lnge (yn‘zn)] — VQSKL[Q(ZH)HP(Z’H)]

Instead compute all expectations by Monte Carlo approximation.

Doubly stochastic estimation : one source of stochasticity from the
mini-batch, another from the Monte Carlo evaluation of the expectation.

Monte Carlo E-step: zq(f ) ~ q (Zn \yn)
- General idea only.
- Will make precise

1 . W
6 Vorg D |logPo(ynln(9)'”) — log R

- estimators.
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Amortised Variational Inference

Repeat:
E-step \ \ |
| Fori=1,..N .

'f ‘ On < VgEq, (2)[log po(yn|zn)| = Ve K Llg(2n)|lp(2n)] |

Instead of solving this optimisation

for every data point n, we can
instead use a model.

M-step

1
0 o N Zn: Vo logpg(ynlzn)

:  z~q(zly) Inference network: g is an encoder or inverse model.
* Parameters of g are now a set of global parameters
used for inference of all data points - test and train.
Model Network Share the cost of inference (amortise) over all data.
p(ylz) : : : .
1w Combines easily with mini-batches and Monte Carlo
‘ expectations.
Can jointly optimise variational and model
yepyly) parameters: no need for alternating optimisation.

Variational Inference
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Computing the expected log-likelihood

An outstanding issue in all the optimisation methods is the computation
of the expected log-likelihood (and KL term if unknown).

« We don’t know this expectation in general.

« The parameters of the distribution with respect to
which the expectation is taken.

Two general approaches:

« Deterministic methods: use additional bounds to make this
computation easier - local variational methods.

e Stochastic methods: Compute the expectation by Monte Carlo and
use properties of the distributions involved to simplity computation.

Variational Inference



L.ocal Variational Methods

Eq(2) 10g po (Yn|2n)]
Replace the likelihood with a simpler form — a lower
bound that makes the expectation easy to compute. / L/ X A

1

Py =112) = Ty = o)
o(2) 2 ol exp (155 - MO - )

Additional variational parameters &

Bohning Jaakkola Piecewise

Bound with only linear
or quadratic termes:
expectations, especially
against a Gaussian, are
easy to compute.

Variational Inference



Stochastic Backpropagation

A Monte Carlo method that works with continuous latent variables.

Ve, [f(2)

2~ N(u,o°)
s = u+oe €~N(01)

A
with Monte Carlo ﬂN(O,l) [ng{lu,a}f(,u + O'E)]

- Can use any likelihood function, avoids the need for additional lower bounds.

- Low-variance, unbiased estimator of the gradient.
- Can use just one sample tfrom the base distribution.

- Possible for many distributions with location-scale or other known
transtformations, such as the CDF.

Variational Inference



Monte Carlo Control Variate Estimators

More general Monte Carlo approach that can be used with both discrete
or continuous latent variables.

Veqe(z|z)
qe (#|7)

Property of the score function: V¢ log g¢ (z|x) =

L (2) 108 po(y|2)V log q(2]y)]

MCCV Estimate

VEq, (2 log pe(y|2)]

43%(2) (log pe(y|z) — C)Vqs log q(z|y)]

c is known as a control variate and is used
to control the variance of the estimator.
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Implementing your Variational Algorithm

Avoid deriving pages of gradient updates for variational inference.

oo . . . Eq[(—logp(y|z) + log q(z) — log p(2)]
Varlatlonal lnference turns lntegratlon

Into optlmlsatlon: Forward pass Backward pass

Vo

« Automated Tools: Prior Z Hig(2)
q(z

Differentiation: Theano, Torch7.

Message passing: infer NET log p(2)
Inference
q(z Ix) Inference
Model q(z Ix)
» Stochastic gradient descent and plxI2)
1t] Imisati Model

other preconditioned optimisation. ; Mode é

e Same code can run on both GPUs tog Vi) b

or on distributed clusters.

e Probabilistic models are modular,

can easily be combined. Ideally want probabilistic programming
using variational inference.
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Progress ...
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Variational Inference Theory

+ Tightness of the bound:
- The bound is exact is if g is the true posterior.

- For certain classes of g-distributions, we can show that the class of
distributions is rich enough to include the true posterior
distributions.

+ Convexity and duality

- For Latent Gaussian models, and many others, we can show
convexity of the variational objective. This allows us to exploit other
optimisation approaches such as dual decomposition.

« Bound correction

- We can obtain a tighter bound in a number of settings using
perturbation analysis.

Variational Inference



Variational Inference Theory

« Convergence
- Based on VEM, we can show convergence to local minima.

- We can also show theoretically for certain models that we have local
convergence to the optimum in asymptotic settings.

« Consistency

- We can show consistency of the mean of maximum likelihood
parameter estimates, for some types of latent variable models using
properties of the functional derivative. In other cases, we can show
that we get inconsistent estimators.

+ Asymptotic normality

- We can use the theory for asymptotic normality of Laplace

approximations to show asymptotic normality for certain classes of
models using variational inference.
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Other Variational Problems

Belief propagation

Expectation propagation

Mutual Information maximisation
Rate distortion theory

Information bottleneck

Policy search methods

Variational Inference



In Review ...

Explored the central role of statistical inference
in Machine Learning and data science.

Approximation class

A

Looked at the variational approach as —
one powerful and compelling method
for inference.

Moved from importance sampling to
variational inference by applying the
variational principle giving us the
variational lower bound.

Approx. Posterior Reconstruction Penalty
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In Review ...

Fixed-form variational inference specifies the
class of posterior approximations.

q6(2) = f(z; 0)

z z~q(z!lx)

} e—T —T T
Ma.ny.dlfferen.t ways to optimise the - P .
variational objective. Most commonly sy | | Network A .
[ ] [ ] [ ] ‘F(y7 q)
use stochastic and amortised inference. A i i
v I s

x~pxlz) - Initialisation t=1 Convergence
Data x

Gradients can be computed in many ways. Monte
Carlo gradients are most generally applicable.

Bohning Jaakkola Piecewise

v’ J | /
1

Earo,1) [ng_{p,,a}sf(/ﬁ + o¢)]

Forward pass i Backward pass
Vo

: g |
log p(z) :
Automate as much as possible when you T

implement your variational algorithm. e

Model
p(xlz)

log p(xlz)
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Not mentioned

- Posterior approximation:
- Mixture models
- Non-parametric approaches

- Hamiltonian variational approximation

- Optimisation:
- Variational message passing

. Memoised inference

- Gradient computations:
. Delta method and Laplace approaches.

- Natural gradients

« Implementation
VB building blocks
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Durk Kingma, Max Welling (U. Amsterdam)
Emtiyaz Khan (EPFL), Kevin Murphy (Google)

Thank You.
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