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Abstract

Variational inference is one of the tools that now lies at the heart of the modern data analysis lifecycle. 
Variational inference is the term used to encompass approximation techniques for the solution of 
intractable integrals and complex distributions and operates by transforming the hard problem of 
integration into one of optimisation. As a result, using variational inference we are now able to derive 
algorithms that allow us to apply increasingly complex probabilistic models to ever larger data sets on 
ever more powerful computing resources. 

This tutorial is meant as a broad introduction to modern approaches for approximate, large-scale 
inference and reasoning in probabilistic models. It is designed to be of interest to both new and 
experienced researchers in machine learning, statistics and engineering and is intended to leave 
everyone with an understanding of an invaluable tool for probabilistic inference and its connections to a 
broad range of fields, such as Bayesian analysis, deep learning, information theory, and statistical 
mechanics. 

The tutorial will begin by motivating probabilistic data analysis and the problem of inference for 
statistical applications, such as density estimation, missing data imputation and model selection, and 
for industrial problems in search and recommendation, text mining and community discovery. We will 
then examine importance sampling as one widely-used Monte Carlo inference mechanism and from 
this begin our journey towards the variational approach for inference. The principle of variational 
inference and basic tools from variational calculus will be introduced, as well as the class of latent 
Gaussian models that will be used throughout the tutorial as a running example. Using this foundation, 
we shall discuss different approaches for approximating posterior distributions, the smorgasbord of 
techniques for optimising the variational objective function, a discussion of implementation and large-
scale applications, a brief look at the available theory for variational methods, and an overview of other 
variational problems in machine learning and statistics.
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Automatic image captioning

Two pizzas sitting on 
top of a stove top oven

Heritage Health prize - predict 
hopitalisation  using insurance data

Machine Learning Problems

Google translate and word lens

Identify the Higgs boson

Netflix challenge

Finding the Higg’s boson

Data
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Modern applications and data strongly 
favour probabilistic modelling:  

• Noise in the data and account for our 
lack of knowledge 

• Non-iid, non-stationary data. 

• Explore and extract the underlying 
structure in the data 

• Consistency in our beliefs about the data 
and systems we study.
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Trueskill: large scale probbabilistic 
models using factor graphs

Probabilistic Reasoning
Model
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In probabilistic models, we must reason over the probability of events.
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Statistical Inference 
Any mechanism by which we deduce the probabilities 

in our model based on data.

Probabilistic Inference

Inference links the observed data with our statistical assumptions and allows us 
to ask questions of our data: predictions, visualisation, model selection.

Problem

Machine Learning Core

Data Implement and 
TestInference Application/

ProductionModel

Algorithm
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Part II:  

Design and implementation of 
variational algorithms
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Outline

Probabilis)c+Modelling+
and+Inference+

Varia)onal+Inference+

Approximate+Posteriors+

Varia)onal+
Op)misa)on+

Gradient+Computa)on+

Implementa)on+

Part I:  

Probabilistic modelling and 
the variational principle
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Modelling and Inference

Probabilistic modelling will involve: 

• Decide on a priori beliefs. 

• Posit an explanation of how the 
observed data is generated, i.e. provide a 
probabilistic description.

Bayes’ rule highlights many of the inferential problems we will face. 

Regression: Linear combination 
of inputs to give response.

x

y

z

n = 1, …, N

μ Σ

Likelihood

p(y|z)
Prior

p(z)

Marginal likelihood/ 
Model evidence

Z
p(y, z)dz

Posterior

p(z|y) =
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Most inference problems will be one of:
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Inferential problems

Marginalisation p(y) =

Z
p(y, ✓)d✓

Likelihood

p(y|z)
Prior

p(z)

Marginal likelihood/ 
Model evidence

Z
p(y, z)dz

Posterior

p(z|y) =

Expectation E[f(y)|x] =
Z

f(y)p(y|x)dy

Prediction p(yt+1) =

Z
p(yt+1|yt)p(yt)dyt
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Machine learning makes a distinction 
between inference and learning: 

• Inference: reason about (and compute) 
unknown probability distributions. 

• (Parameter) Learning is finding point 
estimates of quantities in the model.
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Different Communities

Statistics, no 
distinction between 

learning and inference - 
only inference (or 

estimation).

Bayesian statistics, all 
quantities are probability 
distributions, so there is 

only the problem of 
inference.

Software engineering, 
inference is the forward 

evaluation of a trained model (to 
get predictions).

Decision making and AI, 
refer to learning in general as 
the means of understanding 

and acting based on past 
experience (data).
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Exact methods (conjugacy, enumeration) 
Numerical integration (Quadrature) 
Generalised method of moments 
Maximum likelihood (ML) 
Maximum a posteriori (MAP) 
Laplace approximation 
Integrated nested Laplace approximations 
(INLA) 
Monte Carlo methods (MCMC, SMC, ABC) 
Cavity Methods (EP) 
Variational methods

10

A Smorgasbord of Inference  Methods
For a given model, there are many competing inference methods.
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Latent Gaussian Models  

General class of models that is widely used 
throughout machine learning and statistics.
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Model Case Study

Models with Gaussian latent variables.
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Latent Gaussian Models

Regression and Classification

Generalised Linear Models

z ⇠ N (z|µ,⌃)

y ⇠ N (y|z>x,�2
y)

x

y

z

n = 1, …, N

μ Σ

Gaussian process regression

y ⇠ N (y|z,�2
y)

z ⇠ N (µ(X),⌃(X,X))

X

y1

z1

…y2

z2

yN

zN…

μ, Σ !
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Latent Gaussian Models

Density Estimation

Latent Gaussian Graphical Models

z ⇠ N (z|µ,⌃)

y ⇠ N (y|z,�2
y)

y1

z1

…y2

z2

yD

zD
…

μ, Σ

n = 1, …, N

Factor Analysis / PCA

z ⇠ N (z|µ,⌃)

y ⇠ N (y|Wz,�2
yI)

z

y

W

n = 1, …, N

μ Σ



Variational Inference 14

Latent Gaussian Models
Temporal and Spatial Models

Latent Gaussian Cox Point Process

yij ⇠ P(c exp(xij))

x ⇠ N (x|µ(i, j),⌃(i, j))

i,j

y1

z1

…y2

z2

yN

zN…

μ, Σ !

Gaussian Linear State Space Model
Kalman Filter

yt ⇠ N (yt|Bzt,�
2
yI)

yt

zt

…yt+1

zt+1

yT

zT…

A

B

zt ⇠ N (zt|Azt�1,�
2
zI)
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Look at two specific instances of this model class: 
• Bayesian exponential family PCA (BXPCA) 
• Deep Latent Gaussian Models (DLGM)
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Exponential Family Factor Models

BX
PC

A

z ⇠ N (z|µ,⌃)

Latent Variable

y ⇠ Expon(y|⌘)

Observation Model

⌘ = Wz+ b

z

y

W

n = 1, …, N

μ Σ

Exponential family with 
natural parameters η. 
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Exponential Family Factor Models
D

LG
M

Rich extension of previous model using deep neural networks: 
Deep Latent Gaussian Model (DLGM).

z1

y

W

n = 1, …, N

μ Σ

h1

h2

z2

h3

h4

W1

Latent Variables (Stochastic layers)

zl ⇠ N (zl|fl(zl+1),⌃l)

fl(z) = �(Wh(z) + b)

Deterministic layers

hi(x) = �(Ax+ c)

y ⇠ Expon(y|⌘)
⌘ = Wh1 + b

Observation Model

Can also use non-exponential family.
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Exponential Family Factor Models

z1

y

W

n = 1, …, N

h1

h2

μ Σ

p(z|y,W) / p(y|z,W)p(z)
1. Explain this data

p(y⇤|y) =
Z

p(y⇤|z,W)p(z|y,W)dz

2. Make predictions:

p(y|W) =

Z
p(y|z,W)p(z)dz

3. Choose the best model

Our inferential tasks are:
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Progress …

Probabilis)c+Modelling+
and+Inference+

Varia)onal+Inference+

Approximate+Posteriors+

Varia)onal+
Op)misa)on+

Gradient+Computa)on+

Implementa)on+
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Variational Principle  
General family of methods for approximating  

complicated densities by a simpler class of densities.
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What is a Variational Method?

Deterministic approximation procedures 
with bounds on probabilities of interest. 

Fit the variational parameters.

q�(z)

KL[q(z|y)kp(z|y)] Approximation class

True posterior
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Called a variational method because it derives from the  
Calculus of Variations. 
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Variational Calculus

We exploit both types of derivatives 
in variational inference.

 Functionals: 
• Functions as input, output is a value. 

• Functional derivatives 

• E.g., Maximise the entropy H[p(x)] 
w.r.t. p(x)

�F

�f

Functions: 
• Variables as input, output is a value. 

• Full and partial derivatives 

• E.g., Maximise likelihood p(x|𝜃) w.r.t. 
parameters 𝜃

df

dx
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Simple example: Maximise the entropy w.r.t. p(x) 
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Variational Calculus

 Two basic rules

• Functional derivative:

• Commutative rule:

�f(x)

�f(x0)
= �(x� x

0)

�

�f(x0)

@f(x)

@x

=
@

@x

�f(x)

�f(x0)

� �

�p(x)

Z
p(x) log p(x)dx

�
Z

p(x)

1

p(x)

�(x� x

0
)dx

0 �
Z

log p(x)�(x� x

0
)dx

0

�1� log p(x)

H[p(x)] = �
Z

p(x) log p(x)dx

�H[p(x)]

�p(x)
Compute: 
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Most inference problems will be one of:
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Inferential problems

Marginalisation

Expectation

p(y) =

Z
p(y, ✓)d✓

Likelihood

p(y|z)
Prior

p(z)

Marginal likelihood/ 
Model evidence

Z
p(y, z)dz

Posterior

p(z|y) =

E[f(y)|x] =
Z

f(y)p(y|x)dy

Prediction p(yt+1) =

Z
p(yt+1|yt)p(yt)dyt
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Importance Sampling

Conditions 
• q(z)>0, when f(z)p(z) ≠ 0. 
• Easy to sample from q(z).

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Basic idea: 
Transform the integral 

into an expectation over a 
simple, known 

distribution.

Integral problem p(y) =

Z
p(y|z)p(z)dz

Proposal p(y) =

Z
p(y|z)p(z)q(z)

q(z)
dz

Importance Weight p(y) =

Z
p(y|z)p(z)

q(z)
q(z)dz

w(s) =
p(z)

q(z)
z(s) ⇠ q(z)

Monte Carlo p(y) =
1

S

X

s

w(s)p(y|z(s))
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Importance Sampling

p(x) =
1

S

X

s

w

(s)
p(y|z(s))

w(s) =
p(z)

q(z)
z(s) ⇠ q(z)

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Properties: 
• Unbiased estimate of the expectation. 
• No independent samples from the posterior distribution. 
• Many draws from proposal needed, especially in high 

dimensions.
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Importance Sampling

p(x) =
1

S

X

s

w

(s)
p(y|z(s))

w(s) =
p(z)

q(z)
z(s) ⇠ q(z)

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Can we take inspiration from importance sampling, but instead: 
• Obtain a deterministic algorithm,  
• Scaled up to high-dimensional and large data problems,  
• Easy convergence assessment.

Now, from importance sampling to variational inference …
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Importance Sampling
532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Integral problem p(y) =

Z
p(y|z)p(z)dz

Proposal p(y) =

Z
p(y|z)p(z)q(z)

q(z)
dz

Importance Weight p(y) =

Z
p(y|z)p(z)

q(z)
q(z)dz

w(s) =
p(z)

q(z)
z(s) ⇠ q(z)

Monte Carlo p(y) =
1

S

X

s

w(s)p(y|z(s))

Instead of Monte 
Carlo integration, can 

we manipulate the 
integral using a 

different technique?
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An important result from convex analysis:
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Jensen’s Inequality

Instead of Monte Carlo Integration, use Jensen’s inequality.

For concave functions f(.)
f(E[x]) � E[f(x)]

Logarithms are strictly concave allowing us to use Jensen’s inequality. 

log

Z
p(x)g(x)dx �

Z
p(x) log g(x)dx

f(x)



Variational Inference 28

From IS to Variational Inference

=

Z
q(z) log p(y|z)�

Z
q(z) log

q(z)

p(z)

= Eq(z)[log p(y|z)]�KL[q(z)kp(z)]Variational lower bound

Jensen’s inequality log p(y) �
Z

q(z) log

✓
p(y|z)p(z)

q(z)

◆
dz

log

Z
p(x)g(x)dx �

Z
p(x) log g(x)dx

Integral problem
log p(y) = log

Z
p(y|z)p(z)dz

Importance Weight
log p(y) = log

Z
p(y|z)p(z)

q(z)
q(z)dz

Proposal
log p(y) = log

Z
p(y|z)p(z)q(z)

q(z)
dz
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Variational Inference

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

This bound is exactly of the form we are looking for. 
• Variational free energy: We obtain a functional and are free to choose 

the distribution q(z) that best matches the true posterior.

• Evidence lower bound (ELBO): principled bound on the 
marginal likelihood, or model evidence.  

• Certain choices of q(z) makes this quantity easier to 
compute. Examples to come. 
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PenaltyReconstruction
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Variational Inference

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Interpreting the bound:

Approx. Posterior

• Approximate posterior distribution q(z):  Best match to true posterior 
p(z|y),  one of the unknown inferential quantities of interest to us.

• Reconstruction cost: The expected log-likelihood measure how well 
samples from q(z) are able to explain the data y.

• Penalty:  Ensures the the explanation of the data q(z) doesn’t deviate too 
far from your beliefs p(z). A mechanism for realising Okham’s razor.
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Variational Inference

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Some comments on q: 
• Integration is now optimisation: optimise for q(z) directly.  

• I write q(z) to simplify the notation, but it depends on the data,  q(z|y). 
• Easy convergence assessment since we wait until the free energy (loss) 

reaches convergence. 
• Variational parameters: parameters of q(z) 

• E.g., if a Gaussian, variational parameters are mean and variance. 
• Optimisation allows us to tighten the bound and get as close as possible 

to the true marginal likelihood.
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Hypothesis codeData code-length
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Minimum Description Length (MDL)

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

• Regularity in our data that can be explained with 
latent variables, implies that the data is compressible.  

• MDL: inference seen as a problem of compression — 
we must find the ideal shortest message of our data y: 
marginal likelihood. 

• Must introduce an approximation to the ideal 
message. 

• Encoder:  variational distribution q(z|y),  
• Decoder: likelihood p(y|z).

Stochastic encoder-decoder systems implement variational inference.

Stochastic encoder

Data y

Encoder
q(z |y)

z ~ q(z | y)

Decoder
p(y |z)

y ~ p(y | z)

z
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PenaltyReconstruction
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Denoising Auto-encoders (DAE)

• DAE: A mechanism for finding representations or 
features of data (i.e. latent variable explanations). 

• Encoder:  variational distribution q(z|y),  

• Decoder: likelihood p(y|z).

Stochastic encoder-decoder systems implement variational inference.

Stochastic encoder

F(y, q) = Eq(z)[log p(y|z)]� ⌦(z, y)

Data y

Encoder
q(z |y)

z ~ q(z | y)

Decoder
p(y |z)

y ~ p(y | z)

z

The variational approach requires you to be explicit 
about your assumptions. Penalty is derived from your 

model and does not need to be designed.
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Variational Inference (VI) 

Apply the variational principle only 
to some parts of the model. 

Widely-used case: latent variables are 
assigned probability distributions; 
maximum likelihood estimates for 
others.

34

Variational Inference vs. Variational Bayes

Variational Bayesian Inference (VB) 

All unknown quantities are 
probability distributions and use a 
variational approximation for all 
posterior distributions.

q(z); ✓ML

Inference Learning

q(z, ✓|y)
Inference

p(y|z, ✓)p(z, ✓)
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Rest of the tutorial, we’ll discuss these two options and how to 
implement them.
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Designing Variational Algorithms

1. Choice of the variational distribution q(z): 

VI or VB? Specification of q, what structure does it have?

2. Computation of expectations and gradients: 

Expectation might be difficult to compute in general. How to efficiently 
compute it.

PenaltyReconstruction

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Approx. Posterior



Variational Inference

Disadvantages: 

• An approximate posterior only - not always 
guaranteed to find exact posterior in the limit. 

• Difficulty in optimisation — can get stuck in 
local minima. 

• Typically under-estimates the variance of 
the posterior and can bias maximum 
likelihood parameter estimates. 

• Limited theory and guarantees for 
variational methods.

36

Why Variational Inference?



Variational Inference

• Applicable to almost all 
probabilistic models: non-linear, 
non-conjugate, high-dimensional, 
directed and undirected. 

• Transforms problem of integration 
into one of optimisation. 

• Easy convergence assessment. 

• Principled and scalable approach 
for model selection.

37

Why Variational Inference?

• Compact representation of the 
posterior distribution. 

• Can be faster to converge than 
competing methods. 

• Numerically stable. 

• Can be used on modern 
computing architectures (CPUs 
and GPUs)

Advantages:
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Explored the central role of statistical inference 
in Machine Learning and data science.
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In Review …
Problem

Machine Learning Core

Data Implement and 
TestInference Application/

ProductionModel

q(z)

KL(q(z|x)kp(z|x) Approximation class

True posteriorLooked at the variational approach as 
one powerful and compelling method 
for inference.

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

f(x)

PenaltyReconstruction

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Approx. Posterior

Moved from importance sampling to 
variational inference by applying the 
variational principle giving us the 
variational lower bound.
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Next:  

Design and implementation of 
variational algorithms
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Progress …

Probabilis)c+Modelling+
and+Inference+

Varia)onal+Inference+

Approximate+Posteriors+

Varia)onal+
Op)misa)on+

Gradient+Computa)on+

Implementa)on+

End of Part I:  

Probabilistic modelling and 
the variational principle
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Now:  

Design and implementation of 
variational algorithms

40

Progress …

Probabilis)c+Modelling+
and+Inference+

Varia)onal+Inference+

Approximate+Posteriors+

Varia)onal+
Op)misa)on+

Gradient+Computa)on+

Implementa)on+

Part I:  

Probabilistic modelling and 
the variational principle
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Thus far …

PenaltyReconstructionApprox. Posterior

max

q,✓
F(y, q) = Eq(z)[log p(y|z, ✓)]�KL[q(z)kp(z)]

• What exactly is q(z)?  

• How do we find the variational parameters? 

• How do we optimise the model parameters? 

• How do we compute the gradients?
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Free-form variational method solves for the exact distribution setting the 
functional derivative to zero.

42

Free-form and Fixed-form 

Great! The optimal solution is 
the true posterior distribution.

But solving for the normalisation 
is our original problem.

This is ideally a rich class of 
distributions. Parameters ɸ are 
called variational parameters.

�F(y, q)

�q(z)
= 0 s.t.

Z
q(z)dz = 1

q(z) / p(z) exp(log p(y|z, ✓))

Fixed-form variational method specifies an explicit form of the 
q-disribution.

q�(z) = f(z;�)
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Mean-field methods assume that the distribution is factorised. 
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Mean-field Variational Inference

q(z) =
Y

i

qi(zi)

Restricted class of approximations: every dimension (or 
subset of dimensions) of the posterior is independent.

q(z) =
Y

i

N (zi|µi,�
2
i )

468 10. APPROXIMATE INFERENCE

Figure 10.2 Comparison of
the two alternative forms for the
Kullback-Leibler divergence. The
green contours corresponding to
1, 2, and 3 standard deviations for
a correlated Gaussian distribution
p(z) over two variables z1 and z2,
and the red contours represent
the corresponding levels for an
approximating distribution q(z)
over the same variables given by
the product of two independent
univariate Gaussian distributions
whose parameters are obtained by
minimization of (a) the Kullback-
Leibler divergence KL(q∥p), and
(b) the reverse Kullback-Leibler
divergence KL(p∥q).

z1

z2

(a)
0 0.5 1

0

0.5

1

z1

z2

(b)
0 0.5 1

0

0.5

1

is used in an alternative approximate inference framework called expectation prop-
agation. We therefore consider the general problem of minimizing KL(p∥q) whenSection 10.7
q(Z) is a factorized approximation of the form (10.5). The KL divergence can then
be written in the form

KL(p∥q) = −
∫

p(Z)

[
M∑

i=1

ln qi(Zi)

]
dZ + const (10.16)

where the constant term is simply the entropy of p(Z) and so does not depend on
q(Z). We can now optimize with respect to each of the factors qj(Zj), which is
easily done using a Lagrange multiplier to giveExercise 10.3

q⋆
j (Zj) =

∫
p(Z)

∏

i̸=j

dZi = p(Zj). (10.17)

In this case, we find that the optimal solution for qj(Zj) is just given by the corre-
sponding marginal distribution of p(Z). Note that this is a closed-form solution and
so does not require iteration.

To apply this result to the illustrative example of a Gaussian distribution p(z)
over a vector z we can use (2.98), which gives the result shown in Figure 10.2(b).
We see that once again the mean of the approximation is correct, but that it places
significant probability mass in regions of variable space that have very low probabil-
ity.

The difference between these two results can be understood by noting that there
is a large positive contribution to the Kullback-Leibler divergence

KL(q∥p) = −
∫

q(Z) ln
{

p(Z)
q(Z)

}
dZ (10.18)
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Structured Mean-field
Structured mean-field: introduce dependencies into our factorisation.

q(z) =
Y

i

qi(zi|{zj}j 6=i)

Autoregressive approximation: One very useful 
and powerful structured specification is to 
condition on all previous variables.

z1 z2 z3 ...
q(z) =

Y

i

qi(zi|z<i)
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Fixed-form approximations
Require flexible approximations for the types of posteriors we are likely to see.
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Examples: GP regression, BXPCA or DLGM.
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Variational Latent Gaussian Models

z ⇠ N (z|0, 1) y ⇠ p(y|f✓(z)) q(z) =
Y

i

N (zi|µi,�
2
i )

F(y, q) = Eq(z)[log p(y|z)]�
X

i

KL[q(zi)kp(zi)]

F(y, q) = Eq(z)[log p(y|z)]�
X

i

KL[N (zi|µi,�
2
i )kN (zi|0, 1)]

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

F(y, q) = Eq(z)[log p(y|f✓(z))]�
1

2

X

i

(�2
i + µ2

i � 1� ln�2
i )
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Binary data set of votes in the US senate.
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4.7. Experiments and Results
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Figure 4.7: Results for 2-factor bFA on the voting data using the piecewise
bound. This figure shows a plot of posterior means of factors. Each point
represents a congressman, with size of the marker proportional to the value of
the marginal likelihood; see legend for details. Republicans (R) are marked
with circles while Democrats (D) are marked with squares.

voting data with the Q20 piecewise bound. Fig. 4.7 shows posterior means
of factors. Each point represents a congressman, with size of the marker
proportional to the value of the marginal likelihood approximation; see the
legend for details on size. Republicans (R) are marked with circles while
Democrats (D) are marked with squares. We see that the factors are nicely
clustered, clearly bringing out the fact that the Republicans and Democrats
have di↵erent voting patterns. Also note that, in each cluster, there are
only few congressmen with large marginal likelihoods (the big markers).
These congressmen, perhaps the most “consistent” Republicans/Democrats,
represent the voting pattern of the whole party, and are most discriminative
in deciding the party type.

Left figure in Fig. 4.8 shows the names of the issues, while the right
figure shows the probability of two issues getting the same vote. To be

86
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Senator

Ideal Point Diagram

FIGURE 1.5
Analysis of the partial memberships for the 107th US Senate roll call using
BPM. The line shows the amount of membership in the ‘Democrat’ cluster
with the names of Democrat senators overlaid in blue and Republican senators
in red.

of figure 1.5), for a range of values for the fuzzy exponent. The graph shows
that the assigned partial membership can vary quite dramatically depending
on the choice of �

f

. This type of sensitivity to parameters does not exist in
the Bayesian models we present here, since they can be inferred automatically.

The BPM provides a very natural representation of the membership of in-
dividuals in this data to political leanings. An alternative viewpoint can be
obtained using EXFA. With EXFA, the latent variables do not have an in-
terpretation as a degree of membership, but rather provide a low-dimensional
embedding of the data, which for the case of 2 latent factors, can be used to
provide a spatial visualisation of senators. We show the results of analysing
the roll call data with EXFA in figure 1.8, using K = 2 latent factors, pro-
ducing 4000 samples from the HMC sampler, using the first half as burnin.
The latent embedding in figure 1.8 is colour-coded blue for Democrats and
red for Republicans, and shows that there is a natural separation of the data
into these two groups. Similarly to the BPM, we observe that most senators
are clustered into a Democrat or Republican cluster, with a percentage who
straddle the boundary between these two groups. Again, we see the e↵ect of
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FIGURE 1.8
Analysis of the partial memberships for the 107th US Senate roll call using
EXFA. (a) The left plot shows the latent embedding produced using 2 latent
factors. (b) The right plot shows the marginal covariance between votes.

The BPM gave an intuitive numerical quantity to the degree of membership,
whereas EXFA gives an intuitive spatial understanding of this membership.
Factor models are also often used to model the covariance structure of data
and provide further insight into the data. For Gaussian data, this covariance
is given by ⇥⇥>. For non-Gaussian data, we can compute the marginal co-
variance p(x

i

= x

j

), i 6= j, by Monte Carlo integration using the posterior
samples obtained. We show this in figure 1.8(b) for the first 30 votes. The
figure shows that there are many roll calls that are highly correlated, e.g., the
first 14 entries represent the opening of the congress and are votes for chairs
of various committees. Often not being votes of contention, there is highly
correlated voting for these motions. Analysis of this matrix gives insight into
the evolution of votes in the congress and provides an example of some of
the probabilistic queries that can be made once the posterior samples are ob-
tained. Other interesting probabilistic queries of this nature include examining
the similarity of senators using the KL-distance between their latent posterior
distributions, or examining the influence of senators to the voting outcomes
using the marginal likelihood each senator contributes to the total probability.

1.6 Discussion

Having gained an understanding of exponential family latent variable mod-
els and their behaviour, we now consider some of the questions that a↵ect
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MNIST Handwritten digits
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Data Visualisation
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Visualizing MNIST in 3D
D
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Data Simulation
D
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M

Data Samples
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Missing Data Imputation
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Missing Data Imputation
D

LG
M

Frey Faces dataset. Completion: 80% missing pixels
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Analogical Reasoning
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Get marginal likelihood estimates that allow for model selection.
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A Stick-Breaking Likelihood for Categorical Data Analysis
with Latent Gaussian Models

Mohammad Emtiyaz Khan1, Shakir Mohamed1, Benjamin M. Marlin2 and Kevin P. Murphy1

1University of British Columbia, 2University of Massachusetts, Amherst

Introduction
Motivation: Analysis of high-dimensional categorical data is essential in
applications such as recommender systems, econometrics, social sciences,
and medical diagnostics. Such analysis can be carried out using latent
Gaussian models, which include multinomial logistic regression, multi-class
Gaussian process classification, categorical factor analysis, etc.
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Problem: Parameter learning is difficult since the marginal likelihood con-
tains an intractable integral, which arises due to the non-conjugacy between
the likelihood and Gaussian prior on the latent variables.

Solution: We propose a novel stick-breaking likelihood for categorical data
analysis and derive tractable and accurate lower bounds for the marginal
likelihood. Our results demonstrate that the proposed stick-breaking model
effectively captures correlation and is well suited to the analysis of categori-
cal data.

Latent Gaussian Models
Our model uses latent Gaussian variables to model the distribution of cate-
gorical observations. For categorical data, each element y

dn

of the observed
vector y

n

can take values from a finite discrete set S

d

= {C1,C2, . . . ,C
K

}.
For the n’th data vector, the generative process is: (1) Sample latent Gaus-
sian vectors z

n

2 RL. (2) Take a linear combination of z
n

to obtain the pre-
dictor ⌘

dn

2 RK . (3) Draw data from a categorical distribution given ⌘
dn

. Our
goal is to learn the model parameters ✓ given y1, . . . , y
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Stick-Breaking Likelihood
We propose a novel stick-breaking likelihood to
model p(y = C

k

|⌘), defined in terms of the logistic
log-partition function llp(x) = log(1 + exp(x)). This
is simpler than the multinomial logit model which
uses the log-sum-exp function lse = log

P
j

exp(⌘
j

),
a difficult function to approximate.

Stick:
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Variational Inference
Variational lower bound: Computation of the marginal likelihood is intractable since the categorical
likelihood is not conjugate to the Gaussian prior. Using Jensen’s inequality, we can obtain a lower
bound to the marginal likelihood.
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Piecewise bounds for the stick-breaking likelihood: These expectations of the likelihood w.r.t
a Gaussian, are still intractable due to the presence of log(1 + exp(x)), the logistic-log-partition
(LLP) function. This is made tractable by using piecewise lower bounds for the LLP, for which the
expectation of each piece w.r.t. a Gaussian is tractable.

Existing bounds for the multinomial logit likelihood: Existing bounds for the log-sum-exp term
have unbounded error and can cause severe bias in parameter estimates. Piecewise bounds have
bounded error.

Piecewise bound  
Q1(x) 

Q2(x) 

Q3(x) 

Stick-Breaking Likelihood 
for log(1 + ex) 

Bohning bound 

Multinomial Logit Likelihood 
for log-sum-exp 

Blei bound 

Results
Categorical Latent Gaussian
Graphical Model (cLGGM)

n=1:N 
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yDn y2n 

Highly correlated synthetic data: (D = 2,K = 4,N = 10, 000) We compare the true discrete distribution
with the estimated distribution using various methods and models.

0 4 8 12 16
0

0.1

0.2

Bit Patterns

P
ro

b
a

b
ili

ty

True Distribution

0 4 8 12 16
0

0.1

0.2

Bit Patterns

P
ro

b
a

b
ili

ty

Stick−PW

0 4 8 12 16
0

0.1

0.2

Bit Patterns

P
ro

b
a

b
ili

ty

Logit−Blei

0 4 8 12 16
0

0.1

0.2

Bit Patterns

P
ro

b
a

b
ili

ty

Logit−Bohning

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Categories

K
L 

d
iv

e
rg

e
n

c
e

KL div between true and estimated distribution

 

 
Stick−PW
Logit−Blei
Logit−Bohning

Real data: We compare missing
value imputation error for two
datasets:
Tic-tac-toe
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Error vs Time on Tic−Tac−Toe data
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Forensic glass data: (D = 214,K = 6). The top row shows contour plots of negative log-likelihood for the
training data obtained over various hyperparameter settings; the bottom row shows the prediction error on
the test set. The star indicates the hyperparameter setting at the minimum negative log-likelihood.
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(e)Stick-PW

Illustrating LGM on voting dataset (D = 16,K = 2,N = 435). We plot the posterior mean of the latent factors with size proportional to the
log-likelihood. We also plot the probability of two variables (votes) taking the same value and the probability of voting ‘yes’ given the party.
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Optimising the Variational Objective

PenaltyReconstructionApprox. Posterior

max

q,✓
F(y, q) = Eq(z)[log p(y|z, ✓)]�KL[q(z)kp(z)]

• Variational EM 

• Stochastic Variational Inference 

• Doubly Stochastic Variational Inference 

• Amortised Inference

472 10. APPROXIMATE INFERENCE
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Figure 10.4 Illustration of variational inference for the mean µ and precision τ of a univariate Gaussian distribu-
tion. Contours of the true posterior distribution p(µ, τ |D) are shown in green. (a) Contours of the initial factorized
approximation qµ(µ)qτ (τ) are shown in blue. (b) After re-estimating the factor qµ(µ). (c) After re-estimating the
factor qτ (τ). (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are
shown in red.

In general, we will need to use an iterative approach such as this in order to
solve for the optimal factorized posterior distribution. For the very simple example
we are considering here, however, we can find an explicit solution by solving the
simultaneous equations for the optimal factors qµ(µ) and qτ (τ). Before doing this,
we can simplify these expressions by considering broad, noninformative priors in
which µ0 = a0 = b0 = λ0 = 0. Although these parameter settings correspond to
improper priors, we see that the posterior distribution is still well defined. Using the
standard result E[τ ] = aN/bN for the mean of a gamma distribution, together withAppendix B
(10.29) and (10.30), we have

1
E[τ ]

= E

[
1
N

N∑

n=1

(xn − µ)2
]

= x2 − 2xE[µ] + E[µ2]. (10.31)

Then, using (10.26) and (10.27), we obtain the first and second order moments of
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Example of variational optimisation for a simple 2D density.

57

Optimising the Variational Objective
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Figure 10.4 Illustration of variational inference for the mean µ and precision τ of a univariate Gaussian distribu-
tion. Contours of the true posterior distribution p(µ, τ |D) are shown in green. (a) Contours of the initial factorized
approximation qµ(µ)qτ (τ) are shown in blue. (b) After re-estimating the factor qµ(µ). (c) After re-estimating the
factor qτ (τ). (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are
shown in red.

In general, we will need to use an iterative approach such as this in order to
solve for the optimal factorized posterior distribution. For the very simple example
we are considering here, however, we can find an explicit solution by solving the
simultaneous equations for the optimal factors qµ(µ) and qτ (τ). Before doing this,
we can simplify these expressions by considering broad, noninformative priors in
which µ0 = a0 = b0 = λ0 = 0. Although these parameter settings correspond to
improper priors, we see that the posterior distribution is still well defined. Using the
standard result E[τ ] = aN/bN for the mean of a gamma distribution, together withAppendix B
(10.29) and (10.30), we have

1
E[τ ]

= E

[
1
N

N∑

n=1

(xn − µ)2
]

= x2 − 2xE[µ] + E[µ2]. (10.31)

Then, using (10.26) and (10.27), we obtain the first and second order moments of

What optimisation schemes can we use to achieve this?
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Alternating optimisation for the variational parameters and then model 
parameters (VEM).

58

Variational Expectation Maximisation

Initialisation

…

log p(y)

KL[q||p⇤]

F(y, q)

Convergence

…

t = 1

E-step

✓ / r✓F(y, q)M-step

� / r�F(y, q)

Repeat:
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Variational EM

Repeat:
E-step

M-step

For i = 1, … N

Initialisation

…

log p(y)

KL[q||p⇤]

F(y, q)

Convergence

…

t = 1

�n / r�Eq�(z)[log p✓(yn|zn)]�r�KL[q(zn)kp(zn)]

Involves computation over the entire data set.

(Inference)

(Parameter Learning)

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(yn|zn)]
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Stochastic Variational Inference

Instead use a stochastic gradient based on a mini-batch of data. 
Many names: online EM, stochastic approximation EM, stochastic variational inference.

Repeat:
Mini-batch E-step

M-step

For i = 1, … N

�n / r�Eq�(z)[log p✓(yn|zn)]�r�KL[q(zn)kp(zn)]

N is a mini-batch: 
sampled with 

replacement from the full 
data set or received 

online.

Scalable - only need to 
operate on a small batch at a 

time. Can operate on large 
data sets.

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(yn|zn)]



Variational Inference

VEM and SVI assume easy computation of the expected log-likelihood 
(and KL).

61

Doubly Stochastic Variational Inference

Instead compute all expectations by Monte Carlo approximation. 

Doubly stochastic estimation : one source of stochasticity from the 
mini-batch, another from the Monte Carlo evaluation of the expectation.

Monte Carlo E-step:
General idea only. 
Will make precise 
when we look at 

Monte Carlo 
estimators.

E-step: �n / r�Eq�(z)[log p✓(yn|zn)]�r�KL[q(zn)kp(zn)]

�n / r�
1

S

X

s


log p✓(yn|zn(�)(s))� log

q(zn(�)(s))

p(z)

�
z(s)n ⇠ q(zn|yn)
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Amortised Variational Inference

Inference network: q is an encoder or inverse model. 
Parameters of q are now a set of global parameters 
used for inference of all data points - test and train. 
Share the cost of inference (amortise) over all data. 
Combines easily with mini-batches and Monte Carlo 
expectations. 
Can jointly optimise variational and model 
parameters: no need for alternating optimisation.

Repeat:
E-step

M-step

For i = 1, … N

✓ / 1

N

X

n

r✓ log p✓(yn|zn)

�n / r�Eq�(z)[log p✓(yn|zn)]�r�KL[q(zn)kp(zn)]
Instead of solving this optimisation 

for every data point n, we can 
instead use a model.

Data y

Inference 
Network

q(z |y)

z ~ q(z | y)

Model
p(y |z)

y ~ p(y | z)

z
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Progress …
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Variational Inference

An outstanding issue in all the optimisation methods is the computation 
of the expected log-likelihood (and KL term if unknown).

64

Computing the expected log-likelihood

r⇠Eq(z)[log p✓(yn|zn)]
• We don’t know this expectation in general. 
• The parameters of the distribution with respect to 

which the expectation is taken.

Two general approaches: 
• Deterministic methods: use additional bounds to make this 

computation easier - local variational methods. 
• Stochastic methods: Compute the expectation by Monte Carlo and 

use properties of the distributions involved to simplify computation.



Variational Inference

Replace the likelihood with a simpler form — a lower 
bound that makes the expectation easy to compute.

65

Local Variational Methods

Bohning Jaakkola Piecewise 
Q1(x) 

Q2(x) 

Q3(x) 

Bound with only linear 
or quadratic terms: 
expectations, especially 
against a Gaussian, are 
easy to compute. 

x 

r⇠Eq(z)[log p✓(yn|zn)]

p(y = 1|z) = 1

1 + exp(�z)
= �(z)Original problem

�(z) � �(⇠) exp

✓
z � ⇠

2

� �(⇠)(z2 � ⇠2)

◆

Additional variational parameters ξ

Local Bound



Variational Inference

A Monte Carlo method that works with continuous latent variables.

66

Stochastic Backpropagation

• Can use any likelihood function, avoids the need for additional  lower bounds. 
• Low-variance, unbiased estimator of the gradient.  
• Can use just one sample from the base distribution. 
• Possible for many distributions with location-scale or other known 

transformations, such as the CDF.

r⇠Eq(z)[f(z)]Original problem

z ⇠ N (µ,�2)
z = µ+ �✏ ✏ ⇠ N (0, 1)Reparameterisation

r⇠EN (0,1)[f(µ+ �✏)]

EN (0,1)[r⇠={µ,�}f(µ+ �✏)]
Backpropagation 
with Monte Carlo



Variational Inference

More general Monte Carlo approach that can be used with both discrete 
or continuous latent variables.

67

Monte Carlo Control Variate Estimators 

r⇠ log q⇠(z|x) =
r⇠q⇠(z|x)
q⇠(z|x)

Property of the score function:

c is known as a control variate and is used 
to control the variance of the estimator.

Original problem r�Eq�(z)[log p✓(y|z)]

 Score ratio Eq�(z)[log p✓(y|z)r� log q(z|y)]

MCCV Estimate Eq�(z)[(log p✓(y|z)� c)r� log q(z|y)]
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Variational Inference

Ideally want probabilistic programming 
using variational inference.

69

Implementing your Variational Algorithm
Avoid deriving pages of gradient updates for variational inference. 

Variational inference turns integration 
into optimisation:  

• Automated Tools: 
Differentiation: Theano, Torch7. 
Message passing: infer.NET

Eq[(� log p(y|z) + log q(z)� log p(z)]

Inference
q(z |x)

H[q(z)]

Model
p(x |z)

Prior
p(z)

z

log p(z)

log p(x|z)

Inference
q(z |x)

Model
p(x |z)

Prior
p(z)

r✓

r�

r�Data x

Forward pass Backward pass

• Stochastic gradient descent and 
other preconditioned optimisation. 

• Same code can run on both GPUs 
or on distributed clusters. 

• Probabilistic models are modular, 
can easily be combined.
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Variational Inference

• Tightness of the bound: 
• The bound is exact is if q is the true posterior. 
• For certain classes of q-distributions, we can show that the class of 

distributions is rich enough to include the true posterior 
distributions. 

• Convexity and duality 
• For Latent Gaussian models, and many others, we can show 

convexity of the variational objective. This allows us to exploit other 
optimisation approaches such as dual decomposition. 

• Bound correction 
• We can obtain a tighter bound in a number of settings using 

perturbation analysis.

71

Variational Inference Theory



Variational Inference

• Convergence 
• Based on VEM, we can show convergence to local minima. 
• We can also show theoretically for certain models that we have local 

convergence to the optimum in asymptotic settings. 
• Consistency 

• We can show consistency of the mean of maximum likelihood 
parameter estimates, for some types of latent variable models using 
properties of the functional derivative.  In other cases, we can show 
that we get inconsistent estimators. 

• Asymptotic normality 
• We can use the theory for asymptotic normality of Laplace 

approximations to show asymptotic normality for certain classes of 
models using variational inference.

72

Variational Inference Theory



Variational Inference

• Belief propagation 

• Expectation propagation 

• Mutual Information maximisation 

• Rate distortion theory 

• Information bottleneck 

• Policy search methods

73

Other Variational Problems



Variational Inference

Explored the central role of statistical inference 
in Machine Learning and data science.

74

In Review …
Problem

Machine Learning Core

Data Implement and 
TestInference Application/

ProductionModel

q(z)

KL(q(z|x)kp(z|x) Approximation class

True posteriorLooked at the variational approach as 
one powerful and compelling method 
for inference.

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

f(x)

PenaltyReconstruction

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Approx. Posterior

Moved from importance sampling to 
variational inference by applying the 
variational principle giving us the 
variational lower bound.
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Fixed-form variational inference specifies the 
class of posterior approximations.
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Many different ways to optimise the 
variational objective. Most commonly 
use stochastic and amortised inference.
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Initialisation

…

log p(y)

KL[q||p⇤]

F(y, q)

Convergence

…

t = 1

Gradients can be computed in many ways. Monte 
Carlo gradients are most generally applicable.

Bohning Jaakkola Piecewise 
Q1(x) 
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log p(x|z)

Inference
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Model
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Forward pass Backward pass

Automate as much as possible when you 
implement your variational algorithm.
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• Posterior approximation: 
• Mixture models 
• Non-parametric approaches 
• Hamiltonian variational approximation 

• Optimisation: 
• Variational message passing 
• Memoised inference 

• Gradient computations: 
• Delta method and Laplace approaches. 
• Natural gradients 

• Implementation 
• VB building blocks
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Thanks to many people: 
Danilo Rezende, Charles Blundell, Theophane Weber, Andriy Mnih, 
Karol Gregor, Daan Wierstra (Google DeepMind). 
Durk Kingma, Max Welling (U. Amsterdam) 
Emtiyaz Khan (EPFL), Kevin Murphy (Google)
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