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Abstract

We study the problem of holistic scene understanding. We

would like to obtain a compact, expressive, and interpretable

representation of scenes that encodes information such as

the number of objects and their categories, poses, positions,

etc. Such a representation would allow us to reason about

and even reconstruct or manipulate elements of the scene.

Previous works have used encoder-decoder based neural

architectures to learn image representations; however, repre-

sentations obtained in this way are typically uninterpretable,

or only explain a single object in the scene.

In this work, we propose a new approach to learn an

interpretable distributed representation of scenes. Our ap-

proach employs a deterministic rendering function as the

decoder, mapping a naturally structured and disentangled

scene description, which we named scene XML, to an image.

By doing so, the encoder is forced to perform the inverse of

the rendering operation (a.k.a. de-rendering) to transform

an input image to the structured scene XML that the decoder

used to produce the image. We use a object proposal based

encoder that is trained by minimizing both the supervised

prediction and the unsupervised reconstruction errors. Ex-

periments demonstrate that our approach works well on

scene de-rendering with two different graphics engines, and

our learned representation can be easily adapted for a wide

range of applications like image editing, inpainting, visual

analogy-making, and image captioning.

1. Introduction

What properties are desirable in an image representation
for visual understanding? We argue that the representation
needs to be compact, expressive, and interpretable. Com-
pactness makes it possible to store and exploit large amounts
of data. Expressiveness allows it to capture the variations
in the number, category, appearance, and pose of objects in
an image. Lastly, an interpretable and disentangled repre-
sentation enables us to reason about and even reconstruct or
manipulate elements of an image.

Image representations learned by neural networks are
often compact and expressive, but are hard to interpret. Re-
cently, researchers studied how to obtain interpretable repre-
sentations [4, 21, 35]. They mostly employed an encoding-

Figure 1: Our goal is to interpret an image in a holistic way. As-

suming an image is rendered by a graphics engine on an indefinite

length input, we aim to recover the input so that the the exact image

can be reconstructed and manipulated. Here we show a simplified

version of the XML we use.

decoding framework, using neural nets for both inference
and approximate rendering. However, these methods typi-
cally assume each input image contains only a single, cen-
tered object in front of a clean background. Consequently,
they are not robust and powerful enough for practical applica-
tions, where we often see images with an indefinite number
of objects, heavy occlusions, and a cluttered background.

In contrast to neural decoders like the ones used in [8,
21], the deterministic rendering functions used in graphics
engines naturally take a structured and disentangled input
to generate images. From this perspective, if we assume a
given image is rendered by a generic graphics engine, we
can aim to recover the structured representation required by
renderer to reconstruct the exact image (a.k.a. de-rendering).
By learning an image representation this way, we achieve
interpretability for free, and we will also be able to apply the
representation to a range of applications like image editing.

This image de-rendering problem, however, is very chal-
lenging for multiple reasons. First, as we are no longer
assuming a localized object, and the number of objects in an
image is unknown, our representation should be extensible
to an arbitrary number of objects in different positions. This
cannot be achieved in a straightforward way with traditional
convolutional networks that learn image representations of
a fixed dimension. Previous works discussed the use of re-
current networks like LSTM [14] in these cases. However,
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for a scene with many objects, it is unintuitive and often am-
biguous to manually define a sequential ordering over them.
In this work, we instead draw inspiration from research in
bottom-up visual recognition and propose a framework based
on object proposals.

Second, we want the encoded representation to be gener-
alizable to various graphics engines, though they may require
very different input. We therefore design a unified structured
language, named scene XML, which can be easily translated
to inputs that renderers can take. We evaluate our framework
on two datasets with different rendering engines: one is the
Abstract Scene dataset [39] and the other is a new dataset
we build with Minecraft∗ images and its 3D renderer.

Third, the space of encoded representations and the space
of images do not share the same metric: a pair of close latent
representations may correspond to images with significantly
different visual appearance, and vice versa. Thus, learning a
direct mapping from images to labeled representations does
not guarantee good performance in reconstruction. In this
paper, we explore the possibility of having loss functions
in both spaces within an end-to-end neural net framework.
This is technically nontrivial because graphics engines are
often not differentiable, with few exceptions [22]. To over-
come this problem, we use the multi-sample REINFORCE
algorithm [32] for optimization.

Our contributions are three-fold: first, we propose a new
problem formulation, scene de-rendering, aiming to interpret
a scene and the objects inside holistically by incorporating a
graphics engine and a structured representation; second, we
design a novel end-to-end framework for scene de-rendering,
which involves optimization in both the latent representa-
tion space and the image space; third, we demonstrate the
effectiveness of our framework by showing how it enables
multiple applications on two quite different datasets, one of
which is a new dataset on the Minecraft platform.

2. Related Work

Our work is closely related to research on learning an in-
terpretable representation with a neural network [13, 21, 35,
4, 33]. Kulkarni et al. [21] proposed a convolutional inverse
graphics network. Taking an image of a face, the network
learns to infer its properties like pose and lighting. Yang et

al. [35] and Wu et al. [33] explored learning disentangled
representations of pose and content from chair images. Chen
et al. [4] proposed to learn disentangled representation with-
out direct supervision. While all these methods dealt with
images of a single object (chair, face, or digit), we study
the problem of general scene de-rendering with an indefinite
number of objects and possibly heavy occlusions.

Another line of related research is on sequential gen-
erative models for image recognition or synthesis [15, 11,

∗https://minecraft.net

(a) A standard autoencoder (b) A generalized autoencoder

Figure 2: Generalized encoding-decoding structure. Different

from a standard autoencoder (a), our generalized structure (b) uses

a graphics engine as the decoder, which by nature takes an inter-

pretable and disentangled representation as input, and renders a

high quality image.

9, 27, 1], which typically involve recurrent networks like
LSTM [14]. Many of these works also trained a network
as an approximate renderer simultaneously. In contrast, we
explicitly model a graphics engine in the framework, and
let neural nets focus on inverse graphics. The use of a real
renderer provides us with an interpretable representation for
free, and also generates images of higher quality.

Our framework also relates to the field of “vision as in-
verse graphics”, analysis-by-synthesis, or generative models
with data-driven proposals [36, 37, 30, 20, 34, 16], as we are
incorporating a graphics engine as a black-box synthesizer.
However, our focus is still on using a feedforward model for
bottom-up recognition and inference. Please see [3] for a
nice review of analysis-by-synthesis methods.

3. Neural Scene De-rendering

We now present our analysis and approach to the scene de-
rendering problem. We begin with a high-level abstraction
of our method as a generalized encoding-decoding structure;
we then discuss optimization and implementation details.

3.1. Generalized Encoding-Decoding Structure

Autoencoder Traditionally autoencoder have neural net-
works as both the encoder and the decoder, as shown in
Figure 2a. The goal of the network is to encode input into
a compact representation (the bottleneck layer) and then to
reconstruct the input. The latent vector learned this way can
be viewed as an informative representation of the input.

Rendering Engine as a Generalized Decoder The latent
representation of a standard autoencoder is neither disentan-
gled nor interpretable, making it hard to generalize to other
tasks. Here, we propose a generalized encoding-decoding
structure, where we use a graphics engine as our decoder,
as shown in Figure 2b. Unlike a neural decoder, a graphics
engine in its nature requires a structured and interpretable
image representation as input for rendering. In this way,
the generalized autoencoder naturally learns to encode the
image into an interpretable image representation.

The generalized structure needs to achieve two goals: first,
minimizing the supervised prediction error on the inverted
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Figure 3: An image and part of its scene XML, encoding the

background and the category, appearance, position, and pose of

objects in the image.

representations of input images; and second, minimizing the
unsupervised reconstruction error on the rendered images.
In Section 3.2, we explore how to integrate and balance both
goals for better performance.

Scene XML We want our framework to be independent
of the graphics engine involved. To be specific, we hope
to connect our encoder to a meta-renderer that translates
learned representations to input that a specific graphics en-
gine could take. To do this, we design a cross-platform
structured image representation, named Scene XML, as the
output of the encoder. Our goal is to design scene XML in
a way that requires minimal effort to connect it to various
graphics engines.

Our current design is in essence an object-centered repre-
sentation. It starts with some brief description of background,
similar to the <head> tag in HTML. Then for each object,
we track its category, appearance (size and color), position
in 3D space ({x, y, z}), and pose (yaw, pitch, roll). In the
future, we plan to also include its physical properties, and to
model its actual 3D shape instead of using categories with
fixed geometry as an abstraction. Figure 3 shows a sample
image and part of its corresponding scene XML.

For each input image, our framework learns to interpret it
in scene XML, and then translates the XML to the structured
input that a graphics engine could take. We describe details
of adapting scene XML to graphics engines in Section 4.

3.2. Black-Box Optimization via REINFORCE

As discussed in Section 1, visually similar images might
have very different latent representations; also, two similar
points in the representation space could lead to, after ren-
dering, images with drastically different appearance. We
show an example in Figure 4. With a small change in the
value of a single dimension in the representation, here the
depth of the cloud, the rendered images look totally different.
Therefore, during training, we would like to minimize both
the prediction error after the inference/encoding step, and
the reconstruction error after the synthesis/rendering step.

This is, however, not practically straightforward as
graphics engines are typically not differentiable, making
it hard to back-propagate the gradients. Inspired by re-
cent works [26, 1, 17], we formulate this as a reinforcement

Figure 4: A small change in the latent space (e.g., the depth of

cloud) may lead to significant difference in rendered images. It is

hence important to consider losses in both spaces.

learning problem, and adopt a multi-sample REINFORCE
paradigm [23, 32] to address this issue.

Specifically, instead of having a deterministic prediction,
we have a stochastic layer at the end of our encoder, where
our final prediction can be sampled from certain distribu-
tions (e.g., Gaussian for position and pose, multinomial for
category). We obtain multiple samples from an input, and
for each sample, we compute its reconstruction error after
rendering. We use the negative log error as reward r of the
sample, with its variance reduced by a baseline computed
from the other samples. The REINFORCE algorithm then
allows us to calculate gradients on these stochastic layers
and to back-propagate them to all layers before, via

∆w = α(r − b)e, (1)

where w are the parameters of the distributions we are sam-
pling from, α is the learning rate, b is the reinforcement base-
line computed from other samples, and e is the distribution-
dependent characteristic eligibility. Please refer to [23, 32]
for more details.

REINFORCE as Weight Balancing The mapping from
latent representations to images is highly discontinuous. For
each dimension in the latent representation, its impact on
the rendered image changes as we move over the manifold.
It is intractable to model the exact correlation; however,
from a different perspective, the use of a graphics engine
and the reinforcement learning (RL) framework implicitly
guides the recognition network to balance the weights of
each dimension under different circumstances.

Semi-supervised Curriculum Learning The RL formu-
lation also opens up the possibility for unsupervised learn-
ing: we can attempt to minimize the reconstruction error
directly, and hopefully the network learns the disentangled
representation required by the graphics engine automatically.
We unfortunately observe that this is infeasible in practice.
One reason for this failure is the large search space arising
from the parametrization of the encoder. To address this,
we employ a curriculum based approach where we initial-
ize the training by using both reconstruction error and the
label prediction loss on a small number of labeled images.
Thereafter, we fine-tune the model with only unlabeled data,
relying on the reconstruction error. We observe that the
reinforcement learning framework can help to reduce the
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Figure 5: Our neural scene de-rendering framework consists of three component. Given an input image, it first generates a number of

segment proposals (Stage I). It then tries to interpret if there is an object in the each proposal, and if so what its properties are (Stage II).

Eventually, these inference results are integrated and sent to a graphics engine for rendering, so that the original image can be reconstructed

(Stage III). We have supervision on both the latent representation space and the image space. Also note that the latent representations have

wide applications including image editing, captioning, etc.

Figure 6: We use segment proposals instead of box proposals, as

heavily occluded objects (like the sun in the example) cannot be

correctly interpreted from box proposals. During reconstruction, we

also need the segment for occluded objects to accurately compute

their rewards for REINFORCE.

supervision required for training the encoder through cur-
riculum learning [2]. This semi-supervised learning setting
could be useful in practice, where labeled data are often
scarce. We show results in Section 4.

3.3. Implementation Details

Network Structure Based on the generalized encoding-
decoding structure, our framework has a neural encoder and
a graphics engine as a generalized decoder, as shown in
Figure 2b. We now describe our encoder in detail, and will
provide the description of the two graphics engine decoders
we explored for experiments later in Section 4.

Our encoder has two components: a proposal generator
for producing proposals that potentially contain objects, and
an object interpreter for discriminating whether there is an
object in each proposal, and if so, what its attributes are.

Our proposal generator (Figure 5-I) produces segment

proposals instead of bounding boxes. This is because heavily
occluded objects cannot be correctly interpreted from box
proposals. For example, in Figure 6, the network is not
able to locate and interpret the heavily occluded sun, even
with a perfect box proposal. Also, during reconstruction, it
would also be preferable for the model to incorrectly interpret
the box proposal of the sun to be cloud, only because the
cloud occupies a larger area in the box. In contrast, segment
proposals do not suffer from this issue.

For the proposal generator, we use the network structure
from an instance segmentation method, MNC [6]. It is a
cascaded model where the network first learns both feature
maps and coordinates of box instances (regions of interests,
or RoI), and sends them through a RoI pooling layer to
extract features of boxes. It then predicts masks of candidate
objects within each box. Please refer to [6] for more details
on the structure of the proposal generator. We compute 100
segment proposals for each image.

The object interpreter (Figure 5-II) takes a segment pro-
posal (masked image) as input, and predicts whether there is
an object in the segment. If the network believes an object
exists, it also predicts its properties required by our scene
XML. For each segment, we consider objects in the image
that have an IoU over 0.3 with the segment, and select the
one with the maximum IoU as ground truth for training
the object interpreter. At the end, we apply non-maximal
suppression (NMS) over the interpretations of all segments,
and send it to the decoder (a graphics engine) for rendering
(Figure 5-III).

Analysis-by-Synthesis Refinement When a renderer is
available, we may further refine our predictions via analysis-
by-synthesis. Here we treat a network prediction as an ini-
tialization of a sampling algorithm, for which we use Gibbs
sampling in this paper. In each iteration of sampling, we
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draw a new sample of the latent representation, render it,
and compare the reconstruction with the original image. We
sample from a uniform distribution for discrete variables,
and from a Gaussian distribution with the initialization as
its mean for continuous variables. We run 10 iterations of
sampling. Experiments demonstrate that this helps to obtain
a more accurate explanation of images. The refinement helps
to lower reconstruction error, but often only if most proper-
ties have already been inferred correctly. This makes it good
for final fine-tuning, while the main de-rendering framework
recovers most information.

Training Details Throughout our experiments, we use
SGD for optimization, and set our batch size to 50, learning
rate to 0.001, momentum to 0.9, and weight decay rate to
10−4. We implement our framework in Torch [5].

4. Evaluations

We now present evaluation results. We start by describing
the experimental setup; we then show how our framework
performs on scene de-rendering with two different renderers,
one used in the Abstract Scene dataset [39], and the other
used in Minecraft. We also explain how we build a new
Minecraft image dataset, of which Figure 7 shows samples.

4.1. Setup

Methods As described in Section 3, our model uses seg-
ment proposals with REINFORCE and analysis-by-synthesis
refinement. We first compare our full neural scene de-
rendering framework (NSD full) with four simplified ones as
an ablation study to reveal how each component contribute
to the results. The first two are our framework trained with-
out either analysis-by-synthesis or REINFORCE, one using
box proposals (box) and the other using segment proposals
(seg). The third is is our segment-based model with only
REINFORCE but not analysis-by-synthesis (seg+). The last
is our framework in a semi-supervision setting (semi): we
first train it using losses in both spaces on 10% randomly
sampled training images with labels, and then fine-tune it on
the entire training set, but using only the reconstruction loss
without any labels of latent representations.

We also compare with two other frameworks: a tradi-
tional CNN with a fixed number of dimensions for the latent
representation, and an end-to-end CNN+LSTM that aims to
encode the image and then to sequentially explain objects
from the encoding. Specifically,

• CNN: Our CNN baseline assumes there are no more
than X objects in an image, and objects are ordered
by their category indices. For an input image, it thus
predicts an X × Y matrix, where Y is the dimension
of an object representation in scene XML. Here we use
an ResNet-18 model [12] without pre-training.

• CNN+LSTM: Our CNN+LSTM baseline is similar to
the captioning model from Karpathy et al. [19]. The

Figure 7: Images in our new Minecraft dataset. Objects in the

dataset vary in size, position, and pose, and may be heavily oc-

cluded or cropped.

CNN component, again a ResNet-18 [12], learns an
encoding of an input image; the recurrent net, which is
an LSTM [14] with a 256-dim latent vector, generates
objects sequentially from the image encoding. Here
objects are also ordered by their category indices.

Evaluation Criteria As discussed in Sections 1 and 3,
we would like to minimize both the error in representation
inference, and the error in image reconstruction. Note that
the reconstruction error, but not the inference error, puts an
emphasis on large objects. During evaluation, we compute
percentages of incorrectly inferred values in each of the
two spaces for every method. For continuous variables, we
quantize the space of each into 20 bins, we count an inferred
value as correct if it lies in the same bin as the ground truth.

We also conduct a human study, where we present each
test image and two reconstructions from different methods
to five subjects on Amazon Mechanical Turk, and ask them
which looks closer to the original. We then compute, for a
pair of methods, how likely one is “preferred” over the other.

4.2. De-rendering Abstract Scenes

Abstract scenes have been an emerging research topic in
computer vision [39], natural language processing [24], and
reasoning [31]. Rendering engines for abstract scenes are
usually efficient, yet still able to capture variations in object
appearance and occlusions. We hence choose to first explore
our scene de-rendering framework on abstract scenes.

Data We use the Abstract Scene dataset (V1.1), also
known as the Mike and Jenny dataset [39]. The dataset
contains 1,020 captions, each with 10 images, leading to a
total of 10,020 images. Each image has 3 to 18 objects. We
randomly sample 90% images for training, and use the rest
10% for testing. Objects are divided into 8 supercategories,
each of which contains up to 34 subcategories. These ob-
jects have varied appearance, size (determined by depth),
and pose; there are often heavy occlusions among them.

Scene XML To connect scene XML to the input for the
abstract scene graphics engine, we select the following
fields from the XML for each object: category (8-dim), sub-
category (34-dim), position (2-dim), depth (quantized into
3 bins), and whether the object faces left or right (1-dim).
Each object is therefore characterized by a 48-dim vector.
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Figure 8: Results on the Abstract Scene dataset. From left to right: (a) input images, and results of (b) the CNN model, (c) the

CNN+LSTM model, (d) our de-rendering framework with box proposals, (e) our framework with segment proposals, (f) same as (e) but

trained with REINFORCE, and (g) our full model with analysis-by-synthesis refinement on top of (f). See Section 4.1 for details of these

methods and Section 4.2 analyses of the results.

Abstract Scene Minecraft

Inference Recon Inference Recon

CNN 45.73 45.20 41.22 16.59
CNN+LSTM 45.31 41.38 43.52 20.22

NSD (box) 47.85 28.12 32.20 11.42
NSD (seg) 44.19 23.76 32.11 7.71
NSD (seg+) 45.09 22.44 28.79 5.73

NSD (semi) 45.22 21.96 30.05 7.62
NSD (full) 42.74 21.55 26.41 5.05

Table 1: Quantitative results. We show percentages (%) of in-

correctly inferred representation values and reconstructed pixels,

for both the Abstract Scene dataset and the Minecraft dataset. We

compare methods explained in Section 4.1 and evaluated in Fig-

ures 8 and 9, and also a variant of our framework trained in a

semi-supervised way. Our full model performs the best, while each

component contributes to it.

Results Figure 8 shows qualitative results. The CNN and
CNN+LSTM baseline can capture some basic concepts (for
example, there is a boy and a girl in the image), but can
hardly go beyond those (Figure 8b and c). In contrast, the
framework based on box proposals learns to decode most of
the objects, though small objects, such as the grill in the first
row, are likely to be left out (Figure 8d). Segment proposals
help to reconstruct a complete set of objects (Figure 8e), but
sometimes with duplicates. This issue gets mostly resolved
with REINFORCE (Figure 8f). Analysis-by-synthesis fur-

Abstract Scene Minecraft

CNN+LSTM NSD (seg) CNN+LSTM NSD (seg)

NSD (seg) 87.2 50.0 57.8 50.0
NSD (full) 96.6 68.6 59.6 53.4

Table 2: Human study results. Subjects see the original image

and two reconstructed images from different methods. We show

percentages (%) of how likely they prefer the left method to the top.

We compare three different methods: CNN+LSTM, our framework

with segment proposals (NSD seg), and our full model (NSD full).

Our full model performs the best consistently. Margins are smaller

on the Minecraft dataset because all algorithms perform better.

ther helps to correct minor deviations (Figure 8g).

We show quantitative results on Table 1. As expected, our
full model outperforms the others by a margin in both the
space of latent representations and the space of reconstructed
images. Also, each component in the framework (segment
proposals, REINFORCE, and analysis-by-synthesis) con-
tributes to the performance. Our semi-supervised model
performs almost equally well with the fully supervised one.

Table 2 shows results of the human study described in
Section 4.1, where we compare three methods: CNN+LSTM,
our segment-based framework (NSD seg), and our full model
with REINFORCE and analysis-by-synthesis (NSD full).
The majority of human subjects also prefer our full model to
the one using segment proposals only, while both are better
than the CNN+LSTM baseline.

704



Figure 9: Results on the Minecraft dataset. From left to right:

(a) input images, and results of (b) the CNN+LSTM model, (c)

our de-rendering framework with segment proposals, and (d) our

full model with REINFORCE and analysis-by-synthesis. See Sec-

tion 4.1 for details of these methods and Section 4.3 for analyses.

4.3. De-rendering Minecraft

Minecraft is a popular game where a player controls an
agent to interact with a virtual 3D environment. Compared to
the Abstract Scene dataset, which is mostly in the 2D space
with limited depth information, the Minecraft environment is
more realistic for its 3D rendering engine, and its modeling
of lighting, shading, and physics to some extent.

Data We introduce a new dataset of Minecraft images
using Malmo [18], which allows users to interact with
Minecraft by perceiving the environment and sending com-
mands. Our dataset contains 10,000 images, each consisting
of 3 to 5 objects. These objects are from a set of 12 enti-
ties: pigs, cows, sheep, chicken, wolves, horses, villagers,
armor stands, boats, minecarts, and two types of trees. This
includes all entities available in Malmo that humans are
familiar with (i.e., we exclude entities like monsters).

For each object, we uniformly randomly sample its posi-
tion and pose. Object positions are represented by r and θ
in a polar coordinate system, where the player stands at the
origin. Some objects also have their height as an attribute.
We do not consider flying or floating objects at this moment,
and we set the daytime to noon so that the sun is top in the
sky. We then convert the position of each object to {x, y, z}
in the 3D space (round to 0.1) for Malmo to obtain the image
rendered by the Minecraft graphics engine.

Scene XML To connect the scene XML to the Minecraft
rendering engine, we select the following fields for each
object: category (12-dim), position in the 2D plane (2-dim,
{r, θ}), height (1-dim), and rotation (3-dim for yaw, pitch,
and roll). Each object is thus encoded as a 18-dim vector.

Results Figure 9 and Tables 1 and 2 show qualitative and
quantitative results, respectively. Observations here are sim-
ilar to those in Section 4.2 for the Abstract Scene dataset.

Figure 10: Results on image editing. Given an image, we can

modify the position, pose, and category of objects with the inferred

representation and the graphics engine.

Figure 11: Results on inpainting. Our framework performs well,

though it fails for almost fully occluded objects or parts. In the

future, we may include context modeling to possibly correct some

of the errors (e.g., the girl in the first row, when facing a bear,

should be surprised or afraid, not happy).

Our full model outperforms the others by obtaining more
accurate latent representations and reconstructions.

5. Applications

Our learned representation has extensive applications due
to its expressiveness and interpretability. We demonstrate ex-
emplars in image editing, inpainting, visual analogy-making,
and image captioning. Our framework obtains good perfor-
mance in these seemingly irrelevant tasks.

Image Editing Given an image, we can easily make
changes to it once we recover its interpretable latent rep-
resentation. For instance, we show in Figure 10 that we can
change the position, pose, and category of an object.

Inpainting Our framework can recover the original im-
age from a corrupted one (Figure 11), even when objects
are heavily cropped, e.g., the trees in the second row. As
expected, our framework fails to recover objects that are
missing entirely from input, such as the girl’s facial expres-
sion at the top, and the chicken at the bottom. In the future,
we may incorporate context modeling to alleviate this issue.

Visual Analogy-Making Visual analogy-making [25], or
visalogy [28], is an emerging research topic in AI and vision.
A typical setting is to give a system a pair of images A and
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Figure 12: Results on visual analogy-making. Given a pair of

reference images and a query, our framework can make analogies

based on the position and pose of an object (top), and on the number

of objects (bottom). See text for details.

A′ and an additional source image B, and ask for an analogy
B′. While previous works looked into learning analogies
between objects, we study the problem of making scene
analogies involving multiple objects.

We consider a principled formulation for this seemingly
ambiguous problem. Given two image representations ZA

and ZA′ , we consider their minimum edit distance — the
minimum number of operations required to derive ZA′ from
ZA. We then apply these operations on ZB to get an analogy
ZB′ . The operations we consider are changing the pose,
position, and category of an object, duplicating or removing
an object, and swapping two objects.

Learning an expressive, interpretable, and disentangled
representation could be a well-fit solution to this problem.
We show results of depth first search (depth capped at 3)
on top of the representations reconstructed by our scene de-
rendering framework in Figure 12. It successfully makes
analogies with respect not only to the position and pose of
an object, but also to the number of objects in the image.

Image Captioning We explore to describe images from
our inferred latent representation instead of end-to-end learn-
ing. First, as the representation carries full knowledge of the
original image, we obtain some basic descriptions for free,
e.g., there is a happy boy at bottom-right, facing to the left.

For captions involving high-level semantic understanding,
we can build another model to map latent representations to
captions. We consider two pilot studies. First, we train a
seq2seq model [29] that reads an image representation, and
directly generates a caption. Its core is a 256-dim LSTM.
We compare with a CNN+LSTM model that reads a raw
image and generates a caption. We train both models on the
Abstract Scene dataset, sampling 90% captions and using the
corresponding images for training, and the rest for testing.

Alternatively, for a test image, we may find the training
image which has the minimum edit distance in the repre-
sentation space, and transfer its caption. We compare with
caption transfer from the nearest neighbor in pixel space.

Figure 13: Results on image captioning. Both LSTM and the

nearest neighbor method work better using the de-rendered repre-

sentations, compared to using raw pixels.

Figure 13 shows qualitative results, where both LSTM
and nearest neighbor perform better when using our dis-
tributed representations, compared to using raw pixels.

6. Discussion

It has been popular to use neural networks for both infer-
ence and synthesis in image understanding. Research in this
direction is fruitful and inspiring; however, current neural
approximate renderers are still unready for practical use. In
contrast, graphics engines have been rather mature, espe-
cially for virtual environments [10, 38]. We feel it could be
a promising direction to incorporate a black-box graphics en-
gine into a generalized encoding-decoding structure. Based
on this observation, in this paper we proposed a neural scene
de-rendering framework for image representation learning
and reconstruction.

We considered two simple yet rich graphics engines, and
proposed a new dataset based on Minecraft. Results proved
that our method performed well, and the learned representa-
tion has wide applications in a diverse set of vision tasks.

Extending our framework to real world images would
require a more flexible scene representation, beyond the
current object-attribute formulation, and a more powerful
graphics engine, as we assume access to an accurate ren-
derer. Alternatively, we may instead employ an approximate
renderer, or both, for scene synthesis and recognition via a
Helmholtz-style modeling of wake/sleep phases [7]. This
opens up the possibility of an extension to general cases,
even when the actual rendering function is not available.
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