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Abstract

Many machine learning models operate on images, but ignore the fact that images
are 2D projections formed by 3D geometry interacting with light, in a process
called rendering. Enabling ML models to understand image formation might be key
for generalization. However, due to an essential rasterization step involving discrete
assignment operations, rendering pipelines are non-differentiable and thus largely
inaccessible to gradient-based ML techniques. In this paper, we present DIB-R,
a differentiable rendering framework which allows gradients to be analytically
computed for all pixels in an image. Key to our approach is to view foreground
rasterization as a weighted interpolation of local properties and background rasteri-
zation as an distance-based aggregation of global geometry. Our approach allows
for accurate optimization over vertex positions, colors, normals, light directions
and texture coordinates through a variety of lighting models. We showcase our
approach in two ML applications: single-image 3D object prediction, and 3D
textured object generation, both trained using exclusively using 2D supervision.
Our project website is: https://nv-tlabs.github.io/DIB-R/

1 Introduction
3D visual perception contributes invaluable information when understanding and interacting with the
real world. However, the raw sensory input to both human and machine visual processing streams are
2D projections (images), formed by the complex interactions of 3D geometry with light. Enabling
machine learning models to understand the image formation process could facilitate disentanglement
of geometry from the lighting effects, which is key in achieving invariance and robustness.

The process of generating a 2D image from a 3D model is called rendering. Rendering is a well
understood process in graphics with different algorithms developed over the years. Making these
pipelines amenable to deep learning requires us to differentiate through them.

In [17], the authors introduced a differentiable ray tracer which builds on Monte Carlo ray tracing,
and can thus deal with secondary lighting effects such as shadows and indirect light. Most of
the existing work focuses on rasterization-based renderers, which, while simpler in nature as they
geometrically project 3D objects onto the image plane and cannot support more advanced lighting
effects, have been demonstrated to work well in a variety of ML applications such as single-image
3D prediction [22, 14, 20, 21]. Here, we follow this line of work.

Existing rasterization-based approaches typically compute approximate gradients [22, 14] which
impacts performance. Furthermore, current differentiable rasterizertion methods fail to support
differentiation with respect to many informative scene properties, such as textures and lighting,
leading to low fidelity rendering, and less informative learning signals [14, 20, 21] .
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In this paper, we present DIB-R, an approach to differentiable rendering, which, by viewing raster-
ization as a combination of local interpolation and global aggregation, allows for the gradients of
this process to be computed analytically over the entire image. When performing rasterization of a
foreground pixel, similar to [4], we define its value as a weighted interpolation of the relevant vertex
attributes of the foreground face which encloses it. To better capture shape and occlusion informa-
tion in learning settings we define the rasterization of background pixels through a distance-based
aggregation of global face information. With this definition the gradients of produced images can be
passed back through a variety of vertex shaders, and computed with respect to all influencing vertex
attributes such as positions, colors, texture, light; as well as camera positions. Our differentiable
rasterization’s design further permits the inclusion of several well known lighting models.

We wrap our DIB-R around a simple neural network in which the properties of an initial polygon
sphere are predicted with respect to some conditioning input. We showcase this framework in a
number of challenging machine learning applications focusing on 3D shape and texture recovery,
across which we achieve both numerical and visual state-of-the art results.

2 Related work
Differentiable Rasterization: OpenDR [22], the first in the series of differentiable rasterization-
based renderers, approximates gradients with respect to pixel positions using first-order Taylor
approximation, and uses automatic differentiation to back-propagate through the user-specified
forward rendering program. In this approach, gradients are non-zero only in a small band around the
edges of the mesh faces, which is bound to affect performance. [14] hand-designs an approximate
gradient definition for the movement of faces across image pixels. The use of approximated gradients,
and lack of full color information results in noisy 3D predictions, without concave surface features.
To analytically compute gradients, Paparazzi [18] and [19], propose to back-propagate the image
gradients to the face normals, and then pass them to vertex positions via chain rule. However, their
gradient computation is limited to a particular lighting model (Spherical Harmonics), and the use of
face normals further prevents their approach to be applied to smooth shading. [25] designs a C∞
smooth differetiable renderer for estimating 3D geometry, while neglecting lighting and texture. [31]
supports per-vertex color and approximates the gradient near boundary with blurring, which produces
wired effects and can not cover the full image. [11] focus on rendering of point cloud and adopts
a differentiable reprojection loss to constrain the distribution of predited point clouds, which loses
point connectivity and cannot handle texture and lighting.

SoftRas-Mesh recently proposed in [20] introduces a probabilistic formulation of rasterization, where
each pixel is softly assigned to all faces of the mesh. While inducing a higher computational cost, this
clever trick allows gradients to be computed analytically. Parallel to our work, SoftRas-Color [21]
extended this framework to incorporate vertex colors and support texture and lighting theoretically.
However, in [21] each pixel would be influenced by all the faces and thus might have blurry problem.
The key difference between the parallel work of [21] and ours is that, similarly to [4], we specify
each foreground pixel to the most front face and compute analytic gradients of foreground pixels by
viewing rasterization as interpolation of local mesh properties. This allows our rendering effect the
same as OpenGL pipeline and naturally supports optimization with respect to all vertex attributes,
and additionally enables the extension of our pipeline to a variety of different lighting models. In
contrast to [4], which also uses an interpolation-based approach, but applied to the entire image,
our rasterization module allows for soft assignment of background pixels through an aggregation of
global features.

Adverserial 3D Object Generation: Generation of 3D shapes through deep learning has been
approached using a Generative Adverserial Network (GAN) [5] in a plethora of work [39, 1, 37, 30].
While these approaches require full 3D supervision, differentiable rendering frameworks allow
learning 3D object distributions using only 2D supervision [10]. We showcase our model in the same
application, where we are the first to learn a generator for both shape and texture.

3 DIB-R: Differentiable Interpolation-based Renderer
In this section, we introduce our DIB-R. Treating foreground rasterization as an interpolation of
vertex attributes allows realistic images to be produced, whose gradients can be fully back-propagated
through all predicted vertex attributes, while defining background rasterization as an aggregation of
global information during learning allows for better understanding of shape and occlusion.
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3.1 Rendering Pipeline
Many popular rendering APIs, such as OpenGL [36] and DirectX3D [23], decompose the process of
rendering 3D scenes into a set of sequential user-defined programs, referred to as shaders. While
there exist many different shader types, the vertex, rasterization, and fragment shaders the three most
important steps for establishing a complete rendering pipeline. When rendering an image from a 3D
polygon mesh, first, the vertex shader projects each 3D vertex in the scene onto the defined 2D image
plane. Rasterization is then used to determine which pixels are covered and in what manner, by the
primitives these vertices define. Finally, the fragment shader computes how each pixel is colored by
the primitives which cover it.

The vertex and fragment shaders can easily be defined such that they are entirely differentiable. By
projecting 3D points onto the 2D image plane by multiplying with the corresponding 3D model, view
and projection matrices, the vertex shader operation is directly differentiable. In the fragment shader,
pixel colors are decided by a combination of local properties including assigned vertex colors, textures,
material properties, and lighting. While the processes through which this information are combined
can vary with respect to the chosen rendering model, in most cases this can be accomplished through
the application of fully differentiable arithmetic operations. All that remains for our rendering pipeline
is the rasterization shader, which presents the main challenge, due to the inherently non-differentiable
operations which it requires. In the following section we describe our method for rasterizing scenes
such that the derivatives of this operation can be analytically determined.

3.2 Differentiable Rasterization
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Figure 1: Illustration of
our Differentiable Rasteriza-
tion.

Consider first only the foreground pixels that are covered by one or more
faces. Here, in contrast to standard rendering, where a pixel’s value is
assigned from the closest face that covers it, we treat foreground rasteriza-
tion as an interpolation of vertex attributes[4]. For every foreground pixel
we perform a z-buffering test [6], and assign it to the closest covering
face. Each pixel is influenced exclusively by this face. Shown in Fig. 1,
a pixel at position ~pi is covered by face fj with three vertices ~v0, ~v1, ~v2,
and each vertex has its own attributes: u0, u1, u2, respectively. ~pi and ~vi
are 2D coordinates on the image plane while ui are scalars. We compute
the value of this pixel, Ii, using barycentric interpolation of the face’s
vertex attributes:

Ii = w0u0 + w1u1 + w2u2, (1)
where weights w0, w1 and w2 are calculated over the vertex and pixel positions using a differentiable
functions Ωk (provided in Appendix):

wk = Ωk(~v0, ~v1, ~v2, ~pi), k = 0, 1, 2. (2)
While barycentric interpolation has been widely used in OpenGL pipeline. Here, we derive the
differentiable reformulation. With this approach, it is easy to back-propagate gradients from a loss
function L, defined on the output image, through pixel value Ii to vertex attributes uk via chain rule:

∂Ii
∂uk

= wk,
∂Ii
∂~vk

=

2∑
m=0

∂Ii
∂wm

∂Ωm
∂~vk

, (3)

∂L

∂uk
=

N∑
i=1

∂L

∂Ii

∂Ii
∂uk

,
∂L

∂~vk
=

N∑
i=1

∂L

∂Ii

∂Ii
∂~vk

, (4)

where N is the number of pixels covered by the face. Now consider pixels which no faces cover,
which we refer to as background pixels. Notice that in the formulation above, the gradients from
background pixels cannot back-propagate to any mesh attributes. However, the background pixels
provide a strong constraint on the 3D shape, and thus the gradient from them provide a useful signal
when learning geometry. Take, for example, pixel pi′ at position ~pi′ which lies outside of face fj ,
in Fig 1. We want this pixel to still provide a useful learning signal. In addition, information from
occluded faces an entirely ignored despite their potential future influence.

Inspired by the silhouette rasterizetion of [20], we define a distance-related probability Aji′ , that softly
assigns face fj to pixel pi′ as:

Aji′ = exp(−d(pi′ , fj)

δ
), (5)
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where d(pi′ , fj) is the distance function from pixel pi′ to face fj in the projected 2D space, and δ is a
hyper-parameter that controls the smoothness of the probability (details provided in Appendix). We
then combine the probabilistic influence of all faces on a particular pixel in the following way:

Ai′ = 1−
n∏
j=1

(1−Aji′). (6)

where n is the number of all the faces. The combination of all Ai′ into their respective pixel positions
makes up our alpha channel prediction. With definition, any background pixel can pass its gradients
back to positions of all the faces (including those ignored in the foreground pixels due to occlusion)
with influence proportional to the distance between them in alpha channel. As all foreground pixels
have a minimum distance to some face of 0, they must receive an alpha value of 1, and so gradients
will only be passed back through the colour channels as defined above.

In summary, foreground pixels, which are covered by a specific face, back-propagate gradients though
interpolation while background pixels, which are not covered by any face, softly back propagate
gradients to all the faces based on distance. In this way, we can analytically determine the gradients
for all aspects of our rasterization process and have achieved a fully differentiable rendering pipeline.

3.3 Rendering Models
In Equation 1, we define pixel values Ii by the interpolation of abstract vertex attributes u0, u1 and
u2. As our renderer expects a mesh input, vertex position is naturally one such attribute, but we
also simultaneously support a large array of other vertex attributes as shown in the Appendix. In
the following section we outline the vertex attributes the rasterization can interpolate over and then
back-propagate through, and the rendering models which the support of these attributes allows. A
complete overview of this information is shown in Appendix.

3.3.1 Basic Models
Our DIB-R supports basic rendering models where we draw the image directly with either vertex
colors or texture. To define the basic colours of the mesh we support vertex attributes as either vertex
colour or u,v coordinates over a learned or predefined texture map. Pixel values are determined
through bi-linear interpolation of the vertex colours, or projected texture coordinates, respectively.

3.3.2 Lighting Models
We also support 3 different local illumination models: Phong [26], Lambertian [16] and Spherical
Harmonics [27], where the lighting effect is related to normal, light and eye directions.

To unify all the different lighting models, we decompose image color, I , into a combination of mesh
color Ic and lighting factors Il and Is:

I = IlIc + Is. (7)

Ic denotes the interpolated vertex colour or texture map values extracted directly from the vertex
attributes without any lighting effect, Il and Is donate the lighting factors decided by specific lighting
model chosen, where Il will be merged with mesh colour and Is is additional lighting effect that does
not rely on Ic. We first interpolate light-related attributes such as normals, light or eye directions in
rasterization, then apply different lighting models in our fragment shader.

Phong and Lambertian Models: In the Phong Model, image colour I is decided by vertex normals,
light directions, eye directions and material properties through the following equations:

Il = kd(~L · ~N), Is = ks(~R · ~V )α, (8)

where, kd, ks and α are: diffuse reflection, specular reflection, and shininess constants. ~L, ~N , ~V and
~R are directions of light, normal, eye and reflectance, respectively, which are all interpolated vertex
attributes. This results in the following definition for image colour under the Phong model:

IPhong = Ickd(~L · ~N) + ks(~R · ~V )α. (9)

As a slight simplification of full Phong shading we do not adopt ambient light and set light colour at
a constant value of 1. The Lambertian model can be viewed as a further simplification of the Phong
Model, where we only consider diffuse reflection, and set Is as zero:

ILambertian = Ickd(~L · ~N). (10)
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Figure 2: We perform a sanity check for our
DIB-R by running optimization over several mesh
attributes. We optimize w.r.t. different attributes
in different rendering models: (a,b) vertex posi-
tion and color in the vertex color rendering model,
(c,d) texture and texture coordinates in the texture
rendering model, (e,f) vertex and camera position
in Lambertian model, (g) lighting in the Spherical
Harmonic model, (h) material in the Phong model.

Spherical Harmonic Model: Here, Il is determined by normals while Is is set to 0:

ISphericalHarmonic = Ic

n−1∑
l=0

l∑
m=−l

wml Y
m
l ( ~N), (11)

where Y lm is an orthonormal basis for spherical functions analogous to a Fourier series where l is
the frequency and wml is the corresponding coefficient for the specific basis. To be specific, we set l
as 3 and thus predict 9 coefficients in total. By adjusting different wml , different lighting effects are
simulated. For more details please refer to [27], Section 2.
Optimization Results. The design of our differentiable renderer allows for optimization over all
defined vertex attributes and a variety of rendering models, which we perform a sanity check for in
Fig. 2. Here, we optimize the L-1 loss between the target images (second row) and predicted rendered
images. Note that [17] should be strictly better than us since it supports ray tracing. However, among
rasterization-based renderers we are the first to support optimization of all vertex attributes.

4 Applications of DIB-R
We demonstrate the effectiveness of our framework through three challenging ML applications.

4.1 Predicting 3D Objects from Single Images
Geometry and color: We first apply our approach to the task of predicting a 3D mesh from a
single image using only 2D supervision. Taking as input a single RGBA image, with RGB values
I and alpha values S, a Convolutional Neural Network F , parameterized by learnable weights θ,
predicts the position and color value for each vertex in a mesh with a specified topology (sphere in
our case). We then use a renderer R (specified by shader functions Θ) to render the mesh predicted by
F (I, S; θ) to a 2D silhouette S̃ and the colored image Ĩ . This prediction pipeline and the architecture
details for our mesh prediction network F are provided in Appendix.

When training this system we separate our losses with respect to the silhouette prediction, S̃, and the
color prediction, Ĩ . We use an Intersection-Over-Union (IOU) loss for the silhouette prediction2:

LIOU (θ) = EI

[
1− ||S � S̃||1
||S + S̃ − S � S̃||1

]
, (12)

where � denotes element-wise product. Note that {Ĩ , S̃} = R(F (I, S; θ)) depend on the network’s
parameters θ via our DIB-R. We further use an L-1 loss for the colored image:

Lcol(θ) = EI

[
||I − Ĩ||1

]
. (13)

When rendering our predicted mesh, we not only use the ground truth camera positions and compare
against the original image, but also render from a random second view and compare against the
ground truth renderings from this new view [14, 20]. This multi-view loss ensures that the network
does not only concentrate on the mesh properties in the known perspective. We also regularize
the mesh prediction with a smoothness loss [14, 20], Lsm, and a Laplacian loss [20, 29, 33], Llap,
which penalize the difference in normals for neighboring faces and the change in relative positions of
neighboring vertices, respectively. The full explanation of these regularizers is provided in Appendix.
The final loss function is then a weighted sum of these four losses:

L1 = LIOU + λcolLcol + λsmLsm + λlapLlap. (14)

2We denote EI , EI∼pdata(I)
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Figure 3: Full architecture of our ap-
proach. Given an input image, we predict ge-
ometry, texture and lighting. During training
we render the prediction with a known cam-
era. We use 2D image loss between input
image and rendered prediction to to train our
prediction networks. Note that the prediction
can vary in different rendering models, e.g.
texture can be vertex color or a texture map
while the lighting can be Lambertian, Phong
or Spherical Harmonics.

Geometry, Texture, and Light. We next apply our method to an extension of the previous task,
where a texture map is predicted instead of vertex colors, and lighting parameters are regressed
to produce higher quality mesh predictions. Our neural network F is modified to predict vertex
positions, a texture map, and various lighting information, depending on the lighting model used. Our
full learning pipeline is shown in Fig. 3 and more details are included in the Appendix. We apply the
same losses as in the previous section.

To increase the photo-realism of our predictions, we also leverage an adversarial framework [5, 24].
This is accomplished by training a discriminator network, D(φ), to differentiate between real images,
I , and rendered mesh predictions, Ĩ , while our prediction network, F , simultaneously learns to make
these predictions. We adopt the W-GAN [2] loss formulation with gradient penalty as in [7]:

Ladv(θ, φ) = EI

[
D(I;φ)−D(Ĩ;φ)

]
, Lgp(φ) = EĨ

[
(||∇ĨD(Ĩ;φ)||2 − 1)2

]
. (15)

Similar to [12, 34, 40], we additionally use a perceptual loss and discriminator feature matching loss
to make training more stable:

Lpercep(φ) = EI

[
MV∑
i=1

1

NV
i

||V i(I)− V i(Ĩ)||1 +

MD∑
i=1

1

ND
i

||Di(I;φ)−Di(Ĩ;φ)||1

]
, (16)

where V i denotes the i-th layer of a pre-trained VGG network, V , with NV
i elements, Di denotes

the i-th layer in the discriminator D with ND
i elements, and the numbers of layers in network V and

D are MV and MD, respectively. Our full objective function for this task is then:

θ∗, φ∗ = arg min
θ

(
arg max

φ
(λadvLadv − λgpLgp) + λperLpercep + L1

)
. (17)

4.2 3D GAN of Textured Shapes via 2D supervision
In our second application, we further demonstrate the power of our method by training a Generative
Adversarial Network (GAN) [5] to produce 3D textured shapes using only 2D supervision. We train
a network FGAN to predict vertex positions and a texture map, and exploit a discriminator D(φ)I to
differentiate between real images, and rendered predictions. The network FGAN is modified so as to
take normally distributed noise as input, in place of an image.

While empirically the above GAN is able to recover accurate shapes, it fails to produce meaningful
textures. We suspect that disentangling both shape and texture by an image-based discriminator is
a hard learning task. To facilitate texture modeling, we train a second discriminator D(σ)t, which
operates over texture map predictions. However, as our dataset does not contain true texture maps
which can be mapped onto a deformed sphere, for ground truth textures we instead use the textures
produced from our network trained to predict texture and lighting from images (Sec 4.1). To produce
these texture maps, we pass every image in our training set through our texture and lighting prediction
network, and extract the predicted texture. Our second discriminator then learns to differentiate
between textures generated by FGAN , and the extracted learned textures. We train FGAN via W-GAN
with gradient penalty [7], and use both discriminators to provide a learning signal.

5 Experiments
Dataset: As in [14, 20, 33], our dataset comprises 13 object categories from the ShapeNet
dataset [3]. We use the same split of objects into our training and test set as [33]. We render each
model from 24 different views to create our dataset of RGB images used for 2D supervision. To
demonstrate the multiple rendering models which DIB-R supports, we render each image with 4
different rendering models: 1) basic model without lighting effects, 2) with Lambertian reflectance, 3)
with Phong shading, and 4) with Spherical Harmonics. Further details are provided in the Appendix.
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Table 1: Results on single image 3D object prediction reported with 3D IOU (%) / F-score (%).
Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

N3MR [14] 58.5/80.6 45.7/55.3 74.1/46.3 71.3/53.3 41.4/39.1 55.5/43.8 36.7/46.4 67.4/35.0 55.7/83.6 60.2/39.2 39.1/46.9 76.2/74.2 59.4/66.9 57.0/54.7
SoftR. [20] 58.4/71.9 44.9/49.9 73.6/41.5 77.1/51.1 49.7/40.8 54.7/41.7 39.1/39.1 68.4/29.8 62.0/82.8 63.6/39.3 45.3/37.1 75.5/68.6 58.9/55.4 59.3/49.9

Ours 57.0/75.7 49.8/55.6 76.3/52.2 78.8/53.6 52.7/44.7 58.8/46.4 40.3/45.9 72.6/38.8 56.1/82.0 67.7/43.1 50.8/51.5 74.3/73.3 60.9/63.2 61.2/55.8

Figure 4: Qualitative results on single image 3D object prediction. First and fifth column is the ground-truth
image, the second and sixth columns are the prediction from our model, the third and seventh column are results
from SoftRas-Mesh [20], the rest two columns are results from N3MR [14].

Figure 5: Qualitative examples for 3D shape, texture and light prediction. Col. 1-3: 1) GT rendered image with
texture+light, 2) texture only rendered image, 3) light map. Col 4-6: our predictions. Col: 7-9: N3MR [14]

5.1 Predicting 3D Objects from Single Images: Geometry and Color
Experimental settings: In our experiments, we set λcol = 1, λsm = 0.001, and λlap = 0.01. We
train one network on all 13 categories. The network is optimized using the Adam optimizer [15],
with α = 0.0001, β1 = 0.9, and β2 = 0.999. The batch size is 64, and the dimension of input
image is 64 × 64. We compare our method with the two most related differentiable renderers,
N3MR [14] and SoftRas-Mesh [20], using the same network configurations, training data split and
hyperparameters. For quantitative comparison, we first voxelize the predicted mesh into 323 volume
using a standard voxelization tool binvox3 provided by ShapeNet [3] and then evaluate using 3D
IOU, a standard metric in 3D reconstruction. We additionally measure the F-score following [32]
between the predicted mesh and ground truth mesh. The tolerance for F-score is set to 0.02.

Results: Table 1 provides an evaluation. Our DIB-R significantly outperforms other methods,
in almost all categories on both metrics. We surpass SoftRas-Mesh/N3MR with 1.92/4.23 points
and 5.98/1.23 points in terms of 3D IOU and F-score, respectively. As the only difference in this
experiment is the renderer, the quantitative results demonstrate the superior performance of our
method. Qualitative examples are shown in Fig 4. Our DIB-R faithfully reconstructs both the
fine-detailed color and the geometry of the 3D shape, compared to SoftRas-Mesh and N3MR.

5.2 Predicting 3D Objects from Single Images: Geometry, Texture and Light
Experimental settings: We adopt a UNet [28] architecture to predict texture maps. As we deform a
mesh from a sphere template, similar to [13], we use 2D spherical coordinates as the UV coordinates.
The dimension of the input image and predicted texture is 256× 256. We use a 6-layer ResNet [9]
architecture to regress the XYZ directions of light at each vertex from the features at the bottleneck
layer of UNet network. We only use the Lambertian model and qualitatively compare with N3MR [14]
by measuring the reconstruction error on rendered images under identical settings. Note that SoftRas-
Mesh [20] does not support texture and lighting and so no comparison can be made. In the following
sections, we only perform experiments on the car class, which has more diverse texture.

Results: We provide results in Table 2 and Fig 5. As ShapeNet does not provide ground-
truth UV texture, we compute the L-1 difference on the rendered image using the predicted tex-
ture/texture+lighting and the GT image. Compared to N3MR [14], we achieve significantly better
results both quantitatively and qualitatively. We obtain about 40% lower L-1 difference on texture
and 60% smaller angle difference on lighting direction than N3MR. We also obtain significantly
better visual results, in terms of the shape, texture and lighting, as shown in Fig 5 and the Appendix.

3http://www.patrickmin.com/binvox/

Models Texture Lighting Text. + Light

N3MR [14] 0.03640 23.5585 0.02208
Ours 0.02179 9.7096 0.01362

Table 2: Results for texture and light prediction. Tex-
ture/Texture+Light shows L-1 loss on the rendered image
for texture/texture+lighting. Lighting shows the angle be-
tween predicted lighting and GT lighting. Lower is better.
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Figure 6: Qualitative examples for 3D shape, texture and light prediction, when exploiting adverserial loss.
Purple rectangle: Input image. Left Example: Phong Lighting. Right Example: Spherical Harmonics. First
col: Texture and Light. Second col: Texture. Third col: Light. Forth to Sixth col: Texture; different views.
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Figure 7: Light & Texture Separation Study. Purple rectangle: Input image, which are rendered with the same
car model but different lighting directions. Each three columns visualize Texture + Light, Texture, Light.
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Figure 8: Light & Texture Separation Study. Purple rect: Input image. Left: Input images are with same light
and texture but vary views. Right: Input images are with the same texture but with different shininess constants.

5.3 Texture and Lighting Results With Adversarial Loss

We now evaluate the effect of adding the adverserial loss to the previous experiment. We demonstrate
our DIB-Render with Phong and Spherical Harmonic lighting models. For Phong model we keep
diffuse and specular reflectance constant as 1 and 0.4 respectively and predict lighting direction
together with shininess constant α while for Spherical Harmonic model we predict 9 coefficients.

Experimental settings: We first train the model without adversarial loss for 50000 iterations then
fine-tune it with adversarial loss for extra 15000 steps. The detailed network architecture is provided
in the Appendix. We set λadv = 0.5, λgp = 0.5, and λper = 1. We fix the learning rate for the
discriminator to 1e−5 and optimize using Adam [15], with α = 0.0001, β1 = 0.5, and β2 = 0.999.

Qualitative Results and Separation Study: We show qualitative results in Fig. 6. Notice that the
network disentangles texture and light quite well, and produces accurate 3D shape. Furthermore, the
adverserial loss helps in making the predicted texture look more crisp compared to Fig 5.

To further study texture and light disentanglement, we render test input images with the same car
model but vary the lighting direction (Fig. 7). Our predictions recover the shape, texture map and
lighting directions. Further examples are provided in Fig. 8. On the left, we fix the lighting and
texture but render the car in different camera views, to illustrate consistency of prediction across
viewpoints. On the right of the figure, we render images with different shininess constants, but fixed
lighting direction, texture and camera view. Here, we find that our model is not able to accurately
predict the shininess constant. In this case, the texture map erroneously compensates for the shininess
effect. This might be because the shininess effect is not significant enough to be learned by a neural
network though 2D supervision. We hope to resolve this issue in future work.

Models Texture 2D IOU Key Point

CMR [13] 0.043 0.262 0.930
Ours 0.043 0.243 0.972

Table 3: Results on CUB bird dataset [35]. Texture and
2D IOU show L-1 loss and 2D IOU loss between predic-
tions and GT, lower is better. Key point evaluates percent-
age of predicted key points lying in the threshold of 0.1,
higher is better.
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input ours CMR input ours CMR input ours CMR
Figure 9: Qualitative examples on CUBbird dataset [35] and PASCAL3D+ Car dataset [38]

Figure 10: Samples from our 3D GAN trained on car images, from 2 viewpoints (shown in each column).

Figure 11: Renderings of objects produced by interpolating between latent codes of our 3D GAN, from 2 views

5.4 Real Images

Experimental settings: We next test our method on real images. Since real images generally do
not have multiview captures for the same object, it would be very hard to infer precise light because
light and texture would be entangled together. Following CMR [13], we adopt CUB bird dataset [35]
and PASCAL3D+ car dataset [38], predicting shape and texture from a single view image.

Results: We compare our method with CMR [13]. Instead of predicting texture flow, we predict
texture map directly. Both two methods use GT cameras estimated from structure from motion. Table
3 provides quantitative evaluation of predicted texture and shape on CUB bird dataset. Our show
better shape and key points predictions than CMR. While the loss of texture predictions are the same,
Fig. 9 shows qualitative improvements our method provides. Our textures are of higher fidelity and
more realistic. This is because we predict a whole image as the texture map while CMR [13] adopts
N3MR [14], which uses face color as the texture and so the restricted face size results in blurriness.
For car prediction, both two methods clearly posses poor artifacts. This is because the segmentation
in PASCAL3D+ car dataset is estimated from Mask R-CNN [8], which is not perfect. In addition, the
car textures have more details than birds, which make it very hard to learn good shape and texture.
Despite these facts, the visual quality our of predictions continues to display a marked improvement.

5.5 3D GAN of Textured Shapes via 2D Supervision

Experimental settings: We first train the networks to only predict shape, by only passing gradients
back through the silhouette prediction. We then fix the shape prediction and only train to produce
textures. We perform this experiment on the car class. Images from 4 primary views are rendered for
each predicted mesh in each training iteration, and concatenated together when passed to rendered
image discriminator to force generation of objects in a canonical pose.

Results: We show the results of randomly sampling from our learned distribution of car shapes and
textures in Fig 10. This figure demonstrates the high quality of of shape and texture generations, in
addition to their diversity. We also show the result of rendering meshes produced from interpolation
between latent codes in Fig 11, to demonstrate the robust nature of our learned distribution.

6 Conclusion
In this paper, we proposed a complete rasterization-based differentiable renderer for which gradients
can be computed analytically. Our framework, when wrapped around a neural network, learns to
predict shape, texture, and light from single images. We further showcase our framework to learn a
generator of 3D textured shapes.
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