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Probability theory plays a central role in information theory. Information sources and com-
munications channels are modelled probabilistically, and the key measures of information
theory (like entropy and channel capacity) are defined in terms of the underlying random
variables. The student of information theory is expected to have some familiarity with prob-
ability and the theory of random variables. In some cases, however, these ideas may not
be as fresh in the student’s memory as they could be. This set of notes is intended as an
informal refresher of the basic notions of discrete probability, with an emphasis on those
ideas that are needed in the study of information theory. Of course, a more formal and
complete development can be found in most undergraduate or graduate texts on probability
and random variables (e.g., [1, 2]).

1 Discrete Random Variables

A discrete random variable is used to model a “random experiment” with a finite or countable
number of possible outcomes. For example, the outcome resulting from the toss of a coin,
the roll of a die, or a count of the number of the telephone call attempts made during a given
hour can all be modelled as discrete random variables.

The set of all possible outcomes is called the sample space, or range, or alphabet of the
random variable in question. Here, “discrete” means that the sample space S is finite or
countable, i.e., S can be placed into a one-to-one correspondence with a subset of the integers.
For example, a coin toss has sample space {heads, tails}; a regular die roll has sample space
{ q ,

q q, q qq ,
q qq q

, qq qq q
, q qq qq q}; a count of telephone call attempts has sample space {0, 1, 2, . . .}. This

latter sample space is infinite, but still countable. It contains some very large numbers (like
1099). While one may argue that the occurrence of such a large number of telephone call
attempts is absurd, we find it convenient to include such outcomes. Later we can assign a
vanishingly small (or even zero) probability to the absurd outcomes.
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Let X be a random variable with sample space SX . A probability mass function (pmf) for
X is a mapping

pX : SX → [0, 1]

from SX to the closed unit interval [0, 1] satisfying∑
x∈S

pX(x) = 1.

The number pX(x) is the probability that the outcome of the given random experiment is x,
i.e.,

pX(x) := P [X = x].

Example. A Bernoulli random variable X has sample space SX = {0, 1}. The pmf is{
pX(0) = 1− p,
pX(1) = p

, 0 ≤ p ≤ 1.

The sum of N independent1 Bernoulli random variables, Y =
∑N

i=1 Xi has SY = {0, 1, . . . , N}.
The pmf for Y is

pY (k) =

(
N

k

)
pk(1− p)N−k, k ∈ SY .

This represents the probability of having exactly k heads in N independent coin tosses, where
P [heads] = p.

Some Notation:

To avoid excessive use of subscripts, we will identify the a random variable by the letter used
in the argument of its probability mass function, i.e., we will use the convention

pX(x) ≡ p(x)

pY (y) ≡ p(y).

Strictly speaking this is ambiguous, since the same symbol ‘p’ is used to identify two different
probability mass functions; however, no confusion should arise with this notation, and we
can always make use of subscripts to avoid ambiguity if necessary.

2 Vector Random Variables

Often the elements of the sample space SX of a random variable X are real numbers, in
which case X is a (real) scalar random variable. If the elements of SX are vectors of real
numbers, then X is a (real) vector random variable.

Suppose Z is a vector random variable with a sample space in which each element has has
two components (X,Y ), i.e.,

SZ = {z1, z2, . . .}
= {(x1, y1), (x2, y2), . . .}.

1Independence is defined formally later.
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The projection of SZ on its first coordinate is

SX = {x : for some y, (x, y) ∈ SZ}.

Similarly, the projection of SZ on its second coordinate is

SY = {y : for some x, (x, y) ∈ SZ}.

Example. If Z = (X, Y ) and SZ = {(0, 0), (1, 0), (1, 1)}, then SX = SY = {0, 1}.
In general, if Z = (X,Y ), then

SZ ⊆ SX × SY , (1)

where
SX × SY = {(x, y) : x ∈ SX , y ∈ SY }

is the Cartesian product of SX and SY . In general the containment relation (1) is strict, i.e.,
SZ 6= SX ×SY . However, we can always define a new random variable Z ′ having the sample
space SZ′ = SX ×SY . The sample space SZ′ is said to be in product form. The pmf of Z can
be extended to a pmf for Z ′ by assigning zero probability to any events in SZ′ that do not
appear in SZ . The random variable Z ′ will be indistinguishable from the random variable Z.
Thus we can always assume that a vector random variable Z = (X, Y ) has a sample space
in product form. This argument is easily extended to vector random variables having more
than two components.

A vector random variable Z = (X, Y ) can be thought of as a combination of two random
variables X and Y . The pmf for Z is also called the joint pmf for X and Y , and is denoted

pZ(x, y) = pX,Y (x, y)

= P [Z = (x, y)]

= P [X = x, Y = y]

where the comma in the last equation denotes a logical ‘AND’ operation.

From pX,Y (x, y) we can find pX(x):

pX(x) ≡ p(x) =
∑

y∈SY

pX,Y (x, y);

similarly,
pY (y) ≡ p(y) =

∑
x∈SX

pX,Y (x, y).

These probability mass functions are usually referred to as the marginal pmfs associated
with vector random variable (X, Y ).

Some More Notation:

Again, to avoid the excessive use of subscripts, we will use the convention

pX,Y (x, y) ≡ p(x, y).
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3 Events

An event A is a subset of the discrete sample space S. The probability of the event A is

P [A] = P [some outcome contained in A occurs]

=
∑
x∈A

p(x).

In particular,

P [S] =
∑
x∈S

p(x) = 1

P [φ] =
∑
x∈φ

p(x) = 0,

where φ is the empty (or null) event.

Example. A fair coin is tossed N times, and A is the event that an even number of heads
occurs. Then

P [A] =
N∑

k=0

k even

P [exactly k heads occurs]

=
N∑

k=0

k even

(
N

k

)
(
1

2
)k(

1

2
)N−k

= (
1

2
)N

N∑
k=0

k even

(
N

k

)

=
2N−1

2N
=

1

2
.

4 Conditional Probability

Let A and B be events, with P [A] > 0. The conditional probability of B, given that A
occurred, is

P [B|A] =
P [A ∩B]

P [A]
.

Thus, P [A|A] = 1, and P [B|A] = 0 if A ∩B = φ.

Also, if Z = (X, Y ) and pX(xk) > 0, then

pY |X(yj|xk) = P [Y = yj|X = xk]

=
P [X = xk, Y = yj]

P [X = xk]

=
pX,Y (xk, yj)

pX(xk)
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The random variables X and Y are independent if

∀(x, y) ∈ SX,Y (pX,Y (x, y) = pX(x)pY (y)) .

If X and Y are independent, then

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
=

pX(x)pY (y)

pY (Y )
= pX(x),

and

pY |X(y|x) =
pX,Y (x, y)

pX(x)
=

pX(x)pY (y)

pX(X)
= pY (y),

i.e., knowledge of X does not affect the statistics of Y , and vice versa. As we will see later
in the course, if X and Y are independent, then X provides no information about Y and
vice-versa.

More generally, n random variables X1, . . . , Xn are independent if their joint probability
mass function factors as a product of marginals, i.e., if

pX1,...,Xn(x1, . . . , xn) =
n∏

i=1

pXi
(xi)

for all possible values x1, x2, . . . , xn. A collection X1, . . . , Xn of random variables is said to
be i.i.d. (independent, identically distributed) if they are independent and if the marginal
pmfs are all the same, i.e., if pXi

= pXj
for i and j.

Still More Notation:

Again, we’ll avoid subscripts, and use the notation

pY |X(y|x) ≡ p(y|x).

In the simplified notation, p(y|x) = p(x, y)/p(x) and p(x|y) = p(x, y)/p(y). Similarly, in this
notation, if X1, . . . , Xn is a collection of independent random variables, the joint probability
mass function p(x1, . . . , xn) factors as

p(x1, . . . , xn) =
n∏

i=1

p(xi).

5 Expected Value

If X is a random variable, the expected value (or mean) of X, denoted E[X], is

E[X] =
∑

x∈SX

xpX(x).

The expected value of the random variable g(X) is

E[g(X)] =
∑

x∈SX

g(x)pX(x).
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In particular, E[Xn], for n a positive integer, is the nth moment of X. Thus the expected
value of X is the first moment of X. The variance of X, defined as the second moment of
X −E[X], can be computed as VAR[X] = E[X2]−E[X]2. The variance is a measure of the
“spread” of a random variable about its mean. Note that for any constant a, E[aX] = aE[X]
and VAR[aX] = a2VAR[X].

The correlation between two random variables X and Y is the expected value of their
product, i.e., E[XY ]. If E[XY ] = E[X]E[Y ], then X and Y are said to be uncorrelated.
Clearly if X and Y are independent, then they are uncorrelated, but the converse is not
necessarily true.

If X1, X2, . . . , Xn is any sequence of random variables, then

E[X1 + X2 + . . . + Xn] = E[X1] + E[X2] + · · ·+ E[Xn],

i.e., the expected value of a sum of random variables is the sum of their expected values. If,
in addition, X1, X2, . . . , Xn are pairwise uncorrelated, then the additive property holds also
for the variance, i.e.,

VAR[X1 + X2 + · · ·+ Xn] = VAR[X1] + VAR[X2] + · · ·+ VAR[Xn].

6 The Markov and Chebyshev Inequalities

If X is a random-variable taking on non-negative values only and having expected value
E[X], then, for every value a > 0,

P [X ≥ a] ≤ E[X]

a
,

a result known as Markov’s Inequality. This result can be derived from the following chain
of inequalities. We have

E[X] =
∑
x≥0

xp(x) =
∑

0≤x<a

xp(x) +
∑
x≥a

xp(x)

≥
∑
x≥a

xp(x)

≥
∑
x≥a

ap(x)

= aP [X ≥ a]

Now if X is any random variable, then Y = (X − E[X])2 is a random variable taking on
non-negative values only, and hence Markov’s Inequality applies. Take a = k2 for some
positive value k, we find

P [Y ≥ k2] = P [(X − E[X])2 ≥ k2] = P [|X − E[X]| ≥ k] ≤ VAR[X]

k2
,

a result known as Chebyshev’s Inequality.

6



7 The Weak Law of Large Numbers

Let X1, X2, . . . , be an i.i.d. sequence of random variables with mean m and finite variance
σ2. Suppose we observe the first n of these variables. An estimator for the mean m is then

Mn =
1

n

n∑
i=1

Xi.

As the following theorem shows, if n is sufficiently large, then with high probability Mn is
close to the mean m.

Theorem 1 (The Weak Law of Large Numbers) For all ε > 0 and all δ > 0 there
exists a positive integer n0 such that for all n ≥ n0,

P [|Mn −m| ≥ ε] ≤ δ.

Proof: Note that Mn is a random variable with mean m and variance σ2/n. It follows from
Chebyshev’s Inequality that

P [|Mn −m| ≥ ε] ≤ σ2

nε2
.

Take n0 = dσ2/(ε2δ)e. Then for every n ≥ n0, we have P [|Mn −m| ≥ ε] ≤ δ.

A more complicated argument would allow us to omit the requirement that the random
variables have finite variance.

We sometimes write that Mn
p−→ m (read “Mn converges in probability to m”), meaning

that P [|Mn −m| ≥ ε] → 0 as n →∞.
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