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Today

@ Decision Trees

» Simple but powerful learning algorithm

» One of the most widely used learning algorithms in Kaggle
competitions

» Lets us introduce ensembles, a key idea in ML

@ Useful information theoretic concepts (entropy, mutual information, etc.)
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Decision Trees

@ Decision trees make predictions by recursively splitting on different
attributes according to a tree structure.

o Example: classifying fruit as an orange or lemon based on height and
width

B/vidth > 6.5cm? ]

Yes No

helght >9.5cm? helght >6.0cm?
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Decision Trees

Test example

I [Width > 6.5cm? ]

Yes o

[height>9.50m? J [height>6.0cm? ]
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Decision Trees

@ For continuous attributes, split based on less than or greater than some
threshold
@ Thus, input space is divided into regions with boundaries parallel to axes

width > 6.5cm?

A0 o0
‘Y e Yes
e @
A
A :" [height>9.50m‘? ][height>6.0cm? ]

height (cm)

Yes No Yes

| No
(]
W - L L—
L ® oranges|
A |lemons
4

6 8 10
width (cm)
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Example with Discrete Inputs

@ What if the attributes are discrete?

Input Attributes

Example
Alt | Bar | Fri | Hun| Pat | Price | Rain | Res | Type Est

X1 Yes| No| No | Yes| Some| $$8 No | Yes| French | 0-10
Xy Yes| No | No | Yes| Full 3 No | No Thai | 30-60
X3 No | Yes| No | No | Some 3 No | No | Burger | 0-10
X4 Yes | No | Yes| Yes| Full 3 Yes | No Thai | 10-30
X5 Yes| No | Yes| No Full | $3$ | No | Yes| French| >60
Xg No | Yes No | Yes| Some| 3% | Yes| Yes| ltalian | 0-10
X7 No| Yes| No| No | None| § Yes | No | Burger | 0-10
Xg No| No| No| Yes| Some| 3% Yes | Yes Thai 0-10
Xg No | Yes| Yes| No Full 3 Yes | No | Burger| >60
X10 Yes | Yes | VYes| Yes| Full | $$8  No | Yes| Iltalian | 10-30
X11 No | No | No | No | None 3 No | No Thai 0-10
X192 Yes | Yes| Yes| Yes Full 3 No | No | Burger | 30-60

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. | | Fri/Sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full)

6. Price: the restaurant's price range ($, $$, $$%$).

7. | | Raining: whether it is raining outside.

8. Reservation: whether we made a reservation

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger)

Attributes: |10 || waitestimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
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Goal
WillWait
y1 = Yes
yp = No
y3 = Yes
ys = Yes
Y5 = No
ye = Yes
yr = No
ys = Yes
Yo = No
y10 = No
yi1 = No
Y12 = Yes
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Decision Tree: Example with Discrete Inputs

@ Possible tree to decide whether to wait (T) or not (F)

Alternate?
No Yes

| Reservation? || Fri/Sat? |
No Yes No Yes

No Yes
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Decision Trees

0-10

[ Anernate? | [ Hungry? ]
No Yes No 3

| Reservation? || Fri/Sat? ] | Alternate? |
Yes No Ye Yes

@ Internal nodes test attributes
@ Branching is determined by attribute value

o Leaf nodes are outputs (predictions)
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Expressiveness

@ Discrete-input, discrete-output case:

» Decision trees can express any function of the input attributes
» Example: For Boolean functions, the truth table row — path to leaf

A B AxorB
F F F
F
F
T T F

@ Continuous-input, continuous-output case:
» Can approximate any function arbitrarily closely

o Trivially, there is a consistent decision tree for any training set w/ one
path to leaf for each example (unless f nondeterministic in z) but it
probably won’t generalize to new examples

[Slide credit: S. Russell]

Intro ML (UofT) CSC311-Lec2 9/ 34



Decision Tree: Classification and Regression

@ Each path from root to a leaf defines a region R,, - N —
of input space . K P ®

o Let {(z(m) ¢(m)) . (z(me) (7))} be the é_
training examples that fall into R, ‘ : =

@ Classification tree:
» discrete output

> leaf value y™ typically set to the most common value in
{tlma)  #me)y

@ Regression tree:
» continuous output
» leaf value 3™ typically set to the mean value in {t(™1) ... ¢(ms)}

Note: We will focus on classification
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How do we Learn a DecisionTree?

e How do we construct a useful decision tree?
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Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies

training set is an NP complete problem (if you are interested, check: Hyafil &
Rivest’76).

@ Resort to a greedy heuristic! Start with empty decision tree and
complete training set

» Split on the “best” attribute, i.e. partition dataset
» Recurse on subpartitions

@ When should we stop?

@ Which attribute is the “best” (and where should we split, if continuous)?
Choose based on accuracy?

Loss: misclassification error

Say region R is split in Ry and Ry based on loss L(R).

Accuracy gain is L(R) — ‘Rl‘L(lgll)‘ﬂgjL(R“’)

v

vV vy
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Choosing a Good Split

@ Why isn’t accuracy a good measure?

@ Classify by the majority, loss is the misclassification error.

[ width>e50m? | ieClemens
\ 49 oranges
YES NO
T T - —
@ @
(
\
N L \\\_//
50 lemons 50 lemons
0 oranges 49 oranges

@ Is this split good? Zero accuracy gain

L(R) - |[Ri|L(R1) + [Ra|L(R2) 49 50x0+99 X 2
|R1| + |Rs| 149 149

=0
@ But we have reduced our uncertainty about whether a fruit is a lemon!
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Choosing a Good Split

@ How can we quantify uncertainty in prediction for a given leaf node?

» All examples in leaf have the same class: good (low uncertainty)
» Each class has the same number of examples in leaf: bad (high
uncertainty)

@ Idea: Use counts at leaves to define probability distributions, and use
information theory to measure uncertainty
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Flipping Two Different Coins

Q: Which coin is more uncertain?

Sequence 1:
0001000000000 0100 ...7

Sequence 2:
1010111010011 0101...7?
16
8 10
Versus
’ Ll
 I—
0 1 0 1
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Quantifying Uncertainty

Entropy is a measure of expected “surprise”: How uncertain are we of the
value of a draw from this distribution?

H(X) = ~Ex~pllogy p(X)] = = ) p(x)log, p(x)
reX
8/9 vo 519
[
—/3 0 1
0 1
8 8 1 1 - 1 4 4 5 5
—§1og2§—§log2§~§ —glog2§—§log2§%0.99

@ Averages over information content of each observation
@ Unit = bits (based on the base of logarithm)
@ A fair coin flip has 1 bit of entropy
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Quantifying Uncertainty

entropy

1.0
0.8}
0.6}
0.4f

0.2r

. . L ' robability p of heads
0.2 0.4 0.6 0.8 1.0 P P
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Entropy

o “High Entropy”:

» Variable has a uniform like distribution
» Flat histogram
» Values sampled from it are less predictable

o “Low Entropy”

» Distribution of variable has peaks and valleys
» Histogram has lows and highs
» Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy of a Joint Distribution

@ Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 | 50/100

H(Xv Y) = - Z Zp($>y) 10g2p(33’y)
reX yeY
24 24 1 1 25 25 50 50

2 o, — — 22 b il
100 %2700 ~ 100 22700 100 %2700 100 22100
~ 1.56bits
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Specific Conditional Entropy

o Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy [Not Cloudy
Raining 24/100 1/100
Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

H(Y|X =raining) =

o We used: p(y|x) =

Intro ML

(UofT)

- Z p(y|raining) log, p(y|raining)

yey
24

0.24bits

CSC311-Lec2

24

PEand p(z) = ¥, p(w,y)

1

1
22 oo, —
25 B2 95 T 25 98295

(sum in a row)
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Conditional Entropy

Cloudy |Not Cloudy

Raining

24/100 | 1/100

Not Raining| 25/100 50/100

@ The expected conditional entropy:

H(Y|X)
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Y p@)HY|X = =)

zeX

=Y > pla,y)logs p(yl)

zeX yeYy
_E(X,Y)Np(m,y) [logQ p(Y‘X)]
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Conditional Entropy

@ Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness, given the knowledge of whether or not
it is raining?

HYIX) = 3 p@)HYIX =)
zeX
1 . 3 .
= ZH (cloudy|raining) + ZH (cloudy|not raining)
~ 0.75 bits
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Conditional Entropy

]
oo

@ Some useful properties for the discrete case:

» H is always non-negative.

» Chain rule: H(X,Y)=H(X|Y)+ H(Y)=H(Y|X)+ H(X).

» If X and Y independent, then X does not tell us anything about Y:
H(Y|X)=H(Y).

» If X and Y independent, then H(X,Y) = H(X)+ H(Y).

» But Y tells us everything about Y: H(Y|Y) =0.

» By knowing X, we can only decrease uncertainty about Y:
HY|X)<H(Y).

Exercise: Verify these!

The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and ... .
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Information Gain

Cloudy [Not Cloudy

Raining | 247100 | 1/100

Not Raining| 25/100 50/100

@ How much information about cloudiness do we get by discovering
whether it is raining?

IG(Y|X)

H(Y) - H(Y|X)
0.25 bits

@ This is called the information gain in Y due to X, or the mutual
information of Y and X

e If X is completely uninformative about Y: IG(Y]X) =0
o If X is completely informative about Y: IG(Y|X) = H(Y)
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Revisiting Our Original Example

@ Information gain measures the informativeness of a variable, which is
exactly what we desire in a decision tree attribute!

@ What is the information gain of this split?

Ve
( widn>e50me | 100 lemons
\ / 49 oranges
. v
YES NO
e N e
( ) (
L ) {
N e N P
50 Ier;ons 56 En:l;ns
0 oranges 49 oranges

@ Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left
or right split taken, and treat counts as probabilities.

@ Root entropy: H(Y) = —2 log,(£5%) — 190 log,(199) ~

o Leafs entropy: H(Y|B = left) =0, H(Y|B = right) ~

o IGYY|B)=H(Y)—- H(Y|B)
= H(Y) — {H(Y|B=left)P(B=left) + H(Y|B=right)P(B=right)}
~091—-(0-3+1-2)=024>0

Intro ML (UofT) CSC311-Lec2 25 / 34



Constructing Decision Trees

X
n
£Y ..

g S

e (3 width > 6.5cm?

£

S

2, .

—-
o
W :
4 o © oranges
4 lemons Yes No Yes No
4 6 8 10
width (cm) — oy
L
_— e - v

@ At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

@ Choose them based on how much information we would gain from the
decision! (choose attribute that gives the best gain)
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Decision Tree Construction Algorithm

@ Simple, greedy, recursive approach, builds up tree node-by-node
@ Start with empty decision tree and complete training set

» Split on the most informative attribute, partitioning dataset
» Recurse on subpartitions

@ Possible termination condition: end if all examples in current
subpartition share the same class
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Back to Our Example

Example ) Input_Attributcs
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est

X1 Yes No | No| Yes| Some| $3$ | No | Yes| French| 0-10
X3 Yes No | No | Yes| Full $ No | No Thai | 30-60
X3 No | Yes No | No | Some $ No | No | Burger| 0-10
X4 Yes No | Yes| Yes| Full $ Yes | No Thai | 10-30
X5 Yes| No | Yes| No | Full | $3%3 | No | Yes| French| >60
Xg No | Yes| No | Yes| Some| $$ | Yes| Yes| ltalian | 0-10
X7 No | Yes No | No | None $ Yes | No | Burger| 0-10
X3 No| No No| Yes| Some| $§ | Yes| Yes| Thai 0-10
Xg No | Yes Yes| No Full 3 Yes | No | Burger| >60
X10 Yes | Yes | Yes| Yes| Full | $3%3 | No | Yes| ltalian | 10-30
X11 No | No | No | No | None 3 No | No Thai 0-10
X12 Yes  Yes | Yes| Yes| Full $ No | No | Burger| 30-60

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. | | Bar: whether the restaurant has a comfortable bar area to wait in.

3. | | Fri/sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full)

6. | | Price: the restaurant's price range (§, $3, $$$).

7 Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai or Burger).

Attributes: |10 || Waitestmate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Intro ML (UofT)
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Goal
WillWait
y1 = Yes
yo = No
y3 = Yes
yy = Yes
ys = No
ye = Yes
yr = No
ys = Yes
Yo = No
y10 = No
yn = No
Y12 = Yes

[from: Russell & Norvig]
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Attribute Selection

Patrons?

IG(Y) = H(Y) — H(Y|X)

2 2 4 o4
IG(type) =1 — [EH(Y|Fr.) + EH(Y|It.) + EH(YlThal) + EH(Y|Bur.):| =0

2 4 6 2 4
IG(P =1—-|—=H(0,1 —H(1 —H(=,=-)| =~ 0.541
G(Patrons) {12 (0,1) + B (1,0) + 12 (6’ 6)} 0.5
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Which Tree is Better?

Patrons?

Full

None

French Burger

Patrons?

No

| Reservation? ” Fri/Sat? |

No Yes
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery”

@ We desire small trees with informative nodes near the root
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Decision Tree Miscellany

@ Problems:

» You have exponentially less data at lower levels

v

A large tree can overfit the data

v

Greedy algorithms don’t necessarily yield the global optimum

v

Mistakes at top-level propagate down tree

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

@ There are other criteria used to measure the quality of a split, e.g., Gini
index

@ Trees can be pruned in order to make them less complex

Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.
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Comparison to k-NN

Advantages of decision trees over k-NN

e Good with discrete attributes
e Easily deals with missing values (just treat as another value)
@ Robust to scale of inputs; only depends on ordering

@ Good when there are lots of attributes, but only a few are
important

o Fast at test time

@ More interpretable
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Comparison to k-NN

Advantages of k-NN over decision trees

e Able to handle attributes/features that interact in complex ways

e Can incorporate interesting distance measures, e.g., shape
contexts.
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