Q-learning Tutorial

CSC411 Geoffrey Roeder

Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler, Nitish Srivastava

Tutorial Agenda

- Refresh RL terminology through Tic Tac Toe
- Deterministic Q-Learning: what and how
- Q-learning Matlab demo: Gridworld
- Extensions: non-deterministic reward, next state
- More cool demos

Tic Tac Toe Redux

Tic Tac Toe Redux

7		Lose	Tie	Win
R =	Reward	-1	0	+1
$S_{\perp} \equiv$	~~			
$o_t -$	X	0		
	X	0		

 $\pi: S \to A$

$$\pi\left(\begin{smallmatrix} \mathbf{x} & \mathbf{o} \\ \mathbf{x} & \mathbf{o} \end{smallmatrix}
ight) \mapsto a$$

State	Probability of a win	
	(Computer plays "o")	
<u>×</u> × 00	0.5	
	0.5	
0 x 0 x 0	1.0	
×0 ×0	0.0	
0 0 × ×	0.5	
etc		

• Each board position (taking into account symmetry) has some probability

State	Probability of a win
	(Computer plays "0")
× 0 × 0	0.5
	0.5
0 × 0 × 0	1.0
×0 ×0	0.0
0 ×	0.5
etc	

• Simple learning process:

State	Probability of a win
	(Computer plays "o")
x x 00	0.5
00 ×	0.5
× 0 × 0	1.0
×0 ×0	0.0
0 *	0.5
etc	

- Simple learning process:
 - start with all values = 0.5

State	Probability of a win
	(Computer plays "o")
x x 00	0.5
00 × ×	0.5
0 x 0 x 0	1.0
×0 ×0	0.0
0 ×	0.5
etc	

- Simple learning process:
 - start with all values = 0.5
 - policy: choose move with highest probability of winning given current legal moves from current state

State	Probability of a win
	(Computer plays "o")
x x 00	0.5
00 × ×	0.5
0 x 0 x 0	1.0
×0 ×0	0.0
0 ×	0.5
etc	

- Simple learning process:
 - start with all values = 0.5
 - policy: choose move with highest probability of winning given current legal moves from current state
 - update entries in table based on outcome of each game

State	Probability of a win
	(Computer plays "o")
x x 00	0.5
00 × ×	0.5
0 x 0 x 0	1.0
×0 ×0	0.0
0 ×	0.5
etc	

- Simple learning process:
 - start with all values = 0.5
 - policy: choose move with highest probability of winning given current legal moves from current state
 - update entries in table based on outcome of each game
 - After many games value function will represent true probability of winning from each state

• Each board position (taking into account symmetry) has some probability

State	Probability of a win (Computer plays "o")
0 × 0 ×	0.5
00 × ×	0.5
0 x 0 x 0	1.0
×0 ×0	0.0
0 *	0.5
etc	

- Simple learning process:
 - start with all values = 0.5
 - policy: choose move with highest probability of winning given current legal moves from current state
 - update entries in table based on outcome of each game
 - After many games value function will represent true probability of winning from each state

Can try alternative policy: sometimes select moves randomly (exploration)

MDP Refresher

Familiar? Skip?

MDP Formulation

• Goal: find policy π that maximizes expected accumulated future rewards $V^{\pi}(s_t)$, obtained by following π from state s_t :

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

MDP Formulation

• Goal: find policy π that maximizes expected accumulated future rewards $V^{\pi}(s_t)$, obtained by following π from state s_t :

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$
$$= \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

• Game show example:

MDP Formulation

• Goal: find policy π that maximizes expected accumulated future rewards $V^{\pi}(s_t)$, obtained by following π from state s_t :

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$
$$= \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

- Game show example:
 - assume series of questions, increasingly difficult, but increasing payoff

• Goal: find policy π that maximizes expected accumulated future rewards $V^{\pi}(s_t)$, obtained by following π from state s_t :

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$
$$= \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

- Game show example:
 - assume series of questions, increasingly difficult, but increasing payoff
 - choice: accept accumulated earnings and quit; or continue and risk losing everything
- Notice that:

$$V^{\pi}(s_t) = r_t + \gamma V^{\pi}(s_{t+1})$$

$$V^*(s) = \max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• Here $\delta(s, a)$ gives the next state, if we perform action a in current state s

$$V^*(s) = \max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• Here $\delta(s, a)$ gives the next state, if we perform action a in current state s

• We could then do a lookahead search to choose best action from any state s:

$$\pi^*(s) = \arg\max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

$$V^*(s) = \max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• Here $\delta(s, a)$ gives the next state, if we perform action a in current state s

• We could then do a lookahead search to choose best action from any state s:

$$\pi^*(s) = \arg\max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• But there's a problem:

$$V^*(s) = \max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• Here $\delta(s, a)$ gives the next state, if we perform action a in current state s

• We could then do a lookahead search to choose best action from any state s:

$$\pi^*(s) = \arg\max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• But there's a problem:

• This works well if we know $\delta()$ and r()

$$V^*(s) = \max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• Here $\delta(s, a)$ gives the next state, if we perform action a in current state s

• We could then do a lookahead search to choose best action from any state s:

$$\pi^*(s) = \arg\max_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• But there's a problem:

- This works well if we know $\delta()$ and r()
- But when we don't, we cannot choose actions this way

Q Learning

Deterministic rewards and actions

$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

• If we learn Q, we can choose the optimal action even without knowing δ !

$$\pi^*(s) = \arg \max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

• If we learn Q, we can choose the optimal action even without knowing δ !

$$\pi^*(s) = \arg \max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

=
$$\arg \max_{a} Q(s, a)$$

$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

• If we learn Q, we can choose the optimal action even without knowing δ !

$$\pi^*(s) = \arg \max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

=
$$\arg \max_{a} Q(s, a)$$

• Q is then the evaluation function we will learn

$$\gamma = 0.9$$

r(s, a) (immediate reward) values

$$\gamma = 0.9$$

r(s, a) (immediate reward) values

• Q and V^* are closely related:

$$V^*(s) = \max_a Q(s,a)$$

• Q and V^* are closely related:

$$V^*(s) = \max_a Q(s,a)$$

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

• Q and V^* are closely related:

$$V^*(s) = \max_a Q(s,a)$$

• So we can write Q recursively:

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

• Q and V^* are closely related:

$$V^*(s) = \max_a Q(s,a)$$

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

• Let \hat{Q} denote the learner's current approximation to Q

• Q and V^* are closely related:

$$V^*(s) = \max_a Q(s,a)$$

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

- Let \hat{Q} denote the learner's current approximation to Q
- Consider training rule

$$\hat{Q}(s,a) \leftarrow r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')$$

where s' is state resulting from applying action a in state s

• For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Start in some initial state s

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Start in some initial state s
- Do forever:

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Start in some initial state s
- Do forever:
 - Select an action a and execute it

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Start in some initial state s
- Do forever:
 - Select an action a and execute it
 - Receive immediate reward r

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Start in some initial state s
- Do forever:
 - Select an action a and execute it
 - Receive immediate reward r
 - Observe the new state s'

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Start in some initial state s
- Do forever:
 - Select an action a and execute it
 - Receive immediate reward r
 - Observe the new state s'
 - Update the table entry for $\hat{Q}(s, a)$ using Q learning rule:

$$\hat{Q}(s,a) \leftarrow r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')$$

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Start in some initial state s
- Do forever:
 - Select an action a and execute it
 - Receive immediate reward r
 - Observe the new state s'
 - Update the table entry for $\hat{Q}(s, a)$ using Q learning rule:

$$\hat{Q}(s,a) \leftarrow r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')$$

► $s \leftarrow s'$

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Start in some initial state s
- Do forever:
 - Select an action a and execute it
 - Receive immediate reward r
 - Observe the new state s'
 - Update the table entry for $\hat{Q}(s, a)$ using Q learning rule:

$$\hat{Q}(s, a) \leftarrow r(s, a) + \gamma \max_{a'} \hat{Q}(s', a')$$

► $s \leftarrow s'$

 If we get to absorbing state, restart to initial state, and run thru "Do forever" loop until reach absorbing state

 Assume the robot is in state s₁; some of its current estimates of Q are as shown; executes rightward move

 Assume the robot is in state s₁; some of its current estimates of Q are as shown; executes rightward move

$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$

 Assume the robot is in state s₁; some of its current estimates of Q are as shown; executes rightward move

 Assume the robot is in state s₁; some of its current estimates of Q are as shown; executes rightward move

• Important observation: at each time step (making an action *a* in state *s* only one entry of \hat{Q} will change (the entry $\hat{Q}(s, a)$)

 Assume the robot is in state s₁; some of its current estimates of Q are as shown; executes rightward move

- Important observation: at each time step (making an action *a* in state *s* only one entry of \hat{Q} will change (the entry $\hat{Q}(s, a)$)
- Notice that if rewards are non-negative, then \hat{Q} values only increase from 0, approach true Q

Zemel, Urtasun, Fidler (UofT)

 Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state

- Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state
- Each executed action *a* results in transition from state s_i to s_j ; algorithm updates $\hat{Q}(s_i, a)$ using the learning rule

- Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state
- Each executed action *a* results in transition from state s_i to s_j ; algorithm updates $\hat{Q}(s_i, a)$ using the learning rule
- Intuition for simple grid world, reward only upon entering goal state o Q estimates improve from goal state back

- Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state
- Each executed action *a* results in transition from state s_i to s_j ; algorithm updates $\hat{Q}(s_i, a)$ using the learning rule
- Intuition for simple grid world, reward only upon entering goal state $\rightarrow Q$ estimates improve from goal state back
 - 1. All $\hat{Q}(s, a)$ start at 0

- Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state
- Each executed action *a* results in transition from state s_i to s_j ; algorithm updates $\hat{Q}(s_i, a)$ using the learning rule
- Intuition for simple grid world, reward only upon entering goal state $\rightarrow Q$ estimates improve from goal state back
 - 1. All $\hat{Q}(s, a)$ start at 0
 - 2. First episode only update $\hat{Q}(s, a)$ for transition leading to goal state

- Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state
- Each executed action *a* results in transition from state s_i to s_j ; algorithm updates $\hat{Q}(s_i, a)$ using the learning rule
- Intuition for simple grid world, reward only upon entering goal state $\rightarrow Q$ estimates improve from goal state back
 - 1. All $\hat{Q}(s, a)$ start at 0
 - 2. First episode only update $\hat{Q}(s, a)$ for transition leading to goal state
 - 3. Next episode if go thru this next-to-last transition, will update $\hat{Q}(s, a)$ another step back

- Training set consists of series of intervals (episodes): sequence of (state, action, reward) triples, end at absorbing state
- Each executed action *a* results in transition from state s_i to s_j ; algorithm updates $\hat{Q}(s_i, a)$ using the learning rule
- Intuition for simple grid world, reward only upon entering goal state $\rightarrow Q$ estimates improve from goal state back
 - 1. All $\hat{Q}(s, a)$ start at 0
 - 2. First episode only update $\hat{Q}(s, a)$ for transition leading to goal state
 - 3. Next episode if go thru this next-to-last transition, will update $\hat{Q}(s, a)$ another step back
 - 4. Eventually propagate information from transitions with non-zero reward throughout state-action space

Gridworld Demo

Extensions

Non-deterministic reward and actions

• Have not specified how actions chosen (during learning)

- Have not specified how actions chosen (during learning)
- Can choose actions to maximize $\hat{Q}(s, a)$

- Have not specified how actions chosen (during learning)
- Can choose actions to maximize $\hat{Q}(s, a)$
- Good idea?

- Have not specified how actions chosen (during learning)
- Can choose actions to maximize $\hat{Q}(s, a)$
- Good idea?
- Can instead employ stochastic action selection (policy):

$$P(a_i|s) = \frac{\exp(k\hat{Q}(s,a_i))}{\sum_j \exp(k\hat{Q}(s,a_j))}$$

- Have not specified how actions chosen (during learning)
- Can choose actions to maximize $\hat{Q}(s, a)$
- Good idea?
- Can instead employ stochastic action selection (policy):

$$P(a_i|s) = \frac{\exp(k\hat{Q}(s,a_i))}{\sum_j \exp(k\hat{Q}(s,a_j))}$$

• Can vary k during learning

- Have not specified how actions chosen (during learning)
- Can choose actions to maximize $\hat{Q}(s, a)$
- Good idea?
- Can instead employ stochastic action selection (policy):

$$P(a_i|s) = \frac{\exp(k\hat{Q}(s,a_i))}{\sum_j \exp(k\hat{Q}(s,a_j))}$$

- Can vary k during learning
 - more exploration early on, shift towards exploitation

• What if reward and next state are non-deterministic?

- What if reward and next state are non-deterministic?
- We redefine V, Q based on probabilistic estimates, expected values of them:

$$V^{\pi}(s) = E_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots]$$

= $E_{\pi}[\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}]$

- What if reward and next state are non-deterministic?
- We redefine V, Q based on probabilistic estimates, expected values of them:

$$V^{\pi}(s) = E_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots]$$

= $E_{\pi}[\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}]$

and

$$Q(s,a) = E[r(s,a) + \gamma V^*(\delta(s,a))]$$

=
$$E[r(s,a) + \gamma \sum_{s'} p(s'|s,a) \max_{a'} Q(s',a')]$$

• Training rule does not converge (can keep changing \hat{Q} even if initialized to true Q values)

- Training rule does not converge (can keep changing \hat{Q} even if initialized to true Q values)
- So modify training rule to change more slowly

$$\hat{Q}(s,a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r+\gamma \max_{a'} \hat{Q}_{n-1}(s',a')]$$

where s' is the state land in after s, and a' indexes the actions that can be taken in state s'

$$\alpha_n = \frac{1}{1 + \text{visits}_n(s, a)}$$

where visits is the number of times action a is taken in state s

More Cool Demos

Other Examples:

Super Mario World https://www.youtube.com/watch?v=L4KBBAwF_bE

Model-based RL: Pole Balancing

https://www.youtube.com/watch?v=XiigTGKZfks

Learn how to fly a Helicopter

- <u>http://heli.stanford.edu/</u>
- Formulate as an RL problem
 - State Position, orientation, velocity, angular velocity
 - Actions Front-back pitch, left-right pitch, tail rotor pitch, blade angle
 - Dynamics Map actions to states. Difficult!
 - Rewards Don't crash, Do interesting things.

Slide credit: Nitish Srivastava