
Q-learning Tutorial
CSC411

Geoffrey Roeder

Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler,
Nitish Srivastava

Tutorial Agenda
• Refresh RL terminology through Tic Tac Toe

• Deterministic Q-Learning: what and how

• Q-learning Matlab demo: Gridworld

• Extensions: non-deterministic reward, next state

• More cool demos

Tic Tac Toe Redux

Lose Tie Win
Reward

:
-1 0 +1

X O
X O

st =

⇡ : S ! ATic Tac Toe Redux

X O
X O

V⇡() 7! rfuture

V⇡ : S ! R

X O

X O
((⇡ 7! a

R =

RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 / 1

RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 / 1

RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5

I policy: choose move with highest
probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 / 1

RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 / 1

RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 / 1

RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 / 1

RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 / 1

MDP Refresher
Familiar? Skip?

MDP Formulation

Goal: find policy ⇡ that maximizes expected accumulated future rewards
V

⇡(st), obtained by following ⇡ from state st :

V

⇡(st) = rt + �rt+1

+ �2

rt+2

+ · · ·

=
1X

i=0

� i
rt+i

Game show example:

I assume series of questions, increasingly di�cult, but increasing payo↵
I choice: accept accumulated earnings and quit; or continue and risk

losing everything

Notice that:
V

⇡(st) = rt + �V ⇡(st+1

)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 1

MDP Formulation

Goal: find policy ⇡ that maximizes expected accumulated future rewards
V

⇡(st), obtained by following ⇡ from state st :

V

⇡(st) = rt + �rt+1

+ �2

rt+2

+ · · ·

=
1X

i=0

� i
rt+i

Game show example:

I assume series of questions, increasingly di�cult, but increasing payo↵
I choice: accept accumulated earnings and quit; or continue and risk

losing everything

Notice that:
V

⇡(st) = rt + �V ⇡(st+1

)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 1

MDP Formulation

Goal: find policy ⇡ that maximizes expected accumulated future rewards
V

⇡(st), obtained by following ⇡ from state st :

V

⇡(st) = rt + �rt+1

+ �2

rt+2

+ · · ·

=
1X

i=0

� i
rt+i

Game show example:

I assume series of questions, increasingly di�cult, but increasing payo↵

I choice: accept accumulated earnings and quit; or continue and risk
losing everything

Notice that:
V

⇡(st) = rt + �V ⇡(st+1

)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 1

MDP Formulation

Goal: find policy ⇡ that maximizes expected accumulated future rewards
V

⇡(st), obtained by following ⇡ from state st :

V

⇡(st) = rt + �rt+1

+ �2

rt+2

+ · · ·

=
1X

i=0

� i
rt+i

Game show example:

I assume series of questions, increasingly di�cult, but increasing payo↵
I choice: accept accumulated earnings and quit; or continue and risk

losing everything

Notice that:
V

⇡(st) = rt + �V ⇡(st+1

)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 1

What to Learn

We might try to learn the function V (which we write as V ⇤)

V

⇤(s) = max
a

[r(s, a) + �V ⇤(�(s, a))]

Here �(s, a) gives the next state, if we perform action a in current state s

We could then do a lookahead search to choose best action from any state s:

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

But there’s a problem:

I This works well if we know �() and r()
I But when we don’t, we cannot choose actions this way

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30 / 1

What to Learn

We might try to learn the function V (which we write as V ⇤)

V

⇤(s) = max
a

[r(s, a) + �V ⇤(�(s, a))]

Here �(s, a) gives the next state, if we perform action a in current state s

We could then do a lookahead search to choose best action from any state s:

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

But there’s a problem:

I This works well if we know �() and r()
I But when we don’t, we cannot choose actions this way

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30 / 1

What to Learn

We might try to learn the function V (which we write as V ⇤)

V

⇤(s) = max
a

[r(s, a) + �V ⇤(�(s, a))]

Here �(s, a) gives the next state, if we perform action a in current state s

We could then do a lookahead search to choose best action from any state s:

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

But there’s a problem:

I This works well if we know �() and r()
I But when we don’t, we cannot choose actions this way

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30 / 1

What to Learn

We might try to learn the function V (which we write as V ⇤)

V

⇤(s) = max
a

[r(s, a) + �V ⇤(�(s, a))]

Here �(s, a) gives the next state, if we perform action a in current state s

We could then do a lookahead search to choose best action from any state s:

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

But there’s a problem:

I This works well if we know �() and r()

I But when we don’t, we cannot choose actions this way

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30 / 1

What to Learn

We might try to learn the function V (which we write as V ⇤)

V

⇤(s) = max
a

[r(s, a) + �V ⇤(�(s, a))]

Here �(s, a) gives the next state, if we perform action a in current state s

We could then do a lookahead search to choose best action from any state s:

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

But there’s a problem:

I This works well if we know �() and r()
I But when we don’t, we cannot choose actions this way

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30 / 1

Q Learning
Deterministic rewards and actions

Q Learning

Define a new function very similar to V

⇤

Q(s, a) = r(s, a) + �V ⇤(�(s, a))

If we learn Q, we can choose the optimal action even without knowing �!

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

= arg max
a

Q(s, a)

Q is then the evaluation function we will learn

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 31 / 1

Q Learning

Define a new function very similar to V

⇤

Q(s, a) = r(s, a) + �V ⇤(�(s, a))

If we learn Q, we can choose the optimal action even without knowing �!

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

= arg max
a

Q(s, a)

Q is then the evaluation function we will learn

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 31 / 1

Q Learning

Define a new function very similar to V

⇤

Q(s, a) = r(s, a) + �V ⇤(�(s, a))

If we learn Q, we can choose the optimal action even without knowing �!

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

= arg max
a

Q(s, a)

Q is then the evaluation function we will learn

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 31 / 1

Q Learning

Define a new function very similar to V

⇤

Q(s, a) = r(s, a) + �V ⇤(�(s, a))

If we learn Q, we can choose the optimal action even without knowing �!

⇡⇤(s) = arg max
a

[r(s, a) + �V ⇤(�(s, a))]

= arg max
a

Q(s, a)

Q is then the evaluation function we will learn

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 31 / 1

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 32 / 1

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 32 / 1

Training Rule to Learn Q

Q and V

⇤ are closely related:

V

⇤(s) = max
a

Q(s, a)

So we can write Q recursively:

Q(st , at) = r(st , at) + �V ⇤(�(st , at))

= r(st , at) + �max
a0

Q(st+1

, a0)

Let Q̂ denote the learner’s current approximation to Q

Consider training rule

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

where s

0 is state resulting from applying action a in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 33 / 1

Training Rule to Learn Q

Q and V

⇤ are closely related:

V

⇤(s) = max
a

Q(s, a)

So we can write Q recursively:

Q(st , at) = r(st , at) + �V ⇤(�(st , at))

= r(st , at) + �max
a0

Q(st+1

, a0)

Let Q̂ denote the learner’s current approximation to Q

Consider training rule

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

where s

0 is state resulting from applying action a in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 33 / 1

Training Rule to Learn Q

Q and V

⇤ are closely related:

V

⇤(s) = max
a

Q(s, a)

So we can write Q recursively:

Q(st , at) = r(st , at) + �V ⇤(�(st , at))

= r(st , at) + �max
a0

Q(st+1

, a0)

Let Q̂ denote the learner’s current approximation to Q

Consider training rule

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

where s

0 is state resulting from applying action a in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 33 / 1

Training Rule to Learn Q

Q and V

⇤ are closely related:

V

⇤(s) = max
a

Q(s, a)

So we can write Q recursively:

Q(st , at) = r(st , at) + �V ⇤(�(st , at))

= r(st , at) + �max
a0

Q(st+1

, a0)

Let Q̂ denote the learner’s current approximation to Q

Consider training rule

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

where s

0 is state resulting from applying action a in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 33 / 1

Training Rule to Learn Q

Q and V

⇤ are closely related:

V

⇤(s) = max
a

Q(s, a)

So we can write Q recursively:

Q(st , at) = r(st , at) + �V ⇤(�(st , at))

= r(st , at) + �max
a0

Q(st+1

, a0)

Let Q̂ denote the learner’s current approximation to Q

Consider training rule

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

where s

0 is state resulting from applying action a in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 33 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it

I Receive immediate reward r
I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r

I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a) 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s

0

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a) r(s, a) + �max
a0

Q̂(s 0, a0)

I
s s

0

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 / 1

Updating Estimated Q

Assume the robot is in state s

1

; some of its current estimates of Q are as
shown; executes rightward move

Q̂(s
1

, aright) r + �max
a0

Q̂(s
2

, a0)

 r + 0.9max
a

{63, 81, 100} 90

Important observation: at each time step (making an action a in state s

only one entry of Q̂ will change (the entry Q̂(s, a))

Notice that if rewards are non-negative, then Q̂ values only increase from 0,
approach true Q

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 / 1

Updating Estimated Q

Assume the robot is in state s

1

; some of its current estimates of Q are as
shown; executes rightward move

Q̂(s
1

, aright) r + �max
a0

Q̂(s
2

, a0)

 r + 0.9max
a

{63, 81, 100} 90

Important observation: at each time step (making an action a in state s

only one entry of Q̂ will change (the entry Q̂(s, a))

Notice that if rewards are non-negative, then Q̂ values only increase from 0,
approach true Q

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 / 1

Updating Estimated Q

Assume the robot is in state s

1

; some of its current estimates of Q are as
shown; executes rightward move

Q̂(s
1

, aright) r + �max
a0

Q̂(s
2

, a0)

 r + 0.9max
a

{63, 81, 100} 90

Important observation: at each time step (making an action a in state s

only one entry of Q̂ will change (the entry Q̂(s, a))

Notice that if rewards are non-negative, then Q̂ values only increase from 0,
approach true Q

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 / 1

Updating Estimated Q

Assume the robot is in state s

1

; some of its current estimates of Q are as
shown; executes rightward move

Q̂(s
1

, aright) r + �max
a0

Q̂(s
2

, a0)

 r + 0.9max
a

{63, 81, 100} 90

Important observation: at each time step (making an action a in state s

only one entry of Q̂ will change (the entry Q̂(s, a))

Notice that if rewards are non-negative, then Q̂ values only increase from 0,
approach true Q

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 / 1

Updating Estimated Q

Assume the robot is in state s

1

; some of its current estimates of Q are as
shown; executes rightward move

Q̂(s
1

, aright) r + �max
a0

Q̂(s
2

, a0)

 r + 0.9max
a

{63, 81, 100} 90

Important observation: at each time step (making an action a in state s

only one entry of Q̂ will change (the entry Q̂(s, a))

Notice that if rewards are non-negative, then Q̂ values only increase from 0,
approach true Q

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 / 1

Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm
updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state ! Q

estimates improve from goal state back

1. All Q̂(s, a) start at 0
2. First episode – only update Q̂(s, a) for transition leading to goal state
3. Next episode – if go thru this next-to-last transition, will update

Q̂(s, a) another step back
4. Eventually propagate information from transitions with non-zero reward

throughout state-action space

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 1

Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm
updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state ! Q

estimates improve from goal state back

1. All Q̂(s, a) start at 0
2. First episode – only update Q̂(s, a) for transition leading to goal state
3. Next episode – if go thru this next-to-last transition, will update

Q̂(s, a) another step back
4. Eventually propagate information from transitions with non-zero reward

throughout state-action space

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 1

Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm
updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state ! Q

estimates improve from goal state back

1. All Q̂(s, a) start at 0
2. First episode – only update Q̂(s, a) for transition leading to goal state
3. Next episode – if go thru this next-to-last transition, will update

Q̂(s, a) another step back
4. Eventually propagate information from transitions with non-zero reward

throughout state-action space

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 1

Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm
updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state ! Q

estimates improve from goal state back

1. All Q̂(s, a) start at 0

2. First episode – only update Q̂(s, a) for transition leading to goal state
3. Next episode – if go thru this next-to-last transition, will update

Q̂(s, a) another step back
4. Eventually propagate information from transitions with non-zero reward

throughout state-action space

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 1

Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm
updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state ! Q

estimates improve from goal state back

1. All Q̂(s, a) start at 0
2. First episode – only update Q̂(s, a) for transition leading to goal state

3. Next episode – if go thru this next-to-last transition, will update
Q̂(s, a) another step back

4. Eventually propagate information from transitions with non-zero reward
throughout state-action space

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 1

Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm
updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state ! Q

estimates improve from goal state back

1. All Q̂(s, a) start at 0
2. First episode – only update Q̂(s, a) for transition leading to goal state
3. Next episode – if go thru this next-to-last transition, will update

Q̂(s, a) another step back

4. Eventually propagate information from transitions with non-zero reward
throughout state-action space

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 1

Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm
updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state ! Q

estimates improve from goal state back

1. All Q̂(s, a) start at 0
2. First episode – only update Q̂(s, a) for transition leading to goal state
3. Next episode – if go thru this next-to-last transition, will update

Q̂(s, a) another step back
4. Eventually propagate information from transitions with non-zero reward

throughout state-action space

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 1

Gridworld Demo

Extensions
Non-deterministic reward and actions

Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q̂(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

P(ai |s) =
exp(kQ̂(s, ai))P
j exp(kQ̂(s, aj))

Can vary k during learning

I more exploration early on, shift towards exploitation

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 1

Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q̂(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

P(ai |s) =
exp(kQ̂(s, ai))P
j exp(kQ̂(s, aj))

Can vary k during learning

I more exploration early on, shift towards exploitation

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 1

Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q̂(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

P(ai |s) =
exp(kQ̂(s, ai))P
j exp(kQ̂(s, aj))

Can vary k during learning

I more exploration early on, shift towards exploitation

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 1

Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q̂(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

P(ai |s) =
exp(kQ̂(s, ai))P
j exp(kQ̂(s, aj))

Can vary k during learning

I more exploration early on, shift towards exploitation

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 1

Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q̂(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

P(ai |s) =
exp(kQ̂(s, ai))P
j exp(kQ̂(s, aj))

Can vary k during learning

I more exploration early on, shift towards exploitation

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 1

Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q̂(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

P(ai |s) =
exp(kQ̂(s, ai))P
j exp(kQ̂(s, aj))

Can vary k during learning

I more exploration early on, shift towards exploitation

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 1

Non-deterministic Case

What if reward and next state are non-deterministic?

We redefine V ,Q based on probabilistic estimates, expected values of them:

V

⇡(s) = E⇡[rt + �rt+1

+ �2

rt+2

+ · · ·]

= E⇡[
1X

i=0

� i
rt+i]

and

Q(s, a) = E [r(s, a) + �V ⇤(�(s, a))]

= E [r(s, a) + �
X

s0

p(s 0|s, a)max
a0

Q(s 0, a0)]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 38 / 1

Non-deterministic Case

What if reward and next state are non-deterministic?

We redefine V ,Q based on probabilistic estimates, expected values of them:

V

⇡(s) = E⇡[rt + �rt+1

+ �2

rt+2

+ · · ·]

= E⇡[
1X

i=0

� i
rt+i]

and

Q(s, a) = E [r(s, a) + �V ⇤(�(s, a))]

= E [r(s, a) + �
X

s0

p(s 0|s, a)max
a0

Q(s 0, a0)]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 38 / 1

Non-deterministic Case

What if reward and next state are non-deterministic?

We redefine V ,Q based on probabilistic estimates, expected values of them:

V

⇡(s) = E⇡[rt + �rt+1

+ �2

rt+2

+ · · ·]

= E⇡[
1X

i=0

� i
rt+i]

and

Q(s, a) = E [r(s, a) + �V ⇤(�(s, a))]

= E [r(s, a) + �
X

s0

p(s 0|s, a)max
a0

Q(s 0, a0)]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 38 / 1

Non-deterministic Case: Learning Q

Training rule does not converge (can keep changing Q̂ even if initialized to
true Q values)

So modify training rule to change more slowly

Q̂(s, a) (1� ↵n)Q̂n�1

(s, a) + ↵n[r + �max
a0

Q̂n�1

(s 0, a0)]

where s

0 is the state land in after s, and a

0 indexes the actions that can be
taken in state s

0

↵n =
1

1 + visitsn(s, a)

where visits is the number of times action a is taken in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 39 / 1

Non-deterministic Case: Learning Q

Training rule does not converge (can keep changing Q̂ even if initialized to
true Q values)

So modify training rule to change more slowly

Q̂(s, a) (1� ↵n)Q̂n�1

(s, a) + ↵n[r + �max
a0

Q̂n�1

(s 0, a0)]

where s

0 is the state land in after s, and a

0 indexes the actions that can be
taken in state s

0

↵n =
1

1 + visitsn(s, a)

where visits is the number of times action a is taken in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 39 / 1

More Cool Demos

https://www.youtube.com/watch?v=L4KBBAwF_bE
Super Mario World

https://www.youtube.com/watch?v=XiigTGKZfks

Model-based RL: Pole Balancing

Other Examples:

Learn how to fly a
Helicopter

• http://heli.stanford.edu/

• Formulate as an RL problem

• State - Position, orientation, velocity, angular velocity

• Actions - Front-back pitch, left-right pitch, tail rotor pitch,
blade angle

• Dynamics - Map actions to states. Difficult!

• Rewards - Don’t crash, Do interesting things.

Slide credit: Nitish Srivastava

http://heli.stanford.edu/

