
CSC411/2515 Fall 2016 
 

Neural Networks Tutorial

Lluís Castrejón
Oct. 2016

Slides adapted from Yujia Li’s tutorial and Prof. Zemel’s lecture notes.

Overfitting
• The	training	data	contains	information	about	the	regularities	
in	the	mapping	from	input	to	output.	But	it	also	contains	noise	
– The	target	values	may	be	unreliable.	
– There	is	sampling	error.	There	will	be	accidental	
regularities	just	because	of	the	particular	training	cases	
that	were	chosen	

• When	we	fit	the	model,	it	cannot	tell	which	regularities	are	
real	and	which	are	caused	by	sampling	error.		
– So	it	fits	both	kinds	of	regularity.	
– If	the	model	is	very	flexible	it	can	model	the	sampling	error	
really	well.	This	is	a	disaster.

2

Overfitting

Picture credit: Chris Bishop. Pattern Recognition and Machine Learning. Ch.1.1.

Preventing	overfitting

• Use	a	model	that	has	the	right	capacity:	
– enough	to	model	the	true	regularities	
– not	enough	to	also	model	the	spurious	
regularities	(assuming	they	are	weaker)	

• Standard	ways	to	limit	the	capacity	of	a	neural	net:	
– Limit	the	number	of	hidden	units.	
– Limit	the	size	of	the	weights.	
– Stop	the	learning	before	it	has	time	to	overfit.

4

Limiting	the	size	of	the	weights

Weight-decay	involves	adding	
an	extra	term	to	the	cost	
function	that	penalizes	the	
squared	weights.	

– Keeps	weights	small	
unless	they	have	big	error	
derivatives.

i
i

i

i
ii

i
i

w
Ew

w
Cwhen

w
w
E

w
C

wEC

∂

∂
−==

∂

∂

+
∂

∂
=

∂

∂

∑+=

λ

λ

λ

1

2
2

,0

w

C

5

The	effect	of	weight-decay

• It	prevents	the	network	from	using	weights	that	it	does	not	
need	
– This	can	often	improve	generalization	a	lot.		
– It	helps	to	stop	it	from	fitting	the	sampling	error.		
– It	makes	a	smoother	model	in	which	the	output	changes	
more	slowly	as	the	input	changes.	

• But,	if	the	network	has	two	very	similar	inputs	it	prefers	to	
put	half	the	weight	on	each	rather	than	all	the	weight	on	
one	à other	form	of	weight	decay?

w/2 w/2 w 0

6

Deciding	how	much	to	restrict	the	capacity

• How	do	we	decide	which	limit	to	use	and	how	
strong	to	make	the	limit?	
– If	we	use	the	test	data	we	get	an	unfair	
prediction	of	the	error	rate	we	would	get	on	new	
test	data.	

– Suppose	we	compared	a	set	of	models	that	gave	
random	results,	the	best	one	on	a	particular	
dataset	would	do	better	than	chance.		But	it	
won’t	do	better	than	chance	on	another	test	set.		

• So	use	a	separate	validation	set	to	do	model	
selection.

7

Using	a	validation	set

• Divide	the	total	dataset	into	three	subsets:	
– Training	data	is	used	for	learning	the	parameters	
of	the	model.	

– Validation	data	is	not	used	of	learning	but	is	used	
for	deciding	what	type	of	model	and	what	
amount	of	regularization	works	best	

– Test	data	is	used	to	get	a	final,	unbiased	estimate	
of	how	well	the	network	works.	We	expect	this	
estimate	to	be	worse	than	on	the	validation	data	

• We	could	then	re-divide	the	total	dataset	to	get	
another	unbiased	estimate	of	the	true	error	rate.

8

Preventing	overfitting	by	early	stopping

• If	we	have	lots	of	data	and	a	big	model,	its	very	
expensive	to	keep	re-training	it	with	different	
amounts	of	weight	decay	

• It	is	much	cheaper	to	start	with	very	small	weights	
and	let	them	grow	until	the	performance	on	the	
validation	set	starts	getting	worse	

• The	capacity	of	the	model	is	limited	because	the	
weights	have	not	had	time	to	grow	big.

9

Why	early	stopping	works

• When	the	weights	are	very	
small,	every	hidden	unit	is	in	its	
linear	range.	
– So	a	net	with	a	large	layer	of	
hidden	units	is	linear.	

– It	has	no	more	capacity	than	
a	linear	net	in	which	the	
inputs	are	directly	connected	
to	the	outputs!	

• As	the	weights	grow,	the	hidden	
units	start	using	their	non-linear	
ranges	so	the	capacity	grows.

outputs

inputs

10

Le	Net

• Yann	LeCun	and	others	developed	a	really	good	
recognizer	for	handwritten	digits	by	using	
backpropagation	in	a	feedforward	net	with:	
– Many	hidden	layers	
– Many	pools	of	replicated	units	in	each	layer.	
– Averaging	the	outputs	of	nearby	replicated	units.	
– A	wide	net	that	can	cope	with	several	characters	
at	once	even	if	they	overlap.	

• Demo	of	LENET

11

https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/watch?v=FwFduRA_L6Q

Recognizing	Digits
Hand-written	digit	recognition	network	

– 7291	training	examples,	2007	test	examples	
– Both	contain	ambiguous	and	misclassified	examples	
– Input	pre-processed	(segmented,		normalized)	

• 16x16	gray	level	[-1,1],	10	outputs

12

LeNet:	Summary
Main	ideas:

• Local	à global	processing
• Retain	coarse	posn	info

Main	technique:	weight	sharing	–	
units	arranged	in	feature	maps

Connections:	1256	units,	64,660	
cxns,	9760	free	parameters

Results:		0.14%	(train),	5.0%	(test)

vs.	3-layer	net	w/	40	hidden	units:
	 1.6%	(train),	8.1%	(test)

13

The	82	errors	made	by	LeNet5

Notice that
most of the
errors are
cases that
people find
quite easy.
The human
error rate is
probably 20
to 30 errors

14

A	brute	force	approach

• LeNet	uses	knowledge	about	the	invariances	to	design:	
– 	the	network	architecture		
– or	the	weight	constraints		
– or	the	types	of	feature	

• But	its	much	simpler	to	incorporate	knowledge	of	invariances	
by	just	creating	extra	training	data:	
– for	each	training	image,	produce	new	training	data	by	
applying	all	of	the	transformations	we	want	to	be	
insensitive	to	

– Then	train	a	large,	dumb	net	on	a	fast	computer.	
– This	works	surprisingly	well

15

16

Making	backpropagation	work	for	recognizing	digits

• Using	the	standard	viewing	transformations,	and	local	
deformation	fields	to	get	lots	of	data.	

• Use	many,	globally	connected	hidden	layers	and	learn	
for	a	very	long	time	
– This	requires	a	GPU	board	or	a	large	cluster	  

• Use	the	appropriate	error	measure	for	multi-class	
categorization	
– Cross-entropy,	with	softmax	activation	

• This	approach	can	get	35	errors	on	MNIST!
17

Fabricating	training	data

Good	generalization	requires	lots	of	training	data,	
including	examples	from	all	relevant	input	regions	

Improve	solution	if	good	data	can	be	constructed		
Example:	ALVINN

18

ALVINN:	simulating	training	examples

On-the-fly	training:	current	video	camera	image	as	input,	
current	steering	direction	as	target	

But:	over-train	on	same	inputs;	no	experience	going	off-
road	

Method:	generate	new	examples	by	shifting	images

Replace	10	low-error	&	5	
random	training	
examples	with	15	new

Key:	relation	between	input	
and	output	known!

19

Neural	Net	Demos

Scene recognition - Places MIT

Digit recognition

Neural Nets Playground

Neural Style Transfer

http://places.csail.mit.edu/demo.html
http://scs.ryerson.ca/~aharley/vis/conv/
http://playground.tensorflow.org
https://www.instapainting.com/ai-painter

