CSC 411 Tutorial: Optimization for Machine
Learning

Renjie Liao!

September 19, 2016

1
Based on tutorials and slides by Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang and others

Contents

» Overview
» Gradient Descent

» Convexity

Overview of Optimization

An informal definition of optimization

Minimize (or maximize) some quantity.

Applications

» Engineering: Minimize fuel consumption of an automobile

» Economics: Maximize returns on an investment

» Supply Chain Logistics: Minimize time taken to fulfill an order
» Life: Maximize happiness

More formally

Goal: find 6* = argmingf(0), (possibly subject to constraints on 6).

» 0 € R". optimization variable
» f:R” — R: objective function

Maximizing f(0) is equivalent to minimizing —f(6), so we can
treat everything as a minimization problem.

Optimization is a large area of research

The best method for solving the optimization problem depends on
which assumptions we want to make:

» |s 6 discrete or continuous?

» What form do constraints on 6 take? (if any)

» Is f "well-behaved”? (linear, differentiable, convex,
submodular, etc.)

Optimization for Machine Learning

Often in machine learning we are interested in learning the
parameters 6 of a model.
Goal: minimize some loss function

» For example, if we have some data (x, y), we may want to
maximize P(y|x,).

» Equivalently, we can minimize — log P(y/|x, 0).

> We can also minimize other sorts of loss functions

log can help for numerical reasons

Gradient Descent

Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point
where 82()3) — 0.

» Sometimes, we can solve this equation analytically for 6.
» Most of the time, we are not so lucky and must resort to
iterative methods.

Review

fante of of of
» Gradient: V@f: (879176792”879;()

Outline of Gradient Descent Algorithm

Where 7 is the learning rate and T is the number of iterations:

> Initialize 0y randomly
>» fort=1:T:

> 51‘ <— —antflf
> 0 < 01+ 6

The learning rate shouldn’t be too big (objective function will blow
up) or too small (will take a long time to converge)

Gradient Descent with Line-Search

Where 7 is the learning rate and T is the number of iterations:

> Initialize 8y randomly

> fort=1:T:
» Finding a step size 1, such that f(0; — 7:Ve,_,) < f(6;)
> 51_» “— —ﬂtVOHf
> 0 — 0,1+

Require a line-search step in each iteration.

Gradient Descent with Momentum

We can introduce a momentum coefficient « € [0, 1) so that the
updates have “memory”:

> Initialize #p randomly
» Initialize g to the zero vector
» fort=1:T:

> 5{— — _'I”vgt_lfﬂ—(l(stf]_
> gt — 01-71 + (5,_»

Momentum is a nice trick that can help speed up convergence.
Generally we choose « between 0.8 and 0.95, but this is problem
dependent

Outline of Gradient Descent Algorithm

Where 7 is the learning rate and T is the number of iterations:

» Initialize 8y randomly
» Do:

> (51— “— —ant_lf
> 9{‘ — 91.,1 + 61—

» Until convergence

Setting a convergence criteria.

Some convergence criteria

» Change in objective function value is close to zero:
[F(Oes1) — F(02)] <€
» Gradient norm is close to zero: |Vyf|| < €
» Validation error starts to increase (this is called early stopping)

Checkgrad

» When implementing the gradient computation for machine
learning models, it's often difficult to know if our
implementation of f and Vf is correct.

» We can use finite-differences approximation to the gradient to
help:

of - f((@l,...,9;+e,...,9n))—f((@l,...,é,-—e,...,e,,))
00; 2¢

Why don't we always just use the finite differences approximation?

> slow: we need to recompute f twice for each parameter in our
model.

» numerical issues

Stochastic Gradient Descent

» Any iteration of a gradient descent (or quasi-Newton) method
requires that we sum over the entire dataset to compute the
gradient.

» SGD idea: at each iteration, sub-sample a small amount of
data (even just 1 point can work) and use that to estimate
the gradient.

» Each update is noisy, but very fast!

» This is the basis of optimizing ML algorithms with huge
datasets (e.g., recent deep learning).

» Computing gradients using the full dataset is called batch
learning, using subsets of data is called mini-batch learning.

Stochastic Gradient Descent

» The reason SGD works is because similar data yields similar
gradients, so if there is enough redundancy in the data, the
noise from subsampling won't be so bad.

» SGD is very easy to implement compared to other methods,
but the step sizes need to be tuned to different problems,
whereas batch learning typically “just works" .

» Tip 1: divide the log-likelihood estimate by the size of your
mini-batches. This makes the learning rate invariant to
mini-batch size.

» Tip 2: subsample without replacement so that you visit each
point on each pass through the dataset (this is known as an
epoch).

Demo

> Logistic regression

Convexity

Definition of Convexity

A function f is convex if for any two points #; and 6, and any
te[0,1],

f(t01 + (1 — t)02) < tf(01) + (1 — t)F(02)

We can compose convex functions such that the resulting function
is also convex:

» If f is convex, then so is af for a« >0

» If f; and f> are both convex, then sois f; +

> etc., see
http://www.ee.ucla.edu/ee236b/lectures/functions.pdf for
more

Why do we care about convexity?

> Any local minimum is a global minimum.
» This makes optimization a lot easier because we don't have to
worry about getting stuck in a local minimum.

Examples of Convex Functions

Quadratics

In [6]:

out[6]:

import matplotlib.pyplot as plt
plt.xked()

theta = linspace(-5, 5)

£ = theta**2

plt.plot(theta, f)

[<matplotlib.lines.Line2D at 0x3ceae90>]

25

20|=

15|=

10/=

Slide Type

Examples of Convex Functions

Negative logarithms

In [8]: Slide Type | -
import matplotlib.pyplot as plt
plt.xked()
theta = linspace(0.1, 5)
f = -np.log(theta)
plt.plot(theta, f)

Out[8]: [<matplotlib.lines.Line2D at Ox3ef4al0>]

Convexity for logistic regression

Cross-entropy objective function for logistic regression is also
convex!

f(0) = -, tMlog p(y = 1[x(M, 0)+(1—t(") log p(y = 0|x(", §)
Plot of —log o (0)

In [15]: Slide Type | -
def sigmoid(x):
return 1 / (1 + np.exp(-x))

theta = linspace(-5, 5)
f = -np.log(sigmoid(theta))
plt.plot(theta, f)

Out[15]: [<matplotlib.lines.Line2D at 0x4c453d0>]

6 T T 1 T T |
5= -
4|-

3]- =l
2=

1|- -
A N B Jmar

More on optimization

Convex Optimization by Boyd & Vandenberghe
Book available for free online at
http://www.stanford.edu/~boyd/cvxbook/
Numerical Optimization by Nocedal & Wright
Electronic version available from UofT Library

