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Today

Learn to play games

Reinforcement Learning
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Playing Games: Atari

https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_l4U9A
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Making Pancakes!

https://www.youtube.com/watch?v=W_gxLKSsSIE
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https://www.youtube.com/watch?v=W_gxLKSsSIE


Reinforcement Learning Resources

RL tutorial – on course website

Reinforcement Learning: An Introduction, Sutton & Barto Book (1998)
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Reinforcement Learning

Learning algorithms differ in the information available to learner

I Supervised: correct outputs
I Unsupervised: no feedback, must construct measure of good output
I Reinforcement learning

More realistic learning scenario:

I Continuous stream of input information, and actions
I Effects of action depend on state of the world
I Obtain reward that depends on world state and actions

I not correct response, just some feedback
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Reinforcement Learning

[pic from: Peter Abbeel]
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Example: Tic Tac Toe, Notation
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Example: Tic Tac Toe, Notation
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Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function
I Value function: how good is each state and/or action
I Model: agent’s representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38



Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function
I Value function: how good is each state and/or action
I Model: agent’s representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38



Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)

I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function
I Value function: how good is each state and/or action
I Model: agent’s representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38



Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function
I Value function: how good is each state and/or action
I Model: agent’s representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38



Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function
I Value function: how good is each state and/or action
I Model: agent’s representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38



Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function

I Value function: how good is each state and/or action
I Model: agent’s representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38



Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function
I Value function: how good is each state and/or action

I Model: agent’s representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38



Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function
I Value function: how good is each state and/or action
I Model: agent’s representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38



Policy

A policy is the agent’s behaviour.

It’s a selection of which action to take, based on the current state

Deterministic policy: a = π(s)

Stochastic policy: π(a|s) = P[at = a|st = s]

[Slide credit: D. Silver]
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Value Function

Value function is a prediction of future reward

Used to evaluate the goodness/badness of states

Our aim will be to maximize the value function (the total reward we receive
over time): find the policy with the highest expected reward

By following a policy π, the value function is defined as:

V π(st) = rt + γrt+1 + γ2rt+2 + · · ·

γ is called a discount rate, and it is always 0 ≤ γ ≤ 1

If γ close to 1, rewards further in the future count more, and we say that the
agent is “farsighted”

γ is less than 1 because there is usually a time limit to the sequence of
actions needed to solve a task (we prefer rewards sooner rather than later)

[Slide credit: D. Silver]
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Model

The model describes the environment by a distribution over rewards and
state transitions:

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

We assume the Markov property: the future depends on the past only
through the current state
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Maze Example

Rewards:

−1 per time-step

Actions: N, E, S, W

States: Agent’s location

[Slide credit: D. Silver]
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Maze Example

Arrows represent policy π(s)
for each state s

[Slide credit: D. Silver]
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Maze Example

Numbers represent value V π(s)
of each state s

[Slide credit: D. Silver]
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Example: Tic-Tac-Toe

Consider the game tic-tac-toe:

I reward: win/lose/tie the game (+1/− 1/0) [only at final move in given
game]

I state: positions of X’s and O’s on the board
I policy: mapping from states to actions

I based on rules of game: choice of one open position

I value function: prediction of reward in future, based on current state

In tic-tac-toe, since state space is tractable, can use a table to represent
value function
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RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)
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Basic Problems

Markov Decision Problem (MDP): tuple (S ,A,P, γ) where P is

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

[Pic: P. Abbeel]
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Basic Problems

Markov Decision Problem (MDP): tuple (S ,A,P, γ) where P is

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

2. Learning: We don’t know which states are good or what the actions
do. We must try out the actions and states to learn what to do

[P. Abbeel]
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Example of Standard MDP Problem

1. Planning: given complete Markov decision problem as input, compute policy
with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a near-optimal
strategy
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Example of Standard MDP Problem

1. Planning: given complete Markov decision problem as input, compute policy
with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

We will focus on learning, but discuss planning along the way
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Exploration vs. Exploitation

If we knew how the world works (embodied in P), then the policy should be
deterministic

I just select optimal action in each state

Reinforcement learning is like trial-and-error learning

The agent should discover a good policy from its experiences of the
environment

Without losing too much reward along the way

Since we do not have complete knowledge of the world, taking what appears
to be the optimal action may prevent us from finding better states/actions

Interesting trade-off:

I immediate reward (exploitation) vs. gaining knowledge that might
enable higher future reward (exploration)
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Examples

Restaurant Selection

I Exploitation: Go to your favourite restaurant
I Exploration: Try a new restaurant

Online Banner Advertisements

I Exploitation: Show the most successful advert
I Exploration: Show a different advert

Oil Drilling

I Exploitation: Drill at the best known location
I Exploration: Drill at a new location

Game Playing

I Exploitation: Play the move you believe is best
I Exploration: Play an experimental move

[Slide credit: D. Silver]
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MDP Formulation

Goal: find policy π that maximizes expected accumulated future rewards
V π(st), obtained by following π from state st :

V π(st) = rt + γrt+1 + γ2rt+2 + · · ·

=
∞∑
i=0

γ i rt+i

Game show example:

I assume series of questions, increasingly difficult, but increasing payoff
I choice: accept accumulated earnings and quit; or continue and risk

losing everything

Notice that:
V π(st) = rt + γV π(st+1)
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What to Learn

We might try to learn the function V (which we write as V ∗)

V ∗(s) = max
a

[r(s, a) + γV ∗(δ(s, a))]

Here δ(s, a) gives the next state, if we perform action a in current state s

We could then do a lookahead search to choose best action from any state s:

π∗(s) = arg max
a

[r(s, a) + γV ∗(δ(s, a))]

But there’s a problem:

I This works well if we know δ() and r()
I But when we don’t, we cannot choose actions this way
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Q Learning

Define a new function very similar to V ∗

Q(s, a) = r(s, a) + γV ∗(δ(s, a))

If we learn Q, we can choose the optimal action even without knowing δ!

π∗(s) = arg max
a

[r(s, a) + γV ∗(δ(s, a))]

= arg max
a

Q(s, a)

Q is then the evaluation function we will learn
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Training Rule to Learn Q

Q and V ∗ are closely related:

V ∗(s) = max
a

Q(s, a)

So we can write Q recursively:

Q(st , at) = r(st , at) + γV ∗(δ(st , at))

= r(st , at) + γmax
a′

Q(st+1, a
′)

Let Q̂ denote the learner’s current approximation to Q

Consider training rule

Q̂(s, a)← r(s, a) + γmax
a′

Q̂(s ′, a′)

where s ′ is state resulting from applying action a in state s
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Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a)← 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s ′

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a)← r(s, a) + γmax
a′

Q̂(s ′, a′)

I s ← s ′

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state
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Updating Estimated Q

Assume the robot is in state s1; some of its current estimates of Q are as
shown; executes rightward move

Q̂(s1, aright) ← r + γmax
a′

Q̂(s2, a
′)

← r + 0.9 max
a
{63, 81, 100} ← 90

Important observation: at each time step (making an action a in state s
only one entry of Q̂ will change (the entry Q̂(s, a))

Notice that if rewards are non-negative, then Q̂ values only increase from 0,
approach true Q
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Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm

updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state → Q
estimates improve from goal state back

1. All Q̂(s, a) start at 0
2. First episode – only update Q̂(s, a) for transition leading to goal state
3. Next episode – if go thru this next-to-last transition, will update

Q̂(s, a) another step back
4. Eventually propagate information from transitions with non-zero reward

throughout state-action space
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Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q̂(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

P(ai |s) =
exp(kQ̂(s, ai ))∑
j exp(kQ̂(s, aj))

Can vary k during learning

I more exploration early on, shift towards exploitation
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Non-deterministic Case

What if reward and next state are non-deterministic?

We redefine V ,Q based on probabilistic estimates, expected values of them:

V π(s) = Eπ[rt + γrt+1 + γ2rt+2 + · · · ]

= Eπ[
∞∑
i=0

γ i rt+i ]

and

Q(s, a) = E [r(s, a) + γV ∗(δ(s, a))]

= E [r(s, a) + γ
∑
s′

p(s ′|s, a) max
a′

Q(s ′, a′)]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 38



Non-deterministic Case

What if reward and next state are non-deterministic?

We redefine V ,Q based on probabilistic estimates, expected values of them:

V π(s) = Eπ[rt + γrt+1 + γ2rt+2 + · · · ]

= Eπ[
∞∑
i=0

γ i rt+i ]

and

Q(s, a) = E [r(s, a) + γV ∗(δ(s, a))]

= E [r(s, a) + γ
∑
s′

p(s ′|s, a) max
a′

Q(s ′, a′)]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 38



Non-deterministic Case

What if reward and next state are non-deterministic?

We redefine V ,Q based on probabilistic estimates, expected values of them:

V π(s) = Eπ[rt + γrt+1 + γ2rt+2 + · · · ]

= Eπ[
∞∑
i=0

γ i rt+i ]

and

Q(s, a) = E [r(s, a) + γV ∗(δ(s, a))]

= E [r(s, a) + γ
∑
s′

p(s ′|s, a) max
a′

Q(s ′, a′)]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 38



Non-deterministic Case: Learning Q

Training rule does not converge (can keep changing Q̂ even if initialized to
true Q values)

So modify training rule to change more slowly

Q̂(s, a)← (1− αn)Q̂n−1(s, a) + αn[r + γmax
a′

Q̂n−1(s ′, a′)]

where s ′ is the state land in after s, and a′ indexes the actions that can be
taken in state s ′

αn =
1

1 + visitsn(s, a)

where visits is the number of times action a is taken in state s
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