CSC 411: Lecture 19: Reinforcement Learning

Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto

November 29, 2016

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 1/38

@ Learn to play games

@ Reinforcement Learning

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 2 /38

Playing Games: Atari

https://www.youtube.com/watch?v=V1leYniJORnk

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_14U9A

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

https://www.youtube.com/watch?v=wfL4L_l4U9A

Making Pancakes!

https://www.youtube.com/watch?v=W_gxLKSsSIE

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

https://www.youtube.com/watch?v=W_gxLKSsSIE

Reinforcement Learning Resources

@ RL tutorial — on course website

® Reinforcement Learning: An Introduction, Sutton & Barto Book (1998)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 6 /38

Learning

@ Learning algorithms differ in the information available to learner

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 7 /38

cement Learning

@ Learning algorithms differ in the information available to learner

» Supervised: correct outputs

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 7 /38

cement Learning

@ Learning algorithms differ in the information available to learner

» Supervised: correct outputs
» Unsupervised: no feedback, must construct measure of good output

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 7 /38

cement Learning

@ Learning algorithms differ in the information available to learner

» Supervised: correct outputs
» Unsupervised: no feedback, must construct measure of good output
» Reinforcement learning

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 7 /38

Learning

@ Learning algorithms differ in the information available to learner

» Supervised: correct outputs
» Unsupervised: no feedback, must construct measure of good output
» Reinforcement learning

@ More realistic learning scenario:

» Continuous stream of input information, and actions

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 7 /38

cement Learning

@ Learning algorithms differ in the information available to learner

» Supervised: correct outputs
» Unsupervised: no feedback, must construct measure of good output
» Reinforcement learning

@ More realistic learning scenario:

» Continuous stream of input information, and actions
» Effects of action depend on state of the world

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 7 /38

cement Learning

@ Learning algorithms differ in the information available to learner

» Supervised: correct outputs
» Unsupervised: no feedback, must construct measure of good output
» Reinforcement learning

@ More realistic learning scenario:

» Continuous stream of input information, and actions
» Effects of action depend on state of the world
» Obtain reward that depends on world state and actions

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 7 /38

cement Learning

@ Learning algorithms differ in the information available to learner

» Supervised: correct outputs
» Unsupervised: no feedback, must construct measure of good output
» Reinforcement learning

@ More realistic learning scenario:

» Continuous stream of input information, and actions
» Effects of action depend on state of the world
» Obtain reward that depends on world state and actions

> not correct response, just some feedback

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Reinforcement Learning

State: s

Reward: r Actions: a

Environment

[pic from: Peter Abbeel]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 8 /38

Example: Tic Tac Toe, Notation

environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 9 /38

Example: Tic Tac Toe, Notation

(current)
state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 10 / 38

Example: Tic Tac Toe, Notation

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 11 /38

Example: Tic Tac Toe, Notation

reward
(here: -1)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 12 / 38

Formulating Reinforcement Learning

@ World described by a discrete, finite set of states and actions

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38

Formulating Reinforcement Learning

@ World described by a discrete, finite set of states and actions

@ At every time step t, we are in a state s;, and we:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 13 / 38

Formulating Reinforcement Learning

@ World described by a discrete, finite set of states and actions
@ At every time step t, we are in a state s;, and we:

» Take an action a; (possibly null action)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Formulating Reinforcement Learning

@ World described by a discrete, finite set of states and actions
@ At every time step t, we are in a state s;, and we:

» Take an action a; (possibly null action)
> Receive some reward ry;1

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Formulating Rein Learning

@ World described by a discrete, finite set of states and actions
@ At every time step t, we are in a state s;, and we:

» Take an action a; (possibly null action)
> Receive some reward ry;1
» Move into a new state s; 1

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Formulating Rein Learning

@ World described by a discrete, finite set of states and actions
@ At every time step t, we are in a state s;, and we:

» Take an action a; (possibly null action)
> Receive some reward ry;1
» Move into a new state s;1

@ An RL agent may include one or more of these components:

» Policy m: agent's behaviour function

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Formulating Rein Learning

@ World described by a discrete, finite set of states and actions
@ At every time step t, we are in a state s;, and we:

» Take an action a; (possibly null action)
> Receive some reward ry;1
» Move into a new state s;1

@ An RL agent may include one or more of these components:

» Policy m: agent's behaviour function
» Value function: how good is each state and/or action

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Formulating Rein Learning

@ World described by a discrete, finite set of states and actions
@ At every time step t, we are in a state s;, and we:

» Take an action a; (possibly null action)
> Receive some reward ry;1
» Move into a new state s;1

@ An RL agent may include one or more of these components:

» Policy m: agent's behaviour function
» Value function: how good is each state and/or action
» Model: agent's representation of the environment

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

A policy is the agent’s behaviour.

@ It's a selection of which action to take, based on the current state

@ Deterministic policy: a = 7(s)

Stochastic policy: 7(als) = Pla; = a|s; = s]

[Slide credit: D. Silver]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Value Function

@ Value function is a prediction of future reward

@ Used to evaluate the goodness/badness of states

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 15 / 38

Value Function

@ Value function is a prediction of future reward
@ Used to evaluate the goodness/badness of states

@ Our aim will be to maximize the value function (the total reward we receive
over time): find the policy with the highest expected reward

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 15 / 38

Value Function

@ Value function is a prediction of future reward
@ Used to evaluate the goodness/badness of states

@ Our aim will be to maximize the value function (the total reward we receive
over time): find the policy with the highest expected reward

@ By following a policy 7, the value function is defined as:
VT(st) = re+yre1+ Vreso+ oo

@ 7 is called a discount rate, and it is always 0 < vy <1

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 15 / 38

Value Function

@ Value function is a prediction of future reward
@ Used to evaluate the goodness/badness of states

@ Our aim will be to maximize the value function (the total reward we receive
over time): find the policy with the highest expected reward

@ By following a policy 7, the value function is defined as:
VT(st) = re+yre1+ Vreso+ oo

@ 7 is called a discount rate, and it is always 0 < vy <1

@ If v close to 1, rewards further in the future count more, and we say that the
agent is “farsighted”

@ v is less than 1 because there is usually a time limit to the sequence of
actions needed to solve a task (we prefer rewards sooner rather than later)

[Slide credit: D. Silver]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 15 / 38

Model

@ The model describes the environment by a distribution over rewards and
state transitions:

P(sty1 =5, ry1 =r'|ss =s,a; = a)

@ We assume the Markov property: the future depends on the past only
through the current state

Warm e
Fast +2 <

0.5 Overheated
+2

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Maze Example

Start
@ Rewards:

Goal

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 17 / 38

Maze Example

Start
@ Rewards: —1 per time-step

@ Actions:

Goal

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 17 / 38

Maze Example

Start
@ Rewards: —1 per time-step

@ Actions: N, E, S, W
@ States:

Goal

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 17 / 38

Maze Example

Start
@ Rewards: —1 per time-step

@ Actions: N, E, S, W
@ States: Agent's location

Goal

[Slide credit: D. Silver]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Maze Example

@ Arrows represent policy 7 (s)
for each state s

[Slide credit: D. Silver]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 18 / 38

Maze Example

n

@ Numbers represent value V7 (s)
of each state s

[Slide credit: D. Silver]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 19 / 38

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 20 / 38

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

» reward:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 20 / 38

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

» reward: win/lose/tie the game (+1/ —1/0) [only at final move in given
game]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 20 / 38

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

» reward: win/lose/tie the game (+1/ —1/0) [only at final move in given
game]
> state:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 20 / 38

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

» reward: win/lose/tie the game (+1/ —1/0) [only at final move in given
game]
» state: positions of X's and O’s on the board

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 20 / 38

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

» reward: win/lose/tie the game (+1/ —1/0) [only at final move in given

game]
» state: positions of X's and O’s on the board
» policy: mapping from states to actions

November 29, 2016 20 / 38

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

» reward: win/lose/tie the game (+1/ —1/0) [only at final move in given

game]
» state: positions of X's and O’s on the board
» policy: mapping from states to actions

> based on rules of game: choice of one open position

November 29, 2016 20 / 38

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

» reward: win/lose/tie the game (+1/ —1/0) [only at final move in given
game]
» state: positions of X's and O’s on the board
» policy: mapping from states to actions
> based on rules of game: choice of one open position

» value function: prediction of reward in future, based on current state

November 29, 2016 20 / 38

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning

Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

» reward: win/lose/tie the game (+1/ —1/0) [only at final move in given
game]
» state: positions of X's and O’s on the board
» policy: mapping from states to actions
> based on rules of game: choice of one open position

» value function: prediction of reward in future, based on current state

@ In tic-tac-toe, since state space is tractable, can use a table to represent
value function

November 29, 2016 20 / 38

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning

RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 21/

RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 21/

RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

» start with all values = 0.5

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 21 /38

RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

» start with all values = 0.5

» policy: choose move with highest
probability of winning given current
legal moves from current state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 21/

RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

» start with all values = 0.5

» policy: choose move with highest
probability of winning given current
legal moves from current state

» update entries in table based on
outcome of each game

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 21/

RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

> start with all values = 0.5

» policy: choose move with highest
probability of winning given current
legal moves from current state

» update entries in table based on
outcome of each game

» After many games value function will
represent true probability of winning
from each state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 21 /38

RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

> start with all values = 0.5

» policy: choose move with highest
probability of winning given current
legal moves from current state

» update entries in table based on
outcome of each game

» After many games value function will
represent true probability of winning
from each state

@ Can try alternative policy: sometimes select moves randomly (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 21

/ 38

/

Basic Problems

@ Markov Decision Problem (MDP): tuple (S, A, P,v) where P is

P(sty1 =5 ry1 =r'|ss =s,a; = a)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 /38

Basic Problems

@ Markov Decision Problem (MDP): tuple (S, A, P,v) where P is

P(sty1 =5 ry1 =r'|ss =s,a; = a)

@ Standard MDP problems:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 /38

Basic Proble

@ Markov Decision Problem (MDP): tuple (S, A, P,v) where P is

P(sty1 =5 ry1 =r'|ss =s,a; = a)

@ Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

+ 1.0
A Fast N\
4 Slow ; -10
0.5 ‘~5)
Warm vy
Fast 0.5 +2 <

05 Overheated
+2

[Pic: P. Abbeel]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 22 /38

Basic Problems

@ Markov Decision Problem (MDP): tuple (S, A, P,~) where P is
P(sty1 =5, ry1 =r'|ss =s,a; = a)

@ Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

2. Learning: We don't know which states are good or what the actions
do. We must try out the actions and states to learn what to do

[P. Abbeel]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 23 /38

Example of Standard MDP Problem

.
o

r(s,a) (immediate reward)

1. Planning: given complete Markov decision problem as input, compute policy
with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 24 / 38

Example of Standard MDP Problem

«dgw%

1. Planning: given complete Markov decision problem as input, compute policy
with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

We will focus on learning, but discuss planning along the way

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 25 /38

Exploration vs. Exploitation

@ If we knew how the world works (embodied in P), then the policy should be
deterministic

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 26 / 38

Exploration vs. Exploitation

@ If we knew how the world works (embodied in P), then the policy should be
deterministic

> just select optimal action in each state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 26 / 38

Exploration vs. Exploitation

@ If we knew how the world works (embodied in P), then the policy should be
deterministic

> just select optimal action in each state

@ Reinforcement learning is like trial-and-error learning

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 26 / 38

Exploration vs. Exploitation

@ If we knew how the world works (embodied in P), then the policy should be
deterministic

> just select optimal action in each state
@ Reinforcement learning is like trial-and-error learning

@ The agent should discover a good policy from its experiences of the
environment

@ Without losing too much reward along the way

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Exploration vs. Exploitation

@ If we knew how the world works (embodied in P), then the policy should be
deterministic

> just select optimal action in each state
@ Reinforcement learning is like trial-and-error learning

@ The agent should discover a good policy from its experiences of the
environment

@ Without losing too much reward along the way

@ Since we do not have complete knowledge of the world, taking what appears
to be the optimal action may prevent us from finding better states/actions

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 26 / 38

Exploration vs. Exploitation

@ If we knew how the world works (embodied in P), then the policy should be
deterministic

> just select optimal action in each state
@ Reinforcement learning is like trial-and-error learning

@ The agent should discover a good policy from its experiences of the
environment

@ Without losing too much reward along the way

@ Since we do not have complete knowledge of the world, taking what appears
to be the optimal action may prevent us from finding better states/actions

@ Interesting trade-off:

» immediate reward (exploitation) vs. gaining knowledge that might
enable higher future reward (exploration)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 26 / 38

@ Restaurant Selection

» Exploitation: Go to your favourite restaurant
» Exploration: Try a new restaurant

@ Online Banner Advertisements

» Exploitation: Show the most successful advert
» Exploration: Show a different advert

@ Oil Drilling

» Exploitation: Drill at the best known location
» Exploration: Drill at a new location

@ Game Playing

» Exploitation: Play the move you believe is best
» Exploration: Play an experimental move

[Slide credit: D. Silver]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

MDP Formulation

@ Goal: find policy 7 that maximizes expected accumulated future rewards
V7 (s;), obtained by following 7 from state s;:

VT(s) = retre+ 7 reo oo

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 28 / 38

MDP Formulation

@ Goal: find policy 7 that maximizes expected accumulated future rewards
V7 (s;), obtained by following 7 from state s;:

VT(s) = retre+ 7 reo oo

oo
E V' Feq i
i=0

@ Game show example:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

MDP Formulation

@ Goal: find policy 7 that maximizes expected accumulated future rewards
V7 (s;), obtained by following 7 from state s;:

VT(s) = retre+ 7 reo oo

oo
E V' Feq i
i=0

@ Game show example:

» assume series of questions, increasingly difficult, but increasing payoff

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 28 / 38

MDP Formulation

@ Goal: find policy 7 that maximizes expected accumulated future rewards
V7 (s;), obtained by following 7 from state s;:

V™(st) = r+resr+7reo+ -

oo
E V' Feq i
i=0

@ Game show example:

» assume series of questions, increasingly difficult, but increasing payoff
» choice: accept accumulated earnings and quit; or continue and risk
losing everything

@ Notice that:
V7(st) = re + 7V (St11)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 28 / 38

@ We might try to learn the function V (which we write as V*)

V*(s) = max[r(s, a) +7V*(4(s, a))]

@ Here §(s, a) gives the next state, if we perform action a in current state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 38

@ We might try to learn the function V (which we write as V*)

V*(s) = max[r(s, a) +7V*(4(s, a))]

@ Here §(s, a) gives the next state, if we perform action a in current state s

@ We could then do a lookahead search to choose best action from any state s:

w*(s) = arg max [r(s,a) + yV*(0(s,a))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 38

@ We might try to learn the function V (which we write as V*)

V*(s) = max[r(s, a) +7V*(4(s, a))]

@ Here §(s, a) gives the next state, if we perform action a in current state s

@ We could then do a lookahead search to choose best action from any state s:

w*(s) = arg max [r(s,a) + yV*(0(s,a))]

@ But there's a problem:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 38

@ We might try to learn the function V (which we write as V*)

V*(s) = max[r(s, a) +7V*(4(s, a))]

@ Here §(s, a) gives the next state, if we perform action a in current state s

@ We could then do a lookahead search to choose best action from any state s:

w*(s) = arg max [r(s,a) + yV*(0(s,a))]

@ But there's a problem:

» This works well if we know () and r()

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 38

@ We might try to learn the function V (which we write as V*)

V*(s) = max[r(s, a) +7V*(4(s, a))]

@ Here §(s, a) gives the next state, if we perform action a in current state s

@ We could then do a lookahead search to choose best action from any state s:

w*(s) = arg max [r(s,a) + yV*(0(s,a))]

@ But there's a problem:

» This works well if we know () and r()
» But when we don't, we cannot choose actions this way

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 29 / 38

Q Learning

@ Define a new function very similar to V*

Q(s,a) = r(s,a) +yV*(d(s, a))

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30 / 38

@ Define a new function very similar to V*

Q(s,a) = r(s,a) +yV*(d(s, a))

@ If we learn @, we can choose the optimal action even without knowing 4!

7*(s) = arg max [r(s,a) +vV*(d(s,a))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30/ 38

@ Define a new function very similar to V*

Q(s,a) = r(s,a) +yV*(d(s, a))

@ If we learn @, we can choose the optimal action even without knowing 4!

7*(s) = arg max [r(s,a) +vV*(d(s,a))]

= argmax Q(s, a)
a

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30/ 38

@ Define a new function very similar to V*

Q(s,a) = r(s,a) +vV*(d(s, a))
@ If we learn @, we can choose the optimal action even without knowing 4!
7*(s) = argmax[r(s,a)+yV*((s,a))]
a

= argmax Q(s, a)
a

@ @ is then the evaluation function we will learn

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30/ 38

0
i; % @ 90
Aj2 | A1 | AV Aj
sl o0l ¥ 100] Iy
g 20 v —t
- - 8l o —
Q(s,a) values V*(s) values
V(s5)=0+y100+y70+...=90
—— —— G
A
|
— - ——

One optimal policy

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 31/38

Training Rule to Learn Q

@ @ and V™ are closely related:

Vi(s) = max Q(s, a)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 32 /38

Training Rule to Learn Q

@ @ and V™ are closely related:

Vi(s) = max Q(s, a)

@ So we can write @ recursively:

Q(st,ar) = r(se,ar) +yV*(0(st, ar))

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Training Rule to Learn Q

@ @ and V™ are closely related:

Vi(s) = max Q(s, a)

@ So we can write @ recursively:

Q(st;ar) = r(se;ar) +yV*(0(st; ar))
r(se;) +ymax Q(ses1,)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Training Rule to Learn Q

@ @ and V™ are closely related:

V*(s) = max Q(s, a)
@ So we can write @ recursively:
Q(st,ar) = r(st,ar) +yV*(0(st, ar))

= r(s,a)+7 max Q(st41,2")

@ Let @ denote the learner's current approximation to @

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Training Rule to Learn Q

@ @ and V™ are closely related:

Vi(s) = max Q(s, a)

@ So we can write @ recursively:

Q(st;ar) = r(se,ar) +yV*(0(st, ar))
= r(s,a)+7 max Q(st41,2")

@ Let @ denote the learner's current approximation to @

@ Consider training rule
Q(s,a) « r(s,a) + ymax Q(s', a')
a/

where s’ is state resulting from applying action a in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Q Learning for Deterministic World

@ For each s, a initialize table entry @(s, a)« 0

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 33 /38

Q Learning for Deterministic World

@ For each s, a initialize table entry @(s, a)« 0

@ Start in some initial state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 33 /38

Q Learning for Deterministic World

@ For each s, a initialize table entry @(s, a)« 0
@ Start in some initial state s

@ Do forever:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 33 /38

Q Learning for Deterministic World

@ For each s, a initialize table entry @(s, a)« 0
@ Start in some initial state s
@ Do forever:

» Select an action a and execute it

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Q Learning for Deterministic World

@ For each s, a initialize table entry @(s, a)« 0
@ Start in some initial state s
@ Do forever:

» Select an action a and execute it
» Receive immediate reward r

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Q Learning for Deterministic World

@ For each s, a initialize table entry @(s, a)« 0
@ Start in some initial state s
@ Do forever:

» Select an action a and execute it
» Receive immediate reward r
» Observe the new state s’

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Q Learning for Deterministic World

@ For each s, a initialize table entry @(s, a)« 0
@ Start in some initial state s
@ Do forever:

Select an action a and execute it

Receive immediate reward r

Observe the new state s’

Update the table entry for Q(s, a) using Q learning rule:

vV vy VvYy

Q(s,a) « r(s,a) + v max Q(s',d)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Q Learning for Deterministic World

@ For each s, a initialize table entry @(s, a)« 0
@ Start in some initial state s
@ Do forever:

» Select an action a and execute it

» Receive immediate reward r

» Observe the new state s’

» Update the table entry for Q(s, a) using Q learning rule:

A

Q(s,a) < r(s,a) +~ymax Q(s',d)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Q Learning for Deterministic World

@ For each s, a initialize table entry @(5, a)« 0
@ Start in some initial state s
@ Do forever:

» Select an action a and execute it

» Receive immediate reward r

» Observe the new state s’

» Update the table entry for Q(s, a) using Q learning rule:

A

Q(s,a) < r(s,a) +~ymax Q(s',d)

> s+ s

@ If we get to absorbing state, restart to initial state, and run thru "Do
forever” loop until reach absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of @ are as
shown; executes rightward move

R 3> 'O O 1%
G iG]
et |81
\J = \J
art'ght
initial state: s, next state: s,

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of @ are as
shown; executes rightward move

R 3> 'O O 1%
G iG]
et |81
\J = \J
art'ght
initial state: s, next state: s,

N

Q(st, argne) 1+ ymaxQ(s,2')

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of @ are as
shown; executes rightward move

R 3> 'O O 1%
G iG]
et |81
\J = \J
art'ght
initial state: s, next state: s,

N

Q(st, argne) 1+ ymaxQ(s,2')

« r+0.9max{63,81,100} + 90
a

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016

Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of @ are as
shown; executes rightward move

R 3> 'O O 1%
G iG]
et |81
\J = \J
art'ght
initial state: s, next state: s,

N

Q(st, argne) 1+ ymaxQ(s,2')

« r+0.9max{63,81,100} + 90
a

@ Important observation: at each time step (making an action a in state s
only one entry of @ will change (the entry Q(s, a))

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 /38

Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of @ are as
shown; executes rightward move

R 3> 'O O 1%
G G
|81 |81
\J = \J
al'ight
initial state: s next state: s,

1

N

Q(st, argne) 1+ ymaxQ(s,2')

« r+0.9max{63,81,100} + 90
a

@ Important observation: at each time step (making an action a in state s
only one entry of @ will change (the entry Q(s, a))

@ Notice that if rewards are non-negative, then Q values only increase from 0,
approach true Q

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 /38

Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 /38

Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 /38

Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

@ Intuition for simple grid world, reward only upon entering goal state — @
estimates improve from goal state back

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35/ 38

Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

@ Intuition for simple grid world, reward only upon entering goal state — @
estimates improve from goal state back

1. All Q(s, a) start at 0

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 /38

Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule
@ Intuition for simple grid world, reward only upon entering goal state — @

estimates improve from goal state back

1. All Q(s, a) start at 0 A
2. First episode — only update Q(s, a) for transition leading to goal state

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 /38

Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

@ Intuition for simple grid world, reward only upon entering goal state — @
estimates improve from goal state back

1. All Q(s, a) start at 0

2. First episode — only update Q(s, a) for transition leading to goal state
3. Next episode — if go thru this next-to-last transition, will update

N

Q(s, a) another step back

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 /38

Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

@ Intuition for simple grid world, reward only upon entering goal state — @
estimates improve from goal state back

1.
2.
3.

All Q(s, a) start at 0

First episode — only update Q(s, a) for transition leading to goal state
Next episode — if go thru this next-to-last transition, will update
Q(s, a) another step back

Eventually propagate information from transitions with non-zero reward

throughout state-action space

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 35 /38

Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 38

Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

@ Can choose actions to maximize Q(s, a)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 38

Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)
@ Can choose actions to maximize Q(s, a)

@ Good idea?

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 38

Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)
Can choose actions to maximize Q(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

exp(k@(s, a;))
> exp(kQ(s, a)))

P(ails) =

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 38

Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

Can choose actions to maximize Q(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

exp(k@(s, a;))
> exp(kQ(s, a)))

P(ails) =

@ Can vary k during learning

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 38

Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

Can choose actions to maximize Q(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

exp(k@(s, a;))
> exp(kQ(s, a)))

P(ails) =

@ Can vary k during learning

» more exploration early on, shift towards exploitation

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 36 / 38

Non-deterministic Case

@ What if reward and next state are non-deterministic?

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 / 38

Non-deterministic Case

@ What if reward and next state are non-deterministic?

@ We redefine V, Q based on probabilistic estimates, expected values of them:

Vﬂ-(s) = Eﬂ[rt+’yrt+1+fy2rt+2+...]

EW[Z '7irt+i]
i=0

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 /38

Non-deterministic Case

@ What if reward and next state are non-deterministic?

@ We redefine V, Q based on probabilistic estimates, expected values of them:

Vﬂ-(s) = Eﬂ[rt+’yrt+1+fy2rt+2+...]
= EW[ZWI"H,']
i=0

and

Q(s,a) = E[r(s,a) +~7V7(d(s,a))]
E[r(s,a) +7)_ p(s'ls, a) max Q(s', a')]

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 37 /38

-deterministic Case: Learning Q

@ Training rule does not converge (can keep changing Q even if initialized to
true @ values)

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 38 /38

-deterministic Case: Learning Q

@ Training rule does not converge (can keep changing Q even if initialized to
true @ values)

@ So modify training rule to change more slowly
Q(sa a) — (1 - an)@nfl(sa a) + CY,,[I’ + Y m&/]X anl(sl, al)]
a

where s’ is the state land in after s, and a’ indexes the actions that can be

taken in state s’)

I visits, (s, a)

where visits is the number of times action a is taken in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 38 /38

	Introduction

