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Ensemble methods

Typical application: classification

Ensemble of classifiers is a set of classifiers whose individual decisions are
combined in some way to classify new examples

Simplest approach:

1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority as classification

Classifiers are di↵erent due to di↵erent sampling of training data, or
randomized parameters within the classification algorithm

Aim: take simple mediocre algorithm and transform it into a super classifier
without requiring any fancy new algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 3 / 34



Ensemble methods

Typical application: classification

Ensemble of classifiers is a set of classifiers whose individual decisions are
combined in some way to classify new examples

Simplest approach:

1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority as classification

Classifiers are di↵erent due to di↵erent sampling of training data, or
randomized parameters within the classification algorithm

Aim: take simple mediocre algorithm and transform it into a super classifier
without requiring any fancy new algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 3 / 34



Ensemble methods

Typical application: classification

Ensemble of classifiers is a set of classifiers whose individual decisions are
combined in some way to classify new examples

Simplest approach:

1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority as classification

Classifiers are di↵erent due to di↵erent sampling of training data, or
randomized parameters within the classification algorithm

Aim: take simple mediocre algorithm and transform it into a super classifier
without requiring any fancy new algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 3 / 34



Ensemble methods

Typical application: classification

Ensemble of classifiers is a set of classifiers whose individual decisions are
combined in some way to classify new examples

Simplest approach:

1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority as classification

Classifiers are di↵erent due to di↵erent sampling of training data, or
randomized parameters within the classification algorithm

Aim: take simple mediocre algorithm and transform it into a super classifier
without requiring any fancy new algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 3 / 34



Ensemble methods

Typical application: classification

Ensemble of classifiers is a set of classifiers whose individual decisions are
combined in some way to classify new examples

Simplest approach:

1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority as classification

Classifiers are di↵erent due to di↵erent sampling of training data, or
randomized parameters within the classification algorithm

Aim: take simple mediocre algorithm and transform it into a super classifier
without requiring any fancy new algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 3 / 34



Ensemble methods: Summary

Di↵er in training strategy, and combination method

I Parallel training with di↵erent training sets
1. Bagging (bootstrap aggregation) – train separate models on

overlapping training sets, average their predictions

I Sequential training, iteratively re-weighting training examples so
current classifier focuses on hard examples: boosting

I Parallel training with objective encouraging division of labor: mixture
of experts

Notes:

I Also known as meta-learning
I Typically applied to weak models, such as decision stumps (single-node

decision trees), or linear classifiers
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Variance-bias Tradeo↵

Minimize two sets of errors:

1. Variance: error from sensitivity to small fluctuations in the training set

2. Bias: erroneous assumptions in the model

Variance-bias decomposition is a way of analyzing the generalization error as
a sum of 3 terms: variance, bias and irreducible error (resulting from the
problem itself)
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Why do Ensemble Methods Work?

Based on one of two basic observations:

1. Variance reduction: if the training sets are completely independent, it
will always help to average an ensemble because this will reduce
variance without a↵ecting bias (e.g., bagging)

I reduce sensitivity to individual data points

2. Bias reduction: for simple models, average of models has much greater
capacity than single model (e.g., hyperplane classifiers, Gaussian
densities).

I Averaging models can reduce bias substantially by increasing capacity,
and control variance by fitting one component at a time (e.g., boosting)
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Ensemble Methods: Justification

Ensemble methods more accurate than any individual members if:

I Accurate (better than guessing)
I Diverse (di↵erent errors on new examples)

Why?

Independent errors: prob k of N classifiers (independent error rate ✏) wrong:

P(num errors = k) =

✓
N

k

◆
✏k(1� ✏)N�k

Probability that majority vote wrong: error under distribution where more
than N/2 wrong
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Ensemble Methods: Justification

Figure : Example: The probability that exactly K (out of 21) classifiers will make
an error assuming each classifier has an error rate of ✏ = 0.3 and makes its errors
independently of the other classifier. The area under the curve for 11 or more
classifiers being simultaneously wrong is 0.026 (much less than ✏).

[Credit: T. G Dietterich, Ensemble Methods in Machine Learning]
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Ensemble Methods: Justification

Figure : ✏ = 0.3: (left) N = 11 classifiers, (middle) N = 21, (right) N = 121.

Figure : ✏ = 0.49: (left) N = 11, (middle) N = 121, (right) N = 10001.
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Ensemble Methods: Netflix

Clear demonstration of the power of ensemble methods

Original progress prize winner (BellKor) was ensemble of 107 models!

I ”Our experience is that most e↵orts should be concentrated in deriving

substantially di↵erent approaches, rather than refining a simple

technique.”

I ”We strongly believe that the success of an ensemble approach

depends on the ability of its various predictors to expose di↵erent

complementing aspects of the data. Experience shows that this is very

di↵erent than optimizing the accuracy of each individual predictor.”
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Bootstrap Estimation

Repeatedly draw n samples from D

For each set of samples, estimate a statistic

The bootstrap estimate is the mean of the individual estimates

Used to estimate a statistic (parameter) and its variance

Bagging: bootstrap aggregation (Breiman 1994)
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Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 8
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FIGURE 8.2. (Top left:) B-spline smooth of data.
(Top right:) B-spline smooth plus and minus 1.96×
standard error bands. (Bottom left:) Ten bootstrap
replicates of the B-spline smooth. (Bottom right:)
B-spline smooth with 95% standard error bands com-
puted from the bootstrap distribution.



Bagging

Simple idea: generate M bootstrap samples from your original training set.
Train on each one to get ym, and average them

y
M
bag (x) =

1

M

MX

m=1

ym(x)

For regression: average predictions

For classification: average class probabilities (or take the majority vote if
only hard outputs available)

Bagging approximates the Bayesian posterior mean. The more bootstraps
the better, so use as many as you have time for

Each bootstrap sample is drawn with replacement, so each one contains
some duplicates of certain training points and leaves out other training
points completely
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For classification: average class probabilities (or take the majority vote if
only hard outputs available)

Bagging approximates the Bayesian posterior mean. The more bootstraps
the better, so use as many as you have time for

Each bootstrap sample is drawn with replacement, so each one contains
some duplicates of certain training points and leaves out other training
points completely

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 12 / 34



Bagging

Simple idea: generate M bootstrap samples from your original training set.
Train on each one to get ym, and average them

y
M
bag (x) =

1

M

MX

m=1

ym(x)

For regression: average predictions

For classification: average class probabilities (or take the majority vote if
only hard outputs available)

Bagging approximates the Bayesian posterior mean. The more bootstraps
the better, so use as many as you have time for

Each bootstrap sample is drawn with replacement, so each one contains
some duplicates of certain training points and leaves out other training
points completely

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 12 / 34



Boosting (AdaBoost): Summary

Also works by manipulating training set, but classifiers trained sequentially

Each classifier trained given knowledge of the performance of previously
trained classifiers: focus on hard examples

Final classifier: weighted sum of component classifiers
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Making Weak Learners Stronger

Suppose you have a weak learning module (a base classifier) that can always
get (0.5 + ✏) correct when given a two-way classification task

I That seems like a weak assumption but beware!

Can you apply this learning module many times to get a strong learner that
can get close to zero error rate on the training data?

I Theorists showed how to do this and it actually led to an e↵ective new
learning procedure (Freund & Shapire, 1996)
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Boosting (ADAboost)

First train the base classifier on all the training data with equal importance
weights on each case.

Then re-weight the training data to emphasize the hard cases and train a
second model.

I How do we re-weight the data?

Keep training new models on re-weighted data

Finally, use a weighted committee of all the models for the test data.

I How do we weight the models in the committee?
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How to Train Each Classifier

Input: x, Output: y(x) 2 {1,�1}

Target t 2 {�1, 1}

Weight on example n for classifier m: wm
n

Cost function for classifier m

Jm =
NX

n=1

w
m
n [ym(x

n) 6= t
(n)]| {z }

1 if error, 0 o.w.

=
X

weighted errors
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How to weight each training case for classifier m

Recall cost function is

Jm =
NX

n=1

w
m
n [ym(x

n) 6= t
(n)]| {z }

1 if error, 0 o.w.

=
X

weighted errors

Weighted error rate of a classifier

✏m =
JmP
wm
n

The quality of the classifier is

↵m = ln

✓
1� ✏m
✏m

◆

It is zero if the classifier has weighted error rate of 0.5 and infinity if the
classifier is perfect

The weights for the next round are then

w
m+1
n = exp

 
�1

2
t
(n)

mX

i=1

↵iyi (x
(n))

!
= w

m
n exp

✓
�1

2
t
(n)↵mym(x

(n))

◆
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How to make predictions using a committee of classifiers

Weight the binary prediction of each classifier by the quality of that classifier:

yM(x) = sign

 
MX

m=1

1

2
↵mym(x)

!

This is how to do inference, i.e., how to compute the prediction for each
new example.
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AdaBoost Algorithm

Input: {x(n), t(n)}Nn=1, and WeakLearn: learning procedure, produces classifier y(x)

Initialize example weights: wm
n (x) = 1/N

For m=1:M
I ym(x) = WeakLearn({x}, t,w), fit classifier by minimizing

Jm =
NX

n=1

wm
n [ym(x

n) 6= t(n)]

I Compute unnormalized error rate

✏m =
JmP
wm

n

I Compute classifier coe�cient ↵m = log 1�✏m
✏m

I Update data weights

wm+1
n = wm

n exp

✓
�1
2
t(n)↵mym(x

(n))

◆

Final model

Y (x) = sign(yM(x)) = sign(
MX

m=1

↵mym(x))
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AdaBoost Example

Training data

[Slide credit: Verma & Thrun]
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AdaBoost Example

Round 1

[Slide credit: Verma & Thrun]
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AdaBoost Example

Round 2

[Slide credit: Verma & Thrun]
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AdaBoost Example

Round 3

[Slide credit: Verma & Thrun]
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AdaBoost Example

Final classifier

[Slide credit: Verma & Thrun]
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AdaBoost example

Each figure shows the number m of base learners trained so far, the decision
of the most recent learner (dashed black), and the boundary of the ensemble
(green)

AdaBoost Applet: http://cseweb.ucsd.edu/~yfreund/adaboost/
Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 25 / 34
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An alternative derivation of ADAboost

Just write down the right cost function and optimize each parameter to
minimize it

I stagewise additive modeling (Friedman et. al. 2000)

At each step employ the exponential loss function for classifier m

E =
NX

n=1

exp{�t
(n)

fm(x
(n))}

Real-valued prediction by committee of models up to m

fm(x) =
1

2

mX

i=1

↵iyi (x)

We want to minimize E w.r.t. ↵m and the parameters of the classifier ym(x)

We do this in a sequential manner, one classifier at a time
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Loss Functions

Misclassification: 0/1 loss

Exponential loss: exp(�t · f (x)) (AdaBoost)
Squared error: (t � f (x))2

Soft-margin support vector (hinge loss): max(0, 1� t · y)
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Learning classifier m using exponential loss

At iteration m, the energy is computed as

E =
NX

n=1

exp{�t
(n)

fm(x
(n))}

with

fm(x) =
1

2

mX

i=1

↵iyi (x) =
1

2
↵mym(x) +

1

2

m�1X

i=1

↵iyi (x)

We can compute the part that is relevant for the m-th classifier

Erelevant =
NX

n=1

exp

✓
�t

(n)
fm�1(x

(n))� 1

2
t
(n)↵mym(x

(n))

◆

=
NX

n=1

w
m
n exp

✓
�1

2
t
(n)↵mym(x

(n))

◆

with w
m
n = exp

�
�t

(n)
fm�1(x(n))

�
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Continuing the derivation

Erelevant =
NX

n=1

w
m
n exp

⇣
�t

(n)↵m

2
ym(x

(n))
⌘

= e
�↵m

2

X

right

w
m
n + e

↵m
2

X

wrong

w
m
n

=
⇣
e

↵m
2 � e

�↵m
2

⌘

| {z }
multiplicative constant

X

n

w
m
n [t(n) 6= ym(x

(n))]

| {z }
wrong cases

+ e
�↵m

2

X

n

w
m
n

| {z }
unmodifiable

The second term is constant w.r.t. ym(x)

Thus we minimize the weighted number of wrong examples
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AdaBoost Algorithm

Input: {x(n), t(n)}Nn=1, and WeakLearn: learning procedure, produces classifier y(x)

Initialize example weights: wm
n (x) = 1/N

For m=1:M
I ym(x) = WeakLearn({x}, t,w), fit classifier by minimizing

Jm =
NX

n=1

wm
n [ym(x

n) 6= t(n)]

I Compute unnormalized error rate

✏m =
JmP
wm

n

I Compute classifier coe�cient ↵m = log 1�✏m
✏m

I Update data weights

wm+1
n = wm

n exp

✓
�1
2
t(n)↵mym(x

(n))

◆

Final model

Y (x) = sign(yM(x)) = sign(
MX

m=1

↵mym(x))
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AdaBoost Example
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An impressive example of boosting

Viola and Jones created a very fast face detector that can be scanned across
a large image to find the faces.

The base classifier/weak learner just compares the total intensity in two
rectangular pieces of the image.

I There is a neat trick for computing the total intensity in a rectangle in
a few operations.

I So its easy to evaluate a huge number of base classifiers and they are
very fast at runtime.

I The algorithm adds classifiers greedily based on their quality on the
weighted training cases.
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AdaBoost in Face Detection

Famous application of boosting: detecting faces in images

Two twists on standard algorithm

I Pre-define weak classifiers, so optimization=selection
I Change loss function for weak learners: false positives less costly than

misses
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AdaBoost Face Detection Results
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