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Today

Kernel trick
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Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]
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What if data is not linearly separable?

Introduce slack variables ξi

min
1

2
||w||2 + λ

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i)) ≥ 1− ξi

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

λ trades off training error vs model complexity

This is known as the soft-margin extension
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Non-linear Decision Boundaries

Note that both the learning objective and the decision function depend only
on dot products between patterns

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))]

How to form non-linear decision boundaries in input space?

1. Map data into feature space x→ φ(x)
2. Replace dot products between inputs with feature points

x(i)
T

x(j) → φ(x(i))Tφ(x(j))

3. Find linear decision boundary in feature space

Problem: what is a good feature function φ(x)?
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Input Transformation

Mapping to a feature space can produce problems:

I High computational burden due to high dimensionality
I Many more parameters

SVM solves these two issues simultaneously

I “Kernel trick” produces efficient classification
I Dual formulation only assigns parameters to samples, not features
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Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)
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Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space
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2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product

I calculation for particular mapping φ(x) implicitly maps to
high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space
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Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive definite

Kij = K (x(i), x(j))

Feature space can be very large

I polynomial kernel (1 + (x(i))Tx(j))d corresponds to feature space
exponential in d

I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space
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Classification with Non-linear SVMs

Non-linear SVM using kernel function K ():

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαjK (x(i), x(j))

Maximize ` w.r.t. {α} under constraints ∀i , αi ≥ 0

Unlike linear SVM, cannot express w as linear combination of support
vectors

I now must retain the support vectors to classify new examples

Final decision function:

y = sign[b +
N∑
i=1

t(i)αiK (x, x(i))]
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Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm
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More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html


More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html


More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs

I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html


More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle

I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html


More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs

I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html


More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points

I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html


More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html

	Introduction

