CSC 411: Lecture 16: Kernels

Richard Zemel, Raquel Urtasun and Sanja Fidler
University of Toronto

Today

- Kernel trick

Summary of Linear SVM

- Binary and linear separable classification

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin
- Training SVM by maximizing

$$
\begin{array}{r}
\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\} \\
\text { subject to } \quad \alpha_{i} \geq 0 ; \quad \sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{array}
$$

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin
- Training SVM by maximizing

$$
\begin{array}{r}
\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\} \\
\text { subject to } \quad \alpha_{i} \geq 0 ; \quad \sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{array}
$$

- The weights are

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}
$$

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin
- Training SVM by maximizing

$$
\begin{array}{r}
\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\} \\
\text { subject to } \quad \alpha_{i} \geq 0 ; \quad \sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{array}
$$

- The weights are

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}
$$

- Only a small subset of α_{i} 's will be nonzero, and the corresponding $\mathbf{x}^{(i)}$'s are the support vectors \mathbf{S}

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin
- Training SVM by maximizing

$$
\begin{array}{r}
\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\} \\
\text { subject to } \quad \alpha_{i} \geq 0 ; \quad \sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{array}
$$

- The weights are

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}
$$

- Only a small subset of α_{i} 's will be nonzero, and the corresponding $\mathbf{x}^{(i)}$'s are the support vectors \mathbf{S}
- Prediction on a new example:

$$
y=\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]=\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i \in \mathbf{S}} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]
$$

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

s.t $\quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right) \geq 1-\xi_{i}$

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

s.t $\quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right) \geq 1-\xi_{i}$

- Example lies on wrong side of hyperplane $\xi_{i}>1$

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

s.t $\quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right) \geq 1-\xi_{i}$

- Example lies on wrong side of hyperplane $\xi_{i}>1$
- Therefore $\sum_{i} \xi_{i}$ upper bounds the number of training errors

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

s.t $\quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right) \geq 1-\xi_{i}$

- Example lies on wrong side of hyperplane $\xi_{i}>1$
- Therefore $\sum_{i} \xi_{i}$ upper bounds the number of training errors
- λ trades off training error vs model complexity

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

s.t $\quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right) \geq 1-\xi_{i}$

- Example lies on wrong side of hyperplane $\xi_{i}>1$
- Therefore $\sum_{i} \xi_{i}$ upper bounds the number of training errors
- λ trades off training error vs model complexity
- This is known as the soft-margin extension

Non-linear Decision Boundaries

- Note that both the learning objective and the decision function depend only on dot products between patterns

$$
\begin{aligned}
\ell & =\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right) \\
y & =\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]
\end{aligned}
$$

Non-linear Decision Boundaries

- Note that both the learning objective and the decision function depend only on dot products between patterns

$$
\begin{aligned}
& \ell=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right) \\
& y=\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]
\end{aligned}
$$

- How to form non-linear decision boundaries in input space?

Non-linear Decision Boundaries

- Note that both the learning objective and the decision function depend only on dot products between patterns

$$
\begin{aligned}
\ell & =\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right) \\
y & =\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]
\end{aligned}
$$

- How to form non-linear decision boundaries in input space?

1. Map data into feature space $\mathbf{x} \rightarrow \phi(\mathbf{x})$

Non-linear Decision Boundaries

- Note that both the learning objective and the decision function depend only on dot products between patterns

$$
\begin{aligned}
\ell & =\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right) \\
y & =\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]
\end{aligned}
$$

- How to form non-linear decision boundaries in input space?

1. Map data into feature space $\mathbf{x} \rightarrow \phi(\mathbf{x})$
2. Replace dot products between inputs with feature points

$$
\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)} \rightarrow \phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

Non-linear Decision Boundaries

- Note that both the learning objective and the decision function depend only on dot products between patterns

$$
\begin{aligned}
\ell & =\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right) \\
y & =\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]
\end{aligned}
$$

- How to form non-linear decision boundaries in input space?

1. Map data into feature space $\mathbf{x} \rightarrow \phi(\mathbf{x})$
2. Replace dot products between inputs with feature points

$$
\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)} \rightarrow \phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

3. Find linear decision boundary in feature space

Non-linear Decision Boundaries

- Note that both the learning objective and the decision function depend only on dot products between patterns

$$
\begin{aligned}
\ell & =\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right) \\
y & =\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]
\end{aligned}
$$

- How to form non-linear decision boundaries in input space?

1. Map data into feature space $\mathbf{x} \rightarrow \phi(\mathbf{x})$
2. Replace dot products between inputs with feature points

$$
\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)} \rightarrow \phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

3. Find linear decision boundary in feature space

- Problem: what is a good feature function $\phi(\mathbf{x})$?

Input Transformation

- Mapping to a feature space can produce problems:

Input Transformation

- Mapping to a feature space can produce problems:
- High computational burden due to high dimensionality

Input Transformation

- Mapping to a feature space can produce problems:
- High computational burden due to high dimensionality
- Many more parameters

Input Transformation

- Mapping to a feature space can produce problems:
- High computational burden due to high dimensionality
- Many more parameters
- SVM solves these two issues simultaneously

Input Transformation

- Mapping to a feature space can produce problems:
- High computational burden due to high dimensionality
- Many more parameters
- SVM solves these two issues simultaneously
- "Kernel trick" produces efficient classification

Input Transformation

- Mapping to a feature space can produce problems:
- High computational burden due to high dimensionality
- Many more parameters
- SVM solves these two issues simultaneously
- "Kernel trick" produces efficient classification
- Dual formulation only assigns parameters to samples, not features

Kernel Trick

- Kernel trick: dot-products in feature space can be computed as a kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

Kernel Trick

- Kernel trick: dot-products in feature space can be computed as a kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

- Idea: work directly on \mathbf{x}, avoid having to compute $\phi(\mathbf{x})$

Kernel Trick

- Kernel trick: dot-products in feature space can be computed as a kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

- Idea: work directly on \mathbf{x}, avoid having to compute $\phi(\mathbf{x})$
- Example:

$$
K(\mathbf{a}, \mathbf{b})=\left(\mathbf{a}^{T} \mathbf{b}\right)^{3}=
$$

Kernel Trick

- Kernel trick: dot-products in feature space can be computed as a kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

- Idea: work directly on \mathbf{x}, avoid having to compute $\phi(\mathbf{x})$
- Example:

$$
K(\mathbf{a}, \mathbf{b})=\left(\mathbf{a}^{\top} \mathbf{b}\right)^{3}=\left(\left(a_{1}, a_{2}\right)^{T}\left(b_{1}, b_{2}\right)\right)^{3}
$$

Kernel Trick

- Kernel trick: dot-products in feature space can be computed as a kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

- Idea: work directly on \mathbf{x}, avoid having to compute $\phi(\mathbf{x})$
- Example:

$$
\begin{aligned}
K(\mathbf{a}, \mathbf{b}) & =\left(\mathbf{a}^{\top} \mathbf{b}\right)^{3}=\left(\left(a_{1}, a_{2}\right)^{T}\left(b_{1}, b_{2}\right)\right)^{3} \\
& =\left(a_{1} b_{1}+a_{2} b_{2}\right)^{3}
\end{aligned}
$$

Kernel Trick

- Kernel trick: dot-products in feature space can be computed as a kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

- Idea: work directly on \mathbf{x}, avoid having to compute $\phi(\mathbf{x})$
- Example:

$$
\begin{aligned}
K(\mathbf{a}, \mathbf{b}) & =\left(\mathbf{a}^{T} \mathbf{b}\right)^{3}=\left(\left(a_{1}, a_{2}\right)^{T}\left(b_{1}, b_{2}\right)\right)^{3} \\
& =\left(a_{1} b_{1}+a_{2} b_{2}\right)^{3} \\
& =a_{1}^{3} b_{1}^{3}+3 a_{1}^{2} b_{1}^{2} a_{2} b_{2}+3 a_{1} b_{1} a_{2}^{2} b_{2}^{2}+a_{2}^{3} b_{2}^{3}
\end{aligned}
$$

Kernel Trick

- Kernel trick: dot-products in feature space can be computed as a kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

- Idea: work directly on \mathbf{x}, avoid having to compute $\phi(\mathbf{x})$
- Example:

$$
\begin{aligned}
K(\mathbf{a}, \mathbf{b}) & =\left(\mathbf{a}^{T} \mathbf{b}\right)^{3}=\left(\left(a_{1}, a_{2}\right)^{T}\left(b_{1}, b_{2}\right)\right)^{3} \\
& =\left(a_{1} b_{1}+a_{2} b_{2}\right)^{3} \\
& =a_{1}^{3} b_{1}^{3}+3 a_{1}^{2} b_{1}^{2} a_{2} b_{2}+3 a_{1} b_{1} a_{2}^{2} b_{2}^{2}+a_{2}^{3} b_{2}^{3} \\
& =\left(a_{1}^{3}, \sqrt{3} a_{1}^{2} a_{2}, \sqrt{3} a_{1} a_{2}^{2}, a_{2}^{3}\right)^{T}\left(b_{1}^{3}, \sqrt{3} b_{1}^{2} b_{2}, \sqrt{3} b_{1} b_{2}^{2}, b_{2}^{3}\right)
\end{aligned}
$$

Kernel Trick

- Kernel trick: dot-products in feature space can be computed as a kernel function

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right)^{T} \phi\left(\mathbf{x}^{(j)}\right)
$$

- Idea: work directly on \mathbf{x}, avoid having to compute $\phi(\mathbf{x})$
- Example:

$$
\begin{aligned}
K(\mathbf{a}, \mathbf{b}) & =\left(\mathbf{a}^{\top} \mathbf{b}\right)^{3}=\left(\left(a_{1}, a_{2}\right)^{T}\left(b_{1}, b_{2}\right)\right)^{3} \\
& =\left(a_{1} b_{1}+a_{2} b_{2}\right)^{3} \\
& =a_{1}^{3} b_{1}^{3}+3 a_{1}^{2} b_{1}^{2} a_{2} b_{2}+3 a_{1} b_{1} a_{2}^{2} b_{2}^{2}+a_{2}^{3} b_{2}^{3} \\
& =\left(a_{1}^{3}, \sqrt{3} a_{1}^{2} a_{2}, \sqrt{3} a_{1} a_{2}^{2}, a_{2}^{3}\right)^{T}\left(b_{1}^{3}, \sqrt{3} b_{1}^{2} b_{2}, \sqrt{3} b_{1} b_{2}^{2}, b_{2}^{3}\right) \\
& =\phi(\mathbf{a}) \cdot \phi(\mathbf{b})
\end{aligned}
$$

Kernels

- Examples of kernels: kernels measure similarity

Kernels

- Examples of kernels: kernels measure similarity

1. Polynomial

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}+1\right)^{d}
$$

where d is the degree of the polynomial, e.g., $d=2$ for quadratic

Kernels

- Examples of kernels: kernels measure similarity

1. Polynomial

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}+1\right)^{d}
$$

where d is the degree of the polynomial, e.g., $d=2$ for quadratic
2. Gaussian

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Kernels

- Examples of kernels: kernels measure similarity

1. Polynomial

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}+1\right)^{d}
$$

where d is the degree of the polynomial, e.g., $d=2$ for quadratic
2. Gaussian

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right)
$$

3. Sigmoid

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\tanh \left(\beta\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}\right)+a\right)
$$

Kernels

- Examples of kernels: kernels measure similarity

1. Polynomial

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}+1\right)^{d}
$$

where d is the degree of the polynomial, e.g., $d=2$ for quadratic
2. Gaussian

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right)
$$

3. Sigmoid

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\tanh \left(\beta\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}\right)+a\right)
$$

- Each kernel computation corresponds to dot product

Kernels

- Examples of kernels: kernels measure similarity

1. Polynomial

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}+1\right)^{d}
$$

where d is the degree of the polynomial, e.g., $d=2$ for quadratic
2. Gaussian

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right)
$$

3. Sigmoid

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\tanh \left(\beta\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}\right)+a\right)
$$

- Each kernel computation corresponds to dot product
- calculation for particular mapping $\phi(\mathbf{x})$ implicitly maps to high-dimensional space

Kernels

- Examples of kernels: kernels measure similarity

1. Polynomial

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}+1\right)^{d}
$$

where d is the degree of the polynomial, e.g., $d=2$ for quadratic
2. Gaussian

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right)
$$

3. Sigmoid

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\tanh \left(\beta\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}\right)+a\right)
$$

- Each kernel computation corresponds to dot product
- calculation for particular mapping $\phi(\mathbf{x})$ implicitly maps to high-dimensional space
- Why is this useful?

Kernels

- Examples of kernels: kernels measure similarity

1. Polynomial

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}+1\right)^{d}
$$

where d is the degree of the polynomial, e.g., $d=2$ for quadratic
2. Gaussian

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right)
$$

3. Sigmoid

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\tanh \left(\beta\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}\right)+a\right)
$$

- Each kernel computation corresponds to dot product
- calculation for particular mapping $\phi(\mathbf{x})$ implicitly maps to high-dimensional space
- Why is this useful?

1. Rewrite training examples using more complex features

Kernels

- Examples of kernels: kernels measure similarity

1. Polynomial

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}+1\right)^{d}
$$

where d is the degree of the polynomial, e.g., $d=2$ for quadratic
2. Gaussian

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\frac{\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right)
$$

3. Sigmoid

$$
K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\tanh \left(\beta\left(\mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)}\right)+a\right)
$$

- Each kernel computation corresponds to dot product
- calculation for particular mapping $\phi(\mathbf{x})$ implicitly maps to high-dimensional space
- Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly separable in higher dimensional space

Kernel Functions

- Mercer's Theorem (1909): any reasonable kernel corresponds to some feature space

Kernel Functions

- Mercer's Theorem (1909): any reasonable kernel corresponds to some feature space
- Reasonable means that the Gram matrix is positive definite

$$
K_{i j}=K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

Kernel Functions

- Mercer's Theorem (1909): any reasonable kernel corresponds to some feature space
- Reasonable means that the Gram matrix is positive definite

$$
K_{i j}=K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

- Feature space can be very large

Kernel Functions

- Mercer's Theorem (1909): any reasonable kernel corresponds to some feature space
- Reasonable means that the Gram matrix is positive definite

$$
K_{i j}=K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

- Feature space can be very large
- polynomial kernel $\left(1+\left(\mathbf{x}^{(i)}\right)^{T} \mathbf{x}^{(j)}\right)^{d}$ corresponds to feature space exponential in d

Kernel Functions

- Mercer's Theorem (1909): any reasonable kernel corresponds to some feature space
- Reasonable means that the Gram matrix is positive definite

$$
K_{i j}=K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

- Feature space can be very large
- polynomial kernel $\left(1+\left(\mathbf{x}^{(i)}\right)^{T} \mathbf{x}^{(j)}\right)^{d}$ corresponds to feature space exponential in d
- Gaussian kernel has infinitely dimensional features

Kernel Functions

- Mercer's Theorem (1909): any reasonable kernel corresponds to some feature space
- Reasonable means that the Gram matrix is positive definite

$$
K_{i j}=K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

- Feature space can be very large
- polynomial kernel $\left(1+\left(\mathbf{x}^{(i)}\right)^{T} \mathbf{x}^{(j)}\right)^{d}$ corresponds to feature space exponential in d
- Gaussian kernel has infinitely dimensional features
- Linear separators in these super high-dim spaces correspond to highly nonlinear decision boundaries in input space

Classification with Non-linear SVMs

- Non-linear SVM using kernel function $K()$:

$$
\ell=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

Classification with Non-linear SVMs

- Non-linear SVM using kernel function $K()$:

$$
\ell=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

- Maximize ℓ w.r.t. $\{\alpha\}$ under constraints $\forall i, \alpha_{i} \geq 0$

Classification with Non-linear SVMs

- Non-linear SVM using kernel function $K()$:

$$
\ell=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

- Maximize ℓ w.r.t. $\{\alpha\}$ under constraints $\forall i, \alpha_{i} \geq 0$
- Unlike linear SVM, cannot express \mathbf{w} as linear combination of support vectors

Classification with Non-linear SVMs

- Non-linear SVM using kernel function $K()$:

$$
\ell=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

- Maximize ℓ w.r.t. $\{\alpha\}$ under constraints $\forall i, \alpha_{i} \geq 0$
- Unlike linear SVM, cannot express \mathbf{w} as linear combination of support vectors
- now must retain the support vectors to classify new examples

Classification with Non-linear SVMs

- Non-linear SVM using kernel function $K()$:

$$
\ell=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j} K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

- Maximize ℓ w.r.t. $\{\alpha\}$ under constraints $\forall i, \alpha_{i} \geq 0$
- Unlike linear SVM, cannot express \mathbf{w} as linear combination of support vectors
- now must retain the support vectors to classify new examples
- Final decision function:

$$
y=\operatorname{sign}\left[b+\sum_{i=1}^{N} t^{(i)} \alpha_{i} K\left(\mathbf{x}, \mathbf{x}^{(i)}\right)\right]
$$

Summary

- Advantages:

Summary

- Advantages:
- Kernels allow very flexible hypotheses

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods
- Soft-margin extension permits mis-classified examples

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods
- Soft-margin extension permits mis-classified examples
- Variable-sized hypothesis space

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods
- Soft-margin extension permits mis-classified examples
- Variable-sized hypothesis space
- Excellent results (1.1\% error rate on handwritten digits vs. LeNet's 0.9\%)

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods
- Soft-margin extension permits mis-classified examples
- Variable-sized hypothesis space
- Excellent results (1.1\% error rate on handwritten digits vs. LeNet's 0.9\%)
- Disadvantages:

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods
- Soft-margin extension permits mis-classified examples
- Variable-sized hypothesis space
- Excellent results (1.1\% error rate on handwritten digits vs. LeNet's 0.9\%)
- Disadvantages:
- Must choose kernel parameters

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods
- Soft-margin extension permits mis-classified examples
- Variable-sized hypothesis space
- Excellent results (1.1\% error rate on handwritten digits vs. LeNet's 0.9\%)
- Disadvantages:
- Must choose kernel parameters
- Very large problems computationally intractable

Summary

- Advantages:
- Kernels allow very flexible hypotheses
- Poly-time exact optimization methods rather than approximate methods
- Soft-margin extension permits mis-classified examples
- Variable-sized hypothesis space
- Excellent results (1.1\% error rate on handwritten digits vs. LeNet's 0.9\%)
- Disadvantages:
- Must choose kernel parameters
- Very large problems computationally intractable
- Batch algorithm

More Summary

- Software:
- A list of SVM implementations can be found at http://www.kernel-machines.org/software.html
- Some implementations (such as LIBSVM) can handle multi-class classification
- SVMLight is among the earliest implementations
- Several Matlab toolboxes for SVM are also available

More Summary

- Software:
- A list of SVM implementations can be found at http://www.kernel-machines.org/software.html
- Some implementations (such as LIBSVM) can handle multi-class classification
- SVMLight is among the earliest implementations
- Several Matlab toolboxes for SVM are also available
- Key points:

More Summary

- Software:
- A list of SVM implementations can be found at http://www.kernel-machines.org/software.html
- Some implementations (such as LIBSVM) can handle multi-class classification
- SVMLight is among the earliest implementations
- Several Matlab toolboxes for SVM are also available
- Key points:
- Difference between logistic regression and SVMs

More Summary

- Software:
- A list of SVM implementations can be found at http://www.kernel-machines.org/software.html
- Some implementations (such as LIBSVM) can handle multi-class classification
- SVMLight is among the earliest implementations
- Several Matlab toolboxes for SVM are also available
- Key points:
- Difference between logistic regression and SVMs
- Maximum margin principle

More Summary

- Software:
- A list of SVM implementations can be found at http://www.kernel-machines.org/software.html
- Some implementations (such as LIBSVM) can handle multi-class classification
- SVMLight is among the earliest implementations
- Several Matlab toolboxes for SVM are also available
- Key points:
- Difference between logistic regression and SVMs
- Maximum margin principle
- Target function for SVMs

More Summary

- Software:
- A list of SVM implementations can be found at http://www.kernel-machines.org/software.html
- Some implementations (such as LIBSVM) can handle multi-class classification
- SVMLight is among the earliest implementations
- Several Matlab toolboxes for SVM are also available
- Key points:
- Difference between logistic regression and SVMs
- Maximum margin principle
- Target function for SVMs
- Slack variables for mis-classified points

More Summary

- Software:
- A list of SVM implementations can be found at http://www.kernel-machines.org/software.html
- Some implementations (such as LIBSVM) can handle multi-class classification
- SVMLight is among the earliest implementations
- Several Matlab toolboxes for SVM are also available
- Key points:
- Difference between logistic regression and SVMs
- Maximum margin principle
- Target function for SVMs
- Slack variables for mis-classified points
- Kernel trick allows non-linear generalizations

