
CSC 411: Lecture 16: Kernels

Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 1 / 12

Today

Kernel trick

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 2 / 12

Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 3 / 12

Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 3 / 12

Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 3 / 12

Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 3 / 12

Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 3 / 12

Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 3 / 12

What if data is not linearly separable?

Introduce slack variables ξi

min
1

2
||w||2 + λ

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i)) ≥ 1− ξi

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

λ trades off training error vs model complexity

This is known as the soft-margin extension

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 4 / 12

What if data is not linearly separable?

Introduce slack variables ξi

min
1

2
||w||2 + λ

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i)) ≥ 1− ξi

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

λ trades off training error vs model complexity

This is known as the soft-margin extension

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 4 / 12

What if data is not linearly separable?

Introduce slack variables ξi

min
1

2
||w||2 + λ

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i)) ≥ 1− ξi

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

λ trades off training error vs model complexity

This is known as the soft-margin extension

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 4 / 12

What if data is not linearly separable?

Introduce slack variables ξi

min
1

2
||w||2 + λ

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i)) ≥ 1− ξi

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

λ trades off training error vs model complexity

This is known as the soft-margin extension

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 4 / 12

What if data is not linearly separable?

Introduce slack variables ξi

min
1

2
||w||2 + λ

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i)) ≥ 1− ξi

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

λ trades off training error vs model complexity

This is known as the soft-margin extension

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 4 / 12

Non-linear Decision Boundaries

Note that both the learning objective and the decision function depend only
on dot products between patterns

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))]

How to form non-linear decision boundaries in input space?

1. Map data into feature space x→ φ(x)
2. Replace dot products between inputs with feature points

x(i)
T

x(j) → φ(x(i))Tφ(x(j))

3. Find linear decision boundary in feature space

Problem: what is a good feature function φ(x)?

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 5 / 12

Non-linear Decision Boundaries

Note that both the learning objective and the decision function depend only
on dot products between patterns

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))]

How to form non-linear decision boundaries in input space?

1. Map data into feature space x→ φ(x)
2. Replace dot products between inputs with feature points

x(i)
T

x(j) → φ(x(i))Tφ(x(j))

3. Find linear decision boundary in feature space

Problem: what is a good feature function φ(x)?

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 5 / 12

Non-linear Decision Boundaries

Note that both the learning objective and the decision function depend only
on dot products between patterns

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))]

How to form non-linear decision boundaries in input space?

1. Map data into feature space x→ φ(x)

2. Replace dot products between inputs with feature points

x(i)
T

x(j) → φ(x(i))Tφ(x(j))

3. Find linear decision boundary in feature space

Problem: what is a good feature function φ(x)?

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 5 / 12

Non-linear Decision Boundaries

Note that both the learning objective and the decision function depend only
on dot products between patterns

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))]

How to form non-linear decision boundaries in input space?

1. Map data into feature space x→ φ(x)
2. Replace dot products between inputs with feature points

x(i)
T

x(j) → φ(x(i))Tφ(x(j))

3. Find linear decision boundary in feature space

Problem: what is a good feature function φ(x)?

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 5 / 12

Non-linear Decision Boundaries

Note that both the learning objective and the decision function depend only
on dot products between patterns

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))]

How to form non-linear decision boundaries in input space?

1. Map data into feature space x→ φ(x)
2. Replace dot products between inputs with feature points

x(i)
T

x(j) → φ(x(i))Tφ(x(j))

3. Find linear decision boundary in feature space

Problem: what is a good feature function φ(x)?

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 5 / 12

Non-linear Decision Boundaries

Note that both the learning objective and the decision function depend only
on dot products between patterns

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))]

How to form non-linear decision boundaries in input space?

1. Map data into feature space x→ φ(x)
2. Replace dot products between inputs with feature points

x(i)
T

x(j) → φ(x(i))Tφ(x(j))

3. Find linear decision boundary in feature space

Problem: what is a good feature function φ(x)?

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 5 / 12

Input Transformation

Mapping to a feature space can produce problems:

I High computational burden due to high dimensionality
I Many more parameters

SVM solves these two issues simultaneously

I “Kernel trick” produces efficient classification
I Dual formulation only assigns parameters to samples, not features

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 6 / 12

Input Transformation

Mapping to a feature space can produce problems:

I High computational burden due to high dimensionality

I Many more parameters

SVM solves these two issues simultaneously

I “Kernel trick” produces efficient classification
I Dual formulation only assigns parameters to samples, not features

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 6 / 12

Input Transformation

Mapping to a feature space can produce problems:

I High computational burden due to high dimensionality
I Many more parameters

SVM solves these two issues simultaneously

I “Kernel trick” produces efficient classification
I Dual formulation only assigns parameters to samples, not features

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 6 / 12

Input Transformation

Mapping to a feature space can produce problems:

I High computational burden due to high dimensionality
I Many more parameters

SVM solves these two issues simultaneously

I “Kernel trick” produces efficient classification
I Dual formulation only assigns parameters to samples, not features

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 6 / 12

Input Transformation

Mapping to a feature space can produce problems:

I High computational burden due to high dimensionality
I Many more parameters

SVM solves these two issues simultaneously

I “Kernel trick” produces efficient classification

I Dual formulation only assigns parameters to samples, not features

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 6 / 12

Input Transformation

Mapping to a feature space can produce problems:

I High computational burden due to high dimensionality
I Many more parameters

SVM solves these two issues simultaneously

I “Kernel trick” produces efficient classification
I Dual formulation only assigns parameters to samples, not features

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 6 / 12

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 7 / 12

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 7 / 12

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 =

((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 7 / 12

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 7 / 12

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 7 / 12

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 7 / 12

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 7 / 12

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 7 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic

2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product

I calculation for particular mapping φ(x) implicitly maps to
high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features

2. Dataset not linearly separable in original space may be linearly
separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 8 / 12

Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive definite

Kij = K (x(i), x(j))

Feature space can be very large

I polynomial kernel (1 + (x(i))Tx(j))d corresponds to feature space
exponential in d

I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 9 / 12

Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive definite

Kij = K (x(i), x(j))

Feature space can be very large

I polynomial kernel (1 + (x(i))Tx(j))d corresponds to feature space
exponential in d

I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 9 / 12

Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive definite

Kij = K (x(i), x(j))

Feature space can be very large

I polynomial kernel (1 + (x(i))Tx(j))d corresponds to feature space
exponential in d

I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 9 / 12

Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive definite

Kij = K (x(i), x(j))

Feature space can be very large

I polynomial kernel (1 + (x(i))Tx(j))d corresponds to feature space
exponential in d

I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 9 / 12

Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive definite

Kij = K (x(i), x(j))

Feature space can be very large

I polynomial kernel (1 + (x(i))Tx(j))d corresponds to feature space
exponential in d

I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 9 / 12

Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive definite

Kij = K (x(i), x(j))

Feature space can be very large

I polynomial kernel (1 + (x(i))Tx(j))d corresponds to feature space
exponential in d

I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 9 / 12

Classification with Non-linear SVMs

Non-linear SVM using kernel function K ():

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαjK (x(i), x(j))

Maximize ` w.r.t. {α} under constraints ∀i , αi ≥ 0

Unlike linear SVM, cannot express w as linear combination of support
vectors

I now must retain the support vectors to classify new examples

Final decision function:

y = sign[b +
N∑
i=1

t(i)αiK (x, x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 10 / 12

Classification with Non-linear SVMs

Non-linear SVM using kernel function K ():

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαjK (x(i), x(j))

Maximize ` w.r.t. {α} under constraints ∀i , αi ≥ 0

Unlike linear SVM, cannot express w as linear combination of support
vectors

I now must retain the support vectors to classify new examples

Final decision function:

y = sign[b +
N∑
i=1

t(i)αiK (x, x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 10 / 12

Classification with Non-linear SVMs

Non-linear SVM using kernel function K ():

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαjK (x(i), x(j))

Maximize ` w.r.t. {α} under constraints ∀i , αi ≥ 0

Unlike linear SVM, cannot express w as linear combination of support
vectors

I now must retain the support vectors to classify new examples

Final decision function:

y = sign[b +
N∑
i=1

t(i)αiK (x, x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 10 / 12

Classification with Non-linear SVMs

Non-linear SVM using kernel function K ():

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαjK (x(i), x(j))

Maximize ` w.r.t. {α} under constraints ∀i , αi ≥ 0

Unlike linear SVM, cannot express w as linear combination of support
vectors

I now must retain the support vectors to classify new examples

Final decision function:

y = sign[b +
N∑
i=1

t(i)αiK (x, x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 10 / 12

Classification with Non-linear SVMs

Non-linear SVM using kernel function K ():

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαjK (x(i), x(j))

Maximize ` w.r.t. {α} under constraints ∀i , αi ≥ 0

Unlike linear SVM, cannot express w as linear combination of support
vectors

I now must retain the support vectors to classify new examples

Final decision function:

y = sign[b +
N∑
i=1

t(i)αiK (x, x(i))]

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 10 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses

I Poly-time exact optimization methods rather than approximate
methods

I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods

I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples

I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space

I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s
0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters

I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable

I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 11 / 12

More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html

More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html

More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs

I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html

More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle

I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html

More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs

I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html

More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points

I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html

More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Zemel, Urtasun, Fidler (UofT) CSC 411: 16-Kernels 12 / 12

http://www.kernel-machines.org/software.html

	Introduction

