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Today

Margin

Max-margin classification
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Today

We are back to supervised learning

We are given training data {(x(i), t(i))}Ni=1

We will look at classification, so t(i) will represent the class label

We will focus on binary classification (two classes)

We will consider a linear classifier first (next class non-linear decision
boundaries)

Tiny change from before: instead of using t = 1 and t = 0 for
positive and negative class, we will use t = 1 for the positive and
t = −1 for the negative class
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Logistic Regression

y =

{
1 if (wTx + b) ≥ 0

−1 if (wTx + b) < 0
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Max Margin Classification

Instead of fitting all the points, focus on the boundary points

Aim: learn a boundary that leads to the largest margin (buffer) from points
on both sides

Why: intuition; theoretical support; and works well in practice

Subset of vectors that support (determine boundary) are called the support
vectors
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Linear SVM

Max margin classifier: inputs in margin are of unknown class

y =


1 if wTx + b ≥ 1

−1 if wTx + b ≤ −1

Undefined if − 1 ≤ wTx + b ≤ 1

Can write above condition as:

(wTx + b)y ≥ 1
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Geometry of the Problem

The vector w is orthogonal to the +1 plane.

If u and v are two points on that plane, then

wT (u− v) = 0

Same is true for −1 plane

Also: for point x+ on +1 plane and x− nearest point on −1 plane:

x+ = λw + x−
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Computing the Margin

Also: for point x+ on +1 plane and x− nearest point on −1 plane:

x+ = λw + x−

wTx+ + b = 1

wT (λw + x−) + b = 1

wTx− + b + λwTw = 1

− 1 + λwTw = 1

Therefore

λ =
2

wTw
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Computing the Margin

Define the margin M to be the distance between the +1 and −1 planes

We can now express this in terms of w to maximize the margin we minimize
the length of w

M = ||x+ − x−||
= ||λw|| = λ

√
wTw

= 2

√
wTw

wTw
=

2√
wTw

=
2

||w||
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Learning a Margin-Based Classifier

We can search for the optimal parameters (w and b) by finding a solution
that:

1. Correctly classifies the training examples: {(x(i), t(i))}Ni=1

2. Maximizes the margin (same as minimizing wTw)

min
w,b

1

2
||w||2

s.t.∀i (wTx(i) + b)t(i) ≥ 1,

This is called the primal formulation of Support Vector Machine (SVM)

Can optimize via projective gradient descent, etc.

Apply Lagrange multipliers: formulate equivalent problem
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Learning a Linear SVM

Convert the constrained minimization to an unconstrained optimization
problem: represent constraints as penalty terms:

min
w,b

1

2
||w||2 + penalty term

For data {(x(i), t(i))}Ni=1, use the following penalty

max
αi≥0

αi [1− (wTx(i) + b)t(i)] =

{
0 if (wTx(i) + b)t(i) ≥ 1

∞ otherwise

Rewrite the minimization problem

min
w,b
{1

2
||w||2 +

N∑
i=1

max
αi≥0

αi [1− (wTx(i) + b)t(i)]}

where αi are the Lagrange multipliers

= min
w,b

max
αi≥0
{1

2
||w||2 +

N∑
i=1

αi [1− (wTx(i) + b)t(i)]}
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Solution to Linear SVM

Let:

J(w, b;α) =
1

2
||w||2 +

N∑
i=1

αi [1− (wTx(i) + b)t(i)]

Swap the ”max” and ”min”: This is a lower bound

max
αi≥0

min
w,b

J(w, b;α) ≤ min
w,b

max
αi≥0

J(w, b;α)

Equality holds in certain conditions
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Solution to Linear SVM

Solving:

max
αi≥0

min
w,b

J(w, b;α) = max
αi≥0

min
w,b

1

2
||w||2 +

N∑
i=1

αi [1− (wTx(i) + b)t(i)]

First minimize J() w.r.t. w, b for fixed Lagrange multipliers:

∂J(w, b;α)

∂w
= w −

N∑
i=1

αix
(i)t(i) = 0

∂J(w, b;α)

∂b
= −

N∑
i=1

αi t
(i) = 0

We obtain
w =

N∑
i=1

αi t
(i)x(i)

Then substitute back to get final optimization:

L = max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}
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∂J(w, b;α)

∂w
= w −

N∑
i=1

αix
(i)t(i) = 0

∂J(w, b;α)

∂b
= −

N∑
i=1

αi t
(i) = 0

We obtain
w =

N∑
i=1

αi t
(i)x(i)

Then substitute back to get final optimization:

L = max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}
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Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]
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What if data is not linearly separable?

Introduce slack variables ξi

min
1

2
||w||2 + λ

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i) + b) ≥ 1− ξi

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

λ trades off training error vs model complexity

This is known as the soft-margin extension
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