CSC 411: Lecture 15: Support Vector Machine

Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto

Today

- Margin
- Max-margin classification

Today

- We are back to supervised learning

Today

- We are back to supervised learning
- We are given training data $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$

Today

- We are back to supervised learning
- We are given training data $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- We will look at classification, so $t^{(i)}$ will represent the class label

Today

- We are back to supervised learning
- We are given training data $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- We will look at classification, so $t^{(i)}$ will represent the class label
- We will focus on binary classification (two classes)

Today

- We are back to supervised learning
- We are given training data $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- We will look at classification, so $t^{(i)}$ will represent the class label
- We will focus on binary classification (two classes)
- We will consider a linear classifier first (next class non-linear decision boundaries)

Today

- We are back to supervised learning
- We are given training data $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- We will look at classification, so $t^{(i)}$ will represent the class label
- We will focus on binary classification (two classes)
- We will consider a linear classifier first (next class non-linear decision boundaries)
- Tiny change from before: instead of using $t=1$ and $t=0$ for positive and negative class, we will use $t=1$ for the positive and $t=-1$ for the negative class

Logistic Regression

Recall logistic regression classifiers

Max Margin Classification

- Instead of fitting all the points, focus on the boundary points

Max Margin Classification

- Instead of fitting all the points, focus on the boundary points
- Aim: learn a boundary that leads to the largest margin (buffer) from points on both sides

Max Margin Classification

- Instead of fitting all the points, focus on the boundary points
- Aim: learn a boundary that leads to the largest margin (buffer) from points on both sides

- Why: intuition; theoretical support; and works well in practice

Max Margin Classification

- Instead of fitting all the points, focus on the boundary points
- Aim: learn a boundary that leads to the largest margin (buffer) from points on both sides

- Why: intuition; theoretical support; and works well in practice
- Subset of vectors that support (determine boundary) are called the support vectors

Linear SVM

- Max margin classifier: inputs in margin are of unknown class

Linear SVM

- Max margin classifier: inputs in margin are of unknown class

$$
y= \begin{cases}1 & \text { if } \mathbf{w}^{T} \mathbf{x}+b \geq 1 \\ -1 & \text { if } \mathbf{w}^{T} \mathbf{x}+b \leq-1 \\ \text { Undefined } & \text { if }-1 \leq \mathbf{w}^{T} \mathbf{x}+b \leq 1\end{cases}
$$

Linear SVM

- Max margin classifier: inputs in margin are of unknown class

$$
y= \begin{cases}1 & \text { if } \mathbf{w}^{T} \mathbf{x}+b \geq 1 \\ -1 & \text { if } \mathbf{w}^{T} \mathbf{x}+b \leq-1 \\ \text { Undefined } & \text { if }-1 \leq \mathbf{w}^{T} \mathbf{x}+b \leq 1\end{cases}
$$

- Can write above condition as:

$$
\left(\mathbf{w}^{T} \mathbf{x}+b\right) y \geq 1
$$

Geometry of the Problem

- The vector \mathbf{w} is orthogonal to the +1 plane.

Geometry of the Problem

- The vector \mathbf{w} is orthogonal to the +1 plane. If \mathbf{u} and \mathbf{v} are two points on that plane, then

$$
\mathbf{w}^{T}(\mathbf{u}-\mathbf{v})=0
$$

Geometry of the Problem

- The vector \mathbf{w} is orthogonal to the +1 plane. If \mathbf{u} and \mathbf{v} are two points on that plane, then

$$
\mathbf{w}^{T}(\mathbf{u}-\mathbf{v})=0
$$

- Same is true for -1 plane

Geometry of the Problem

- The vector \mathbf{w} is orthogonal to the +1 plane. If \mathbf{u} and \mathbf{v} are two points on that plane, then

$$
\mathbf{w}^{T}(\mathbf{u}-\mathbf{v})=0
$$

- Same is true for -1 plane
- Also: for point \mathbf{x}_{+}on +1 plane and \mathbf{x}_{-}nearest point on -1 plane:

$$
\mathbf{x}_{+}=\lambda \mathbf{w}+\mathbf{x}_{-}
$$

Computing the Margin

- Also: for point \mathbf{x}_{+}on +1 plane and \mathbf{x}_{-}nearest point on -1 plane:

$$
\mathbf{x}_{+}=\lambda \mathbf{w}+\mathbf{x}_{-}
$$

$$
\mathbf{w}^{T} \mathbf{x}_{+}+b=1
$$

predict class - -1

Computing the Margin

- Also: for point \mathbf{x}_{+}on +1 plane and \mathbf{x}_{-}nearest point on -1 plane:

$$
\mathbf{x}_{+}=\lambda \mathbf{w}+\mathbf{x}_{-}
$$

Computing the Margin

- Also: for point \mathbf{x}_{+}on +1 plane and \mathbf{x}_{-}nearest point on -1 plane:

$$
\mathbf{x}_{+}=\lambda \mathbf{w}+\mathbf{x}_{-}
$$

$$
\begin{aligned}
& w^{\top} x+b=0 \\
& w^{\top} x+b=-1
\end{aligned} \text { predict class }^{-1}
$$

$$
\begin{aligned}
\mathbf{w}^{T} \mathbf{x}_{+}+b & =1 \\
\mathbf{w}^{T}\left(\lambda \mathbf{w}+\mathbf{x}_{-}\right)+b & =1 \\
\mathbf{w}^{T} \mathbf{x}_{-}+b+\lambda \mathbf{w}^{T} \mathbf{w} & =1
\end{aligned}
$$

Computing the Margin

- Also: for point \mathbf{x}_{+}on +1 plane and \mathbf{x}_{-}nearest point on -1 plane:

$$
\mathbf{x}_{+}=\lambda \mathbf{w}+\mathbf{x}_{-}
$$

$$
\begin{aligned}
\mathbf{w}^{T} \mathbf{x}_{+}+b & =1 \\
\mathbf{w}^{T}\left(\lambda \mathbf{w}+\mathbf{x}_{-}\right)+b & =1 \\
\mathbf{w}^{T} \mathbf{x}_{-}+b+\lambda \mathbf{w}^{T} \mathbf{w} & =1 \\
-1+\lambda \mathbf{w}^{T} \mathbf{w} & =1
\end{aligned}
$$

Computing the Margin

- Also: for point \mathbf{x}_{+}on +1 plane and \mathbf{x}_{-}nearest point on -1 plane:

$$
\mathbf{x}_{+}=\lambda \mathbf{w}+\mathbf{x}_{-}
$$

$$
\begin{aligned}
\mathbf{w}^{T} \mathbf{x}_{+}+b & =1 \\
\mathbf{w}^{T}\left(\lambda \mathbf{w}+\mathbf{x}_{-}\right)+b & =1 \\
\mathbf{w}^{T} \mathbf{x}_{-}+b+\lambda \mathbf{w}^{T} \mathbf{w} & =1 \\
-1+\lambda \mathbf{w}^{T} \mathbf{w} & =1
\end{aligned}
$$

Therefore

$$
\lambda=\frac{2}{\mathbf{w}^{T} \mathbf{w}}
$$

Computing the Margin

- Define the margin M to be the distance between the +1 and -1 planes

Computing the Margin

- Define the margin M to be the distance between the +1 and -1 planes
- We can now express this in terms of \mathbf{w} to maximize the margin we minimize the length of \mathbf{w}

Computing the Margin

- Define the margin M to be the distance between the +1 and -1 planes
- We can now express this in terms of \mathbf{w} to maximize the margin we minimize the length of \mathbf{w}

Computing the Margin

- Define the margin M to be the distance between the +1 and -1 planes
- We can now express this in terms of \mathbf{w} to maximize the margin we minimize the length of \mathbf{w}

Computing the Margin

- Define the margin M to be the distance between the +1 and -1 planes
- We can now express this in terms of \mathbf{w} to maximize the margin we minimize the length of \mathbf{w}

Computing the Margin

- Define the margin M to be the distance between the +1 and -1 planes
- We can now express this in terms of \mathbf{w} to maximize the margin we minimize the length of \mathbf{w}

Computing the Margin

- Define the margin M to be the distance between the +1 and -1 planes
- We can now express this in terms of \mathbf{w} to maximize the margin we minimize the length of \mathbf{w}

Learning a Margin-Based Classifier

- We can search for the optimal parameters (\mathbf{w} and b) by finding a solution that:

Learning a Margin-Based Classifier

- We can search for the optimal parameters (\mathbf{w} and b) by finding a solution that:

1. Correctly classifies the training examples: $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$

Learning a Margin-Based Classifier

- We can search for the optimal parameters (\mathbf{w} and b) by finding a solution that:

1. Correctly classifies the training examples: $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
2. Maximizes the margin (same as minimizing $\mathbf{w}^{\top} \mathbf{w}$)

Learning a Margin-Based Classifier

- We can search for the optimal parameters (\mathbf{w} and b) by finding a solution that:

1. Correctly classifies the training examples: $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
2. Maximizes the margin (same as minimizing $\mathbf{w}^{\top} \mathbf{w}$)

$$
\begin{array}{r}
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } \forall i \quad\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)} \geq 1,
\end{array}
$$

Learning a Margin-Based Classifier

- We can search for the optimal parameters (\mathbf{w} and b) by finding a solution that:

1. Correctly classifies the training examples: $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
2. Maximizes the margin (same as minimizing $\mathbf{w}^{\top} \mathbf{w}$)

$$
\begin{array}{r}
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } \forall i \quad\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)} \geq 1,
\end{array}
$$

- This is called the primal formulation of Support Vector Machine (SVM)

Learning a Margin-Based Classifier

- We can search for the optimal parameters (\mathbf{w} and b) by finding a solution that:

1. Correctly classifies the training examples: $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
2. Maximizes the margin (same as minimizing $\mathbf{w}^{\top} \mathbf{w}$)

$$
\begin{array}{r}
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } \forall i \quad\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)} \geq 1,
\end{array}
$$

- This is called the primal formulation of Support Vector Machine (SVM)
- Can optimize via projective gradient descent, etc.

Learning a Margin-Based Classifier

- We can search for the optimal parameters (\mathbf{w} and b) by finding a solution that:

1. Correctly classifies the training examples: $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
2. Maximizes the margin (same as minimizing $\mathbf{w}^{\top} \mathbf{w}$)

$$
\begin{array}{r}
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } \forall i \quad\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)} \geq 1,
\end{array}
$$

- This is called the primal formulation of Support Vector Machine (SVM)
- Can optimize via projective gradient descent, etc.
- Apply Lagrange multipliers: formulate equivalent problem

Learning a Linear SVM

- Convert the constrained minimization to an unconstrained optimization problem: represent constraints as penalty terms:

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+\text { penalty_term }
$$

Learning a Linear SVM

- Convert the constrained minimization to an unconstrained optimization problem: represent constraints as penalty terms:

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+\text { penalty_term }
$$

- For data $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$, use the following penalty

$$
\max _{\alpha_{i} \geq 0} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]= \begin{cases}0 & \text { if }\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)} \geq 1 \\ \infty & \text { otherwise }\end{cases}
$$

Learning a Linear SVM

- Convert the constrained minimization to an unconstrained optimization problem: represent constraints as penalty terms:

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+\text { penalty_term }
$$

- For data $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$, use the following penalty

$$
\max _{\alpha_{i} \geq 0} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]= \begin{cases}0 & \text { if }\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)} \geq 1 \\ \infty & \text { otherwise }\end{cases}
$$

- Rewrite the minimization problem

$$
\min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \max _{\alpha_{i} \geq 0} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]\right\}
$$

Learning a Linear SVM

- Convert the constrained minimization to an unconstrained optimization problem: represent constraints as penalty terms:

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+\text { penalty_term }
$$

- For data $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$, use the following penalty

$$
\max _{\alpha_{i} \geq 0} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]= \begin{cases}0 & \text { if }\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)} \geq 1 \\ \infty & \text { otherwise }\end{cases}
$$

- Rewrite the minimization problem

$$
\min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \max _{\alpha_{i} \geq 0} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]\right\}
$$

where α_{i} are the Lagrange multipliers

$$
=\min _{\mathbf{w}, b} \max _{\alpha_{i} \geq 0}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]\right\}
$$

Solution to Linear SVM

- Let:

$$
J(\mathbf{w}, b ; \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]
$$

Solution to Linear SVM

- Let:

$$
J(\mathbf{w}, b ; \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]
$$

- Swap the "max" and "min": This is a lower bound

$$
\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} J(\mathbf{w}, b ; \alpha) \leq \min _{\mathbf{w}, b} \max _{\alpha_{i} \geq 0} J(\mathbf{w}, b ; \alpha)
$$

Solution to Linear SVM

- Let:

$$
J(\mathbf{w}, b ; \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]
$$

- Swap the "max" and "min": This is a lower bound

$$
\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} J(\mathbf{w}, b ; \alpha) \leq \min _{\mathbf{w}, b} \max _{\alpha_{i} \geq 0} J(\mathbf{w}, b ; \alpha)
$$

- Equality holds in certain conditions

Solution to Linear SVM

- Solving:

$$
\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} J(\mathbf{w}, b ; \alpha)=\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]
$$

Solution to Linear SVM

- Solving:

$$
\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} J(\mathbf{w}, b ; \alpha)=\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]
$$

- First minimize $J()$ w.r.t. \mathbf{w}, b for fixed Lagrange multipliers:

$$
\begin{aligned}
& \frac{\partial J(\mathbf{w}, b ; \alpha)}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} \mathbf{x}^{(i)} t^{(i)}=0 \\
& \frac{\partial J(\mathbf{w}, b ; \alpha)}{\partial b}=-\sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{aligned}
$$

Solution to Linear SVM

- Solving:

$$
\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} J(\mathbf{w}, b ; \alpha)=\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]
$$

- First minimize $J()$ w.r.t. \mathbf{w}, b for fixed Lagrange multipliers:

$$
\begin{aligned}
& \frac{\partial J(\mathbf{w}, b ; \alpha)}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} \mathbf{x}^{(i)} t^{(i)}=0 \\
& \frac{\partial J(\mathbf{w}, b ; \alpha)}{\partial b}=-\sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{aligned}
$$

- We obtain

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}
$$

Solution to Linear SVM

- Solving:

$$
\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} J(\mathbf{w}, b ; \alpha)=\max _{\alpha_{i} \geq 0} \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}\left[1-\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)}\right]
$$

- First minimize $J()$ w.r.t. \mathbf{w}, b for fixed Lagrange multipliers:

$$
\begin{aligned}
& \frac{\partial J(\mathbf{w}, b ; \alpha)}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} \mathbf{x}^{(i)} t^{(i)}=0 \\
& \frac{\partial J(\mathbf{w}, b ; \alpha)}{\partial b}=-\sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{aligned}
$$

- We obtain

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}
$$

- Then substitute back to get final optimization:

$$
L=\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\}
$$

Summary of Linear SVM

- Binary and linear separable classification

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin
- Training SVM by maximizing

$$
\begin{array}{r}
\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\} \\
\text { subject to } \quad \alpha_{i} \geq 0 ; \quad \sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{array}
$$

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin
- Training SVM by maximizing

$$
\begin{array}{r}
\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\} \\
\text { subject to } \quad \alpha_{i} \geq 0 ; \quad \sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{array}
$$

- The weights are

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}
$$

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin
- Training SVM by maximizing

$$
\begin{array}{r}
\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\} \\
\text { subject to } \quad \alpha_{i} \geq 0 ; \quad \sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{array}
$$

- The weights are

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}
$$

- Only a small subset of α_{i} 's will be nonzero, and the corresponding $\mathbf{x}^{(i)}$'s are the support vectors \mathbf{S}

Summary of Linear SVM

- Binary and linear separable classification
- Linear classifier with maximal margin
- Training SVM by maximizing

$$
\begin{array}{r}
\max _{\alpha_{i} \geq 0}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} t^{(i)} t^{(j)} \alpha_{i} \alpha_{j}\left(\mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)}\right)\right\} \\
\text { subject to } \quad \alpha_{i} \geq 0 ; \quad \sum_{i=1}^{N} \alpha_{i} t^{(i)}=0
\end{array}
$$

- The weights are

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}
$$

- Only a small subset of α_{i} 's will be nonzero, and the corresponding $\mathbf{x}^{(i)}$'s are the support vectors \mathbf{S}
- Prediction on a new example:

$$
y=\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i=1}^{N} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]=\operatorname{sign}\left[b+\mathbf{x} \cdot\left(\sum_{i \in \mathbf{S}} \alpha_{i} t^{(i)} \mathbf{x}^{(i)}\right)\right]
$$

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

$$
\text { s.t } \quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1-\xi_{i}
$$

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

$$
\text { s.t } \quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1-\xi_{i}
$$

- Example lies on wrong side of hyperplane $\xi_{i}>1$

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

$$
\text { s.t } \quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1-\xi_{i}
$$

- Example lies on wrong side of hyperplane $\xi_{i}>1$
- Therefore $\sum_{i} \xi_{i}$ upper bounds the number of training errors

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

$$
\text { s.t } \quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1-\xi_{i}
$$

- Example lies on wrong side of hyperplane $\xi_{i}>1$
- Therefore $\sum_{i} \xi_{i}$ upper bounds the number of training errors
- λ trades off training error vs model complexity

What if data is not linearly separable?

- Introduce slack variables ξ_{i}

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2}+\lambda \sum_{i=1}^{N} \xi_{i}
$$

$$
\text { s.t } \quad \xi_{i} \geq 0 ; \quad \forall i \quad t^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1-\xi_{i}
$$

- Example lies on wrong side of hyperplane $\xi_{i}>1$
- Therefore $\sum_{i} \xi_{i}$ upper bounds the number of training errors
- λ trades off training error vs model complexity
- This is known as the soft-margin extension

