# CSC 411: Lecture 07: Multiclass Classification 

Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto

## Today

Multi-class classification with:

- Least-squares regression
- Logistic Regression
- K-NN
- Decision trees


## Discriminant Functions for $K>2$ classes

- First idea: Use $K-1$ classifiers, each solving a two class problem of separating point in a class $C_{k}$ from points not in the class.
- Known as $\mathbf{1}$ vs all or $\mathbf{1}$ vs the rest classifier

- PROBLEM: More than one good answer for green region!


## Discriminant Functions for $K>2$ classes

- Another simple idea: Introduce $K(K-1) / 2$ two-way classifiers, one for each possible pair of classes
- Each point is classified according to majority vote amongst the disc. func.
- Known as the $\mathbf{1}$ vs $\mathbf{1}$ classifier

- PROBLEM: Two-way preferences need not be transitive


## K-Class Discriminant

- We can avoid these problems by considering a single K-class discriminant comprising $K$ functions of the form

$$
y_{k}(\mathbf{x})=\mathbf{w}_{k}^{T} \mathbf{x}+w_{k, 0}
$$

and then assigning a point x to class $C_{k}$ if

$$
\forall j \neq k \quad y_{k}(\mathbf{x})>y_{j}(\mathbf{x})
$$

- Note that $\mathbf{w}_{k}^{T}$ is now a vector, not the $k$-th coordinate
- The decision boundary between class $C_{j}$ and class $C_{k}$ is given by $y_{j}(\mathbf{x})=y_{k}(\mathbf{x})$, and thus it's a $(D-1)$ dimensional hyperplane defined as

$$
\left(\mathbf{w}_{k}-\mathbf{w}_{j}\right)^{T} \mathbf{x}+\left(w_{k 0}-w_{j 0}\right)=0
$$

- What about the binary case? Is this different?
- What is the shape of the overall decision boundary?


## K-Class Discriminant

- The decision regions of such a discriminant are always singly connected and convex
- In Euclidean space, an object is convex if for every pair of points within the object, every point on the straight line segment that joins the pair of points is also within the object

- Which object is convex?


## K-Class Discriminant

- The decision regions of such a discriminant are always singly connected and convex
- Consider 2 points $\mathbf{x}_{A}$ and $\mathbf{x}_{B}$ that lie inside decision region $R_{k}$
- Any convex combination $\hat{\mathbf{x}}$ of those points also will be in $R_{k}$

$$
\hat{\mathbf{x}}=\lambda \mathbf{x}_{A}+(1-\lambda) \mathbf{x}_{B}
$$



## Proof

- A convex combination point, i.e., $\lambda \in[0,1]$

$$
\hat{\mathbf{x}}=\lambda \mathbf{x}_{A}+(1-\lambda) \mathbf{x}_{B}
$$

- From the linearity of the classifier $y(\mathbf{x})$

$$
y_{k}(\hat{\mathbf{x}})=\lambda y_{k}\left(\mathbf{x}_{A}\right)+(1-\lambda) y_{k}\left(\mathbf{x}_{B}\right)
$$

- Since $\mathbf{x}_{A}$ and $\mathbf{x}_{B}$ are in $R_{k}$, it follows that $y_{k}\left(\mathbf{x}_{A}\right)>y_{j}\left(\mathbf{x}_{A}\right), y_{k}\left(\mathbf{x}_{B}\right)>y_{j}\left(\mathbf{x}_{B}\right)$, $\forall j \neq k$
- Since $\lambda$ and $1-\lambda$ are positive, then $\hat{\mathbf{x}}$ is inside $R_{k}$
- Thus $R_{k}$ is singly connected and convex


## Example

Decision surface


## Multi-class Classification with Linear Regression

- From before we have:

$$
y_{k}(\mathbf{x})=\mathbf{w}_{k}^{T} \mathbf{x}+w_{k, 0}
$$

which can be rewritten as:

$$
\mathbf{y}(\mathbf{x})=\tilde{\mathbf{W}}^{T} \tilde{\mathbf{x}}
$$

where the $k$-th column of $\tilde{\mathbf{W}}$ is $\left[w_{k, 0}, \mathbf{w}_{k}^{T}\right]^{T}$, and $\tilde{\mathbf{x}}$ is $\left[1, \mathbf{x}^{T}\right]^{T}$

- Training: How can I find the weights $\tilde{\mathbf{W}}$ with the standard sum-of-squares regression loss?


## 1-of-K encoding:

For multi-class problems (with $K$ classes), instead of using $t=k$ (target has label $k$ ) we often use a $\mathbf{1}$-of-K encoding, i.e., a vector of $K$ target values containing a single 1 for the correct class and zeros elsewhere

Example: For a 4-class problem, we would write a target with class label 2 as:

$$
\mathbf{t}=[0,1,0,0]^{\top}
$$

## Multi-class Classification with Linear Regression

- Sum-of-least-squares loss:

$$
\begin{aligned}
\ell(\tilde{\mathbf{W}}) & =\sum_{n=1}^{N}\left\|\tilde{\mathbf{W}}^{T} \tilde{\mathbf{x}}^{(n)}-\mathbf{t}^{(n)}\right\|^{2} \\
& =\|\tilde{\mathbf{X}} \tilde{\mathbf{W}}-\mathbf{T}\|_{F}^{2}
\end{aligned}
$$

where the $n$-th row of $\tilde{\mathbf{X}}$ is $\left[\tilde{\mathbf{x}}^{(n)}\right]^{T}$, and $n$-th row of $\mathbf{T}$ is $\left[\mathbf{t}^{(n)}\right]^{T}$

- Setting derivative wrt $\tilde{W}$ to 0 , we get:

$$
\tilde{\mathbf{W}}=\left(\tilde{\mathbf{X}}^{T} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{T} \mathbf{T}
$$

## Multi-class Logistic Regression

- Associate a set of weights with each class, then use a normalized exponential output

$$
p\left(C_{k} \mid \mathbf{x}\right)=y_{k}(\mathbf{x})=\frac{\exp \left(z_{k}\right)}{\sum_{j} \exp \left(z_{j}\right)}
$$

where the activations are given by

$$
z_{k}=\mathbf{w}_{k}^{T} \mathbf{x}
$$

- The function $\frac{\exp \left(z_{k}\right)}{\sum_{j} \exp \left(z_{j}\right)}$ is called a softmax function


## Multi-class Logistic Regression

- The likelihood

$$
p\left(\mathbf{T} \mid \mathbf{w}_{1}, \cdots, \mathbf{w}_{k}\right)=\prod_{n=1}^{N} \prod_{k=1}^{K} p\left(C_{k} \mid \mathbf{x}^{(n)}\right)^{t_{k}^{(n)}}=\prod_{n=1}^{N} \prod_{k=1}^{K} y_{k}^{(n)}\left(\mathbf{x}^{(n)}\right)^{t_{k}^{(n)}}
$$

with

$$
p\left(C_{k} \mid \mathbf{x}\right)=y_{k}(\mathbf{x})=\frac{\exp \left(z_{k}\right)}{\sum_{j} \exp \left(z_{j}\right)}
$$

where $n$-th row of $\mathbf{T}$ is 1 -of-K encoding of example $n$ and

$$
z_{k}=\mathbf{w}_{k}^{T} \mathbf{x}+w_{k 0}
$$

- What assumptions have I used to derive the likelihood?
- Derive the loss by computing the negative log-likelihood:

$$
E\left(\mathbf{w}_{1}, \cdots, \mathbf{w}_{K}\right)=-\log p\left(\mathbf{T} \mid \mathbf{w}_{1}, \cdots, \mathbf{w}_{K}\right)=-\sum_{n=1}^{N} \sum_{k=1}^{K} t_{k}^{(n)} \log \left[y_{k}^{(n)}\left(\mathbf{x}^{(n)}\right)\right]
$$

This is known as the cross-entropy error for multiclass classification

- How do we obtain the weights?


## Training Multi-class Logistic Regression

- How do we obtain the weights?

$$
E\left(\mathbf{w}_{1}, \cdots, \mathbf{w}_{K}\right)=-\log p\left(\mathbf{T} \mid \mathbf{w}_{1}, \cdots, \mathbf{w}_{K}\right)=-\sum_{n=1}^{N} \sum_{k=1}^{K} t_{k}^{(n)} \log \left[y_{k}^{(n)}\left(\mathbf{x}^{(n)}\right)\right]
$$

- Do gradient descent, where the derivatives are

$$
\frac{\partial y_{j}^{(n)}}{\partial z_{k}^{(n)}}=\delta(k, j) y_{j}^{(n)}-y_{j}^{(n)} y_{k}^{(n)}
$$

and

$$
\begin{gathered}
\frac{\partial E}{\partial z_{k}^{(n)}}=\sum_{j=1}^{K} \frac{\partial E}{\partial y_{j}^{(n)}} \cdot \frac{\partial y_{j}^{(n)}}{\partial z_{k}^{(n)}}=y_{k}^{(n)}-t_{k}^{(n)} \\
\frac{\partial E}{\partial w_{k, i}}=\sum_{n=1}^{N} \sum_{j=1}^{K} \frac{\partial E}{\partial y_{j}^{(n)}} \cdot \frac{\partial y_{j}^{(n)}}{\partial z_{k}^{(n)}} \cdot \frac{\partial z_{k}^{(n)}}{\partial w_{k, i}}=\sum_{n=1}^{N}\left(y_{k}^{(n)}-t_{k}^{(n)}\right) \cdot x_{i}^{(n)}
\end{gathered}
$$

- The derivative is the error times the input


## Softmax for 2 Classes

- Let's write the probability of one of the classes

$$
p\left(C_{1} \mid \mathbf{x}\right)=y_{1}(\mathbf{x})=\frac{\exp \left(z_{1}\right)}{\sum_{j} \exp \left(z_{j}\right)}=\frac{\exp \left(z_{1}\right)}{\exp \left(z_{1}\right)+\exp \left(z_{2}\right)}
$$

- I can equivalently write this as

$$
p\left(C_{1} \mid \mathbf{x}\right)=y_{1}(\mathbf{x})=\frac{\exp \left(z_{1}\right)}{\exp \left(z_{1}\right)+\exp \left(z_{2}\right)}=\frac{1}{1+\exp \left(-\left(z_{1}-z_{2}\right)\right)}
$$

- So the logistic is just a special case that avoids using redundant parameters
- Rather than having two separate set of weights for the two classes, combine into one

$$
z^{\prime}=z_{1}-z_{2}=\mathbf{w}_{1}^{T} \mathbf{x}-\mathbf{w}_{2}^{T} \mathbf{x}=\mathbf{w}^{T} \mathbf{x}
$$

- The over-parameterization of the softmax is because the probabilities must add to 1 .


## Multi-class K-NN

- Can directly handle multi class problems




## Multi-class Decision Trees

- Can directly handle multi class problems
- How is this decision tree constructed?


