
University of Toronto Mississauga
Department of Mathematical and Computational Sciences

CSC 411 - Machine Learning and Data Mining, Fall 2019

Assignment 1

Due date: Friday October 11, 11:59pm.
No late assignments will be accepted.

As in all work in this course, 20% of your grade is for quality of presentation, including
the use of good English, properly commented and easy-to-understand programs, and clear
proofs. In general, short, simple answers are worth more than long, complicated ones. Unless
stated otherwise, all answers should be justified. The TA has a limited amount of time to
devote to each assignment, so what you hand in should be legible (either typed or neatly
hand-written), well-organized and easy to evaluate. (An employer would demand no less.)
All computer problems are to be done in Python with the NumPy, SciPy and scikit-learn
libraries.

Hand in five files: The source code of all your programs (functions and script) in a single
Python file, a pdf file of figures generated by the programs, a pdf file of all printed output, a
pdf file of answers to all the non-programming questions (scanned hand-writing is fine, but
not photographs), and a scanned, signed copy of the cover sheet at the end of the assignment.
Be sure to indicate clearly which question(s) each program and piece of output refers to. All
the Python code (functions and script) for a given question should appear in one location in
your source file, along with a comment giving the question number. All material in all files
should appear in order; i.e., material for Question 1 before Question 2 before Question 3,
etc. It should be easy for the TA to identify the material for each question. In particular,
all figures should be titled, and all printed output should be identified with the Question
number. The five files should be submitted electronically as described on the course web
page. In addition, if we run your source file, it should not produce any errors, it should
produce all the output that you hand in (figures and print outs), and it should be clear
which question each piece of output refers to. Output that is not labelled with the Question
number will not be graded. Programs that do not produce output will not be graded.

I don’t know policy: If you do not know the answer to a question (or part), and you
write “I don’t know”, you will receive 20% of the marks of that question (or part). If you
just leave a question blank with no such statement, you get 0 marks for that question.

More questions will be added shortly.
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Tips on Scientific Programming in Python

If you haven’t already done so, please read the NumPy tutorial on the course web page.
Be sure to read about indexing and slicing Numpy arrays. First, indexing begins at 0, not
1. Thus, if A is a matrix, then A[7,0] is the element in row 7 and column 0. Likewise,
A[0,4] is the element in row 0 and column 4. Slicing allows large segments of an array to be
referenced. For example, A[:,5] returns column 5 of matrix A, and A[7,[3,6,8]] returns
elements 3, 6 and 8 of row 7. Similarly, if v is a vector, then the statement A[6,:]=v copies
v into row 6 of matrix A. Note that if A and B are two-dimensional Numpy arrays, then
A*B performs element-wise multiplication, not matrix multiplication. To perform matrix
multiplication, you should use numpy.matmul(A,B). Whenever possible, do not use loops,
which are very slow in Python. In particular, avoid iterating over the elements of a large
vector or matrix. Instead, use numpy’s vector and matrix operations, which are much faster
and can be executed in parallel. For example, if A is a matrix and v is a column vector, the
A+v will add v to every column of A. Likewise for rows and row vectors. Also, the functions
sum and mean in numpy are useful for summing or averaging over all or part of an array.
Many NumPy functions that are defined for single numbers can be passed lists, vectors and
matrices instead. For example, f([x1, x2, ..., xn]) returns the list [f(x1), f(x2), ..., f(xn)]. The
same is true for many user-defined functions. The term numpy.inf represents infinity. It
results from dividing by 0 in numpy. It can also result from overflow (i.e., from numbers
that are too large to represent in the computer, like 101000). The term numpy.nan stands for
“not a number”, and it results from doing 0/0, inf/inf or inf-inf in numpy. For generating
and labelling plots, the following SciPy functions in matplotlib.pyplot are needed: plot,
xlabel, ylabel, title, suptitle and figure. You can use Google to conveniently look up
SciPy functions. e.g., you can google “numpy matmul” and “pyplot suptitle”.
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1. (30 points total) This simple warm-up question illustrates Numpy’s facilities for in-
dexing and computing with arrays without using loops. In each question below, you
should use at most one assignment statement and one print statement (in addition
to printing the question number). In questions (h) to (o) you should use one print
statement and no assignment statements. Each question has a simple solution. Do not
use any loops. (2 points each.) Your code should look like this:

import numpy as np

import numpy.random as rnd

print ’\n\nQuestion 1’

print ’----------’

print ’\nQuestion 1(a):’

A = ...

print A

print ’\nQuestion 1(b):’

x = ...

print x

print ’\nQuestion 1(c):’

B = ...

print B

(a) Construct a random 3 × 4 matrix. Call it A. The rows are numbered 0,1,2, and
the columns are numbered 0,1,2,3.

(b) Construct a random 4-dimensional row vector (that is, a 1× 4 matrix). Call it x.

(c) Reshape A into a 6× 2 matrix. Call the result B. A itself does not change.

(d) Add vector x to all the rows of matrix A. Call the resulting matrix C. C has the
same dimensions as A.

(e) Reshape x so that is a 4-dimensional vector instead of a 1 × 4 matrix. That is,
change its shape from (1,4) to (4). Call the resulting vector y. (Note that y is
neither a column vector nor a row vector. We say it has rank 1.)

(f) Change row 0 of matrix A to have the same value as vector y.

(g) Subtract vector y from row 2 of matrix A and assign the result to row 1 of matrix
A. (Only row 1 changes.)

(h) Print the first three columns of matrix A as a single matrix.

(i) Print rows 0 and 2 of matrix A as a single matrix.

(j) Compute the minimum of all the elements in matrix A. The result is a single real
number.
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(k) Compute the average of each row of matrix A. The result is a 3-dimensional vector.

(l) Compute the cosine of each element in matrix A. The result is a matrix with the
same dimensions as A.

(m) For each column in matrix A, sum the elements and square the sum. The result
is a 4-dimensional vector.

(n) Using matrix multiplication, compute AAT , where AT is the transpose of matrix
A. The result is a 3× 3 matrix.

(o) Compute the average of AxT . The result is a single real number.

You should use the functions reshape, sum, min and mean in numpy, as well as the func-
tion random in numpy.random. The expression A.T computes the transpose of matrix
A (as does the Numpy function transpose). You may also find the Numpy function
shape useful. You will have to look these functions up in the Numpy manual (simply
google them) and read their specifications carefully.

2. (15 points) This simple warm-up question is meant to illustrate the vast difference in
execution speed between iteration in Python (which is slow) and matrix operations in
Numpy (which are fast).

(a) Write a Python function myfun(A,B) that computes AAT+B, where A is a M ×N
matrix and B is a M ×M matrix. Recall that matrix multiplication is defined as
follows:

Eij =
∑
k

CikDkj (1)

where C and D are matrices and E = CD is the matrix product of C and D.
Your program will need to use a triply-nested loop. It should not use any NumPy
operations that operate on whole matrices. These include matrix addition and
multiplication and whole-matrix assignment statements, such as C=D. Instead, you
should use loops to operate on matrices one element at a time. For instance, you
may use single-element assignment statements, such as C[i,j]=D[i,j]. Likewise,
do not use the NumPy transpose operation, A.T, to compute the transpose of A.
In fact, for full marks, you should not compute the transpose at all. You may use
the NumPy operations shape (to determine the dimensions of the input matrices)
and zeros (to initialize your computations).

(b) Write down an equation similar to Equation (1) for computing AAT but without
computing the transpose of A. i.e., the equation should not mention AT . (This is
a math question, not a programming question.) Your function myfun in part (a)
should implement this equation.

(c) Write a Python function mymeasure(M,N) to measure execution speed. Specifi-
cally, the function should do the following:

• Use the function random in numpy.random to create two random matrices, A
and B, of size M ×N and M ×M , respectively.
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• Use your function myfun to compute AAT+B. Call the result C1. Use the
function time.time to measure the execution time of this step. Print out the
execution time.

• Use the function numpy.matmul to compute AAT+B in one line of code. Call
the result C2. Use the function time.time to measure the execution time of
this step. Print out the execution time.

• Compute and print out the magnitude of the difference matrix, C1-C2. There
are many ways to define the magnitude of a matrix, but for the purpose of
this question, we define it to be the sum of the absolute values of the matrix
elements. That is, the magnitude of a matrix, A, is

∑
ij |Aij|. Do not use

iteration to compute this magnitude. Instead, use only NumPy operations.
You can do this in one line of code.

If your function myfun is working correctly, the last step should produce a very
small number (much less than 10−5), which is due to numerical error. You should
also find that using numpy.matmul to compute AAT+B is much faster than using
your myfun function.

(d) Run mymeasure(200,400) and mymeasure(1000,2000), and hand in the printed
results. Be sure it is clear which measurement each printed value refers to. In
each case, how many floating-point multiplications does myfun perform? How
many floating-point additions does it perform? (Depending on your computer,
mymeasure(1000,2000) could take about half an hour to compute. If your com-
puter is slow, you may want to let it run over night.)

Because loops and iteration in Python are so slow, your programs in the rest of this
assignment should avoid using them. Instead, you should use matrix and vector oper-
ations in NumPy wherever possible.

3. Linear Least-Squares Regression: theory. (? points total)

In the rest of this assignment, you will fit a function to data using linear least-squares
regression. As described in class, the data consists of a set of pairs, (x(1), t(1)), ...
(x(N), t(N)), where each x(n) is an input and each t(n) is a target value. Each pair
(x(n), t(n)) is called a data point, though for brevity we will sometimes refer to x(n) as
a data point (instead of as the input of a data point). In general, x(n) can be a vector,
but in this assignment, it will simply be a real number.

The function you will fit to the data takes a real-number, x, as input and returns a
real number, y(x), as output. It has the form

y(x) = w0 +
M∑

m=1

wmφm(x) (2)

where the φm are non-linear basis functions. In particular,

φm(x) =
1

1 + exp β(αm − x)
(3)
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is a sigmoid function centered on αm and compressed horizontally by β. The αm and
β are constants that define the basis functions, and will be specified later. Note that
the function y is a linear combination of the basis functions. For more information on
linear regression and basis functions, see Chapter 3.1 in Bishop.

Your job is to find the weights w0, w1, ..., wM so that the function y(x) best fits the
data. In particular, you will find the vector w = (w1, ..., wM) and the bias term w0

that minimize the loss function,

l(w0, w) =
N∑

n=1

[t(n) − y(x(n))]2 (4)

where the sum is over all training points, (x(n), t(n)). Although the basis functions are
non-linear, we can linearize the problem (and use linear least squares to solve it) by
transforming the input from a single real number, x, to a feature vector z = (z1, ..., zM),
where zm = φm(x). Then,

y(x) = w0 +
M∑

m=1

wmzm (5)

which is linear in z and linear in w. Later, you will formulate and solve the linear
least-squares problem using gradient descent and you will compute the training and
test errors. To do this, you will need to evaluate the fitted function, and you will need
to compute a number of gradients, including ∂l(w0, w)/∂w.

The most efficient way to do this is to use matrix and vector operations. The first step
is to construct a feature matrix, Z, where each row of Z is a feature vector for a point
is our data set. In particular, the nth row of Z is the feature vector for x(n). Note that
each data set defines a different feature matrix. For example, we can have a training
feature matrix, a testing feature matrix, etc.

In the questions below, you will show that many of the key concepts of linear regression
can be represented in matrix/vector notation. In these questions, be sure to get the
details of your proofs right. Getting the details right in parts (a) and (b) should be
considered as a warm-up for doing parts (c) and (d).

(a) (1 point) Prove that l(w0, w) = ‖y − t‖2. Here t = [t(1), t(2), ..., t(N)] is a vector
of the target values for our data set, and y = [y(1), y(2), ..., y(N)] is a vector of the
predicted values. That is, y(n) = y(x(n)).

(b) (? points) Prove that y = w0
~1+Zw, where y and w are treated as column vectors

and ~1 is a column vector of 1’s.1

(c) (? points) Prove that
∂l(w0, w)

∂w
= 2ZT (y − t)

1In this assignment, most vectors are treated as column vectors. Be warned, however, that when pro-
gramming, some numpy functions will only work as expected if they are given 1-dimensional vectors, not
column or row vectors, which numpy views as 2-dimensional matrices.
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(d) (? points) Prove that
∂l(w0, w)

∂w0

= 2~1T (y − t)

4. Linear Least-Squares Regression: practice. (? points)

In this question you will write a Python program to fit a function to data using linear
least-squares regression. You will also be computing the mean squared training and
test errors, given by:

errtrain =

Ntrain∑
n=1

[t(n) − y(x(n))]2/Ntrain

errtest =
Ntest∑
n=1

[t(n) − y(x(n))]2/Ntest

where the two sums are over the training data and test data, respectively, and Ntrain

and Ntest are the number of training and test points, respectively.

The first step is to download the file data1.pickle.zip from the course web site.
Uncompress it (if your browser did not do so automatically). The file contains training
and test data. Next, start the Python interpreter and import the pickle module. You
can then read the file data1.pickle with the following command in Python 2.x:

with open(’data1.pickle’,’rb’) as f:

dataTrain,dataTest = pickle.load(f)

The variable dataTrain will now contain the training data, and dataTest will contain
the test data. Specifically, dataTrain is a 20 × 2 Numpy array, and each row of the
array represents a 2-dimensional training point, (x(n), t(n)). Likewise, dataTest is an
array containing 1000 test points. (If you have trouble reading the data file, it may be
because you are using Python 3.x instead of 2.x.) The training data is illustrated in
the scatter plot in Figure 1.

In answering the questions below, you should minimize your use of Python loops and
use Numpy matrix or vector operations instead. For full marks, you should use at most
one loop in part (a), no loops in the other parts, and no nested loops at all. Unless
specified otherwise, you may assume that the training and testing data are in global
variables.

(a) Write a Python function feature matrix(X,alpha,beta) that computes and
returns a feature matrix, Z, for data set X. Here, X = [x(1), x(2), ..., x(N)] is a vector
of real numbers, alpha is another vector of real numbers, and beta is a single real
number. alpha and beta store the constants α1, α2, ..., αM and β, respectively, in
Equation (3). (The function can be written in at most 8 lines of code.)

(b) Write a Python function plot basis(alpha,beta) that plots the basis functions
defined by alpha and beta. The basis functions should all be plotted on a single
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Figure 1:
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pair of axes using a different color for each basis function. Construct the plot
using 1000 equally spaced values of x between xMin and xMax, where xMin is the
minimum value of x in the training data, and xMax is the largest. You my treat
xMin and xMax as global variables. Use your function feature matrix to evaluate
the basis functions at each of the 1000 values of x. Label the horizontal axis “x”
and the vertical axis “y”. Use the function plot in matplotlib.pyplot to do the
plotting. You may find the function numpy.linspace useful. (The entire function
can be written in 7 lines of code.)

Use plot basis to plot 6 basis functions. In defining the basis functions, use
β = 2, and use values of αm that are equally spaced between xMin and xMax.
Title the figure, “Question 4(b): 6 basis functions”.

Hint: If you are having trouble evaluating the basis functions with the feature
matrix, first evaluate and plot them using any method of your choice (this will
take more than 7 lines of code), then once you see what the plots should look
like, try using the feature matrix to evaluate the basis functions (using 7 lines of
code). Note that this is a standard approach to solving any problem of the form,
“do X using method Y”. i.e., first do X using a method of your choice, then do
it using method Y. (In general, when I ask you to use a particular method to
solve a problem it is usually a test of your understanding or implementation of
the method and a warm-up exercise for later problems. It is also far faster than
using loops. That is certainly the case here.)

(c) Write a Python function my fit(alpha,beta) that uses linear least squares to
fit a function of the form (2) to the training data using basis functions defined by
alpha and beta. The function should return the weight vector, w, the bias term,
w0, and the errors, errtrain and errtest. (The entire function can be written in at
most 15 lines of code.)

You should use the method lstsq in numpy.linag to solve the linear least-squares
problem. That is, lstsq(Zaug,t) computes the weights that minimizes the mean
squared training error, where Zaug is an augmented feature matrix of the training
data, and t = [t(1), ..., t(N)] is the vector of target values. The augmented feature
matrix is the feature matrix Z computed in part (a) augmented with a leading
column of 1’s (so it has one more column that Z). lstsq returns a number of
objects. The first one is a weight vector, (w0, w1, ..., wM), that includes the bias
term, w0. (You should not use anything else returned by lstsq.)

(d) Write a function plotY(w,w0,alpha,beta) that plots the function y(x) defined
by equation (2) as a red curve. Here, w is the weight vector, w0 is the bias term,
and alpha and beta define the basis functions. Construct the plot using 1000
equally spaced values of x between xMin and xMax. The function should also
plot the training points (as blue dots) in the same figure. Use your function
feature matrix to help evaluate y(x) at each of the 1000 values of x. (The
entire function can be written in 6 lines of code.) Use the function scatter in
matplotlib.pyplot to plot the training points.

(e) Use my fit to fit a function to the training data using 5 basis functions. In
defining the basis functions, use β = 1, and use values of αm that are equally
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spaced between xMin and xMax. Use plotY to plot the function. Title the figure,
“Question 4(e): the fitted function (5 basis functions)”. Also, print out the
training and test errors. If you have done everything correctly, the plotted function
should be smooth and should approximately capture the trend in the training
data. Also, the training error should be about 3.7, and the test error should be
about 6.1. Explain why the test error is larger than the training error.

(f) Repeat part (e) using 12 basis functions. You should find that the function is
wigglier, the training error is lower, and the test error is higher. Explain these
results.

(g) Repeat part (e) using 19 basis functions. (You may get a Python warning, which
you can ignore.) You should find that the function is much wigglier and passes
through all the training points, the training error is very low (below 10−5), and
the test error is very high (over 100). Explain these results.

5. Regularization. (? points)

In this problem you will write a Python program to fit a function, y(x), to data using
regularized linear least-squares regression (also called Ridge regression). That is, you
will estimate the weight vector w = (w0, w1, ..., wM) in Equation (2) that minimizes
the regularized loss function

l̃(w0, w) = l(w0, w) + γ
M∑
j=1

w2
j (6)

where l(w0, w) is the loss function in Equation (4). The sum over j is the regularization
term, and its purpose is to prevent overfitting by preventing the weights from becoming
too large. Notice that the bias weight w0 is not included in the regularization term.
This is because w0 simply controls the height of the fitted function, y(x), and this
height does not cause overfitting no matter how large it is.

The coefficient γ specifies how important regularization is. The larger γ is, the smaller
the optimal weights will be. One of your tasks in this question is to explore the effect
of different values of γ and to learn the optimal value. To do this, you will use a set of
validation data in addition to training and test data. The training data is used to learn
the values of parameters, like the wj, while the validation data is used to learn the
values of hyper-parameters, like γ. The testing data is used to estimate the accuracy
of the final, learned system. The mean squared validation error is

errval =

Nval∑
n=1

[t(n) − y(x(n))]2/Nval

where the sum is over the validation data, and Nval is the number of points in the
validation data.

In this question, you will use the same training data as in Question 4. However, you
will use a new set of testing data as well as a set of validation data. To obtain them,
download and uncompress the file data2.pickle.zip from the course web site. You
can then read the file with the following command in Python 2.x:

10



with open(’data2.pickle’,’rb’) as f:

dataVal,dataTest = pickle.load(f)

The variable dataVal will now contain the validation data, and dataTest will contain
the new test data. Unlike Question 4, which provided a plentiful amount of testing data
to give very accurate estimates of testing error, this question uses validation and test
sets that are comparable in size to the training set, which is a more realistic scenario.

In answering the questions below, you should minimize your use of Python loops and
use Numpy matrix or vector operations instead. For full marks, you should use no
loops at all, except in part (d), where it is convenient to use one loop (but no nested
loops). Unless specified otherwise, you may assume that the training, validation and
test data are in global variables.

(a) Write a Python function myfit reg(alpha,beta,gamma) that uses regularized
least-squares regression to fit a function of the form (2) to the training data using
basis functions defined by alpha and beta, as in Question 4(a). The coefficient
of the regularization term is γ = gamma. The function should return the weight
vector, w, the bias term, w0, and the errors, errtrain and errval. (The function
can be written in at most 14 lines of code, including the 6 lines below.)

You should use the Python class Ridge to solve the regularized least-squares
problem. It is not provided by Numpy, but by scikit-learn. Specifically, the
following code performs ridge regression and computes the optimal weight vector,
w, and bias term, w0:

import sklearn.linear_model as lin

ridge = lin.Ridge(gamma)

ridge.fit(Zaug,t)

w = ridge.coef_

w = w[1:]

w0 = ridge.intercept_

Here, t is the vector of target values, and Zaug is the augmented feature ma-
trix, described in Question 4(c). Note that w0 is given special treatment. This
is because it is not included in the regularization term and must be computed
somewhat differently.

(b) Use myfit reg to fit a function to the training data using gamma = 10−9 and 19
basis functions. In defining the basis functions, use β = 1, and use values of αm

that are equally spaced between xMin and xMax. Use plotY to plot the function.
Title the figure, “Question 5(b): the fitted function, 19 basis functions, gamma
10−9”. Also, print out the training and test errors. If you have done everything
correctly, the plotted function should be smooth and just a bit bumpier than in
Question 4(e). Also, the training error should be about 2.2, and the test error
should be about 5.4.

(c) Repeat part (b) using gamma = 0. The plot should look identical to that of
Question 4(g), and the training error should be approximately the same (ie, close
to 0). (The test error will be different since the test data is different.)
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(d) Define a Python function best gamma(alpha,beta) that uses the validation data
to find the best value of the regularization coefficient γ in Equation (6). As
before, alpha and beta specify the basis functions. Your function should do the
following:

• Use myfit reg(alpha,beta,gamma) to fit functions to the training data for
values of gamma spread out over 32 orders of magnitude. Specifically, use
values of gamma such that log10(gamma) = -26, -24, -22, ..., 0, 2, 4.

• Use plotY to plot each of these fitted functions. Use the function subplot

in myplotlib.pyplot to arrange all 16 plots on a 4x4 grid in a single figure,
with γ increasing from left to right and top to bottom. (Be sure to call
subplot outside of plotY, and do not call figure inside plotY.) You should
find that the functions are quite wiggly for small values of gamma, almost flat
for large values of gamma, and fit the data quite well for intermediate values.
This illustrates underfitting for large values of gamma, and overfitting for small
values of gamma. Use the function suptitle in matplotlib.pyplot to title
the entire figure, “Question 5(d): best-fitting functions for log(gamma) = -26,
-24, ..., 0, 2, 4”. Put the figure into full-screen mode before saving it, to make
it large and more readable.

• Plot the training and validation errors versus gamma. Instead of using plot,
use the function semilogx in matplotlib.pyplot to draw the curves. This
gives a logarithmic scale on the horizontal axis. Plot both curves on a single
pair of axes using blue for the training error and red for the validation error.
Label the vertical axis “error”, and the horizontal axis “gamma”, and give
the figure the title “Question 5(d): training and validation error”. You should
find that the validation error is usually, if not always, greater than the train-
ing error. Also, the training error should increase as gamma increases. The
validation error should decrease initially and then begin to increase, reaching
a minimum at the optimal value of gamma.

• Use plot(w) to plot the weights for (i) the smallest value of gamma (10−26),
(ii) the optimal value of gamma and (iii) the largest value of gamma (104). Title
the three plots ’Question 5(d): weights for smallest gamma’, ’Question 5(d):
optimal weights’, ’Question 5(d): weights for largest gamma’, respectively.
Describe the main differences in the three curves. Explain how these weights
lead to the corresponding plots.

• Plot the best-fitting function. That is, use plotY to plot the function for
the value of gamma that gives the lowest validation error. In addition, label
the axes and give the figure the title, “Question 5(d): best-fitting function
(gamma = ??)”, filling in the optimal value of gamma.

• Print out the optimal values of gamma and w0.

• Compute the test error for the optimal values of gamma and w.

• Print out the training, validation and test errors for the optimal values of
gamma and w. You should find that training error < validation error < test
error.
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Note that best gamma requires you to generate a number of plots, most (but not
all) using plotY. Run best gamma using 19 basis functions. In defining the basis
functions, use β = 1, and use values of αm that are equally spaced between xMin

and xMax. Hand in all the plots and all the printed values. It should be clear
what each piece of output refers to.

6. Gradient Descent. (? points)

In this question, as in Question 5, you will write a program to fit a function to data
with regularized least-squares regression. This time, however, instead of using a built-
in optimization method (like Ridge), you will write your own method based on gradient
descent. Use the same training and testing data as in Question 5.

Your program will find the weight vector, w, and bias term, w0, that minimize the
regularized loss function, l̃(w,w0), in Equation (6). To do this, you should initialize
w and w0 randomly (e.g., by using numpy.random.randn). You should then update
them repeatedly using the following two statements:

w = w − λ∂l̃(w0, w)

∂w

w0 = w0 − λ
∂l̃(w0, w)

∂w0

where the hyper-parameter λ is the learning rate. Executing these two statements is
a single iteration of gradient descent. You will need to execute many iterations. You
will also have to experiment to find a good learning rate, and you will need to compute
the derivatives of l̃(w0, w).

(a) (? points) Derive a matrix/vector expression for ∂l̃(w0, w)/∂w similar to the one
given in Question 3(c).

(b) (? points) Derive a matrix/vector expression for ∂l̃(w0, w)/∂w0 similar to the one
given in Question 3(d).

(c) (? points) Write a Python program myfit reg gd(alpha,beta,gamma,lrate)

that uses gradient descent to fit a function to the training data. Here, alpha and
beta define the basis functions, gamma is the coefficient of the regularization term,
and lrate is the learning rate. The function should do the following:

• Perform 100,000 iterations of gradient descent.

• Compute and record the training and test error after every iteration.

• Use plotY to plot the fitted function at nine different time points: after 40,
41, 42, ..., 48 iterations. Use subplot to arrange all nine plots on a 3x3 grid in
a single figure, with iterations increasing from left to right and top to bottom.
If everything is working correctly, the first plot should be fairly flat and a bit
wavey, the next few plots should fit the data increasingly well, and the last
few plots sould appear to fit the data quite well. Title the figure, “Question
7: fitted function as iterations increase”. Put the figure into full-screen mode
before saving it, to make it more readable.
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• Use plotY to plot the final fitted function in a single figure. Title the figure
“Question 7: fitted function”.

• Plot the recorded training and test errors on a single pair of axes. The vertical
axis of the plot is error, and the horizontal axis is number of iterations. Plot
the training error as a blue curve, and the test error as a red curve. Label the
axes. Label the figure, “Question 7: training and test error v.s. iterations”. If
everything is working correctly, both errors should decrease extremely rapidly
(almost vertically), then quickly level out and be almost horizontal for most
of the plot. Also, the test error curve should be above the training error curve
almost everywhere (and certainly at the right end).

• It may appear from the previous plot that gradient descent converges to
the final answer almost right away. To see that this is not the case, replot
the training and test errors using a log scale on the horizontal axis. Label
the figure, “Question 7: training and test error v.s. iterations (log scale)”.
If everything is working correctly, both errors should decrease in a gently
waving curve from left to right.

• To see that gradient descent has not converged completely even after 100,000
iterations, plot the last 10,000 training errors (without the test errors). Label
the figure, “ Question 7: last 10,000 training errors”. If everything is working
correctly, the plot should show the errors streadily decreasing from left to
right.

• Let w be the optimal weight vector computed by gradient descent after the
100,000 iterations above. Print the final values of training error, test error,
and w. If everything is working correctly, they should be approximately the
same as in Question 5. (If not, try using a higher learning rate.)

• To check your program, recompute the optimal weight vector using regFit

from Question 5(a). Call this weight vector w2. If everything is working
properly, w and w2 should be almost identical.

• Compute the magnitude of the difference vector w - w2, where magnitude is
defined in the last item of Question 2(b). Print the magnitude. It should be a
small number. In fact, by choosing the learning rate properly, the magnitude
should be less than 10−4. You should try to achieve this.

• Print the learning rate.

• Print the value of alpha.

You will have to experiment to find a good learning rate. Try using values that
differ by a factor of ten (e.g., 10, 1, 0.1, 0.01, 0.001, ...) and monitor the training
error. If the training error is inf or nan, or if it tends to increase with each iter-
ation, then try using a lower learning rate. However, to achieve fast convergence,
you will want to use as large a learning rate as possible.

Run your function using 19 basis functions with beta = 1 and with the αm spaced
uniformly between xMin and xMax. Also use γ = 10−4. Your program should then
compute the same value of w, and the same training and test error as in Question 5.
You will probably find that your function produces a reasonably good fit to the
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data after a few thousand iterations. However, you will need many more iterations
to reach the accuracy of the answer in Question 5.

Note that myfit reg gd requires you to generate a number of different plots.
Hand in all the plots and all the printed values. It should be clear what each
piece of output refers to. For full marks, your program should have only one loop
(and no nested loops).

? points total
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