
CSC 2545, Spring 2017
Kernel Methods and Support Vector Machines

Assignment 2

Due at the start of class, at 2:10pm, Thurs March 23.
No late assignments will be accepted.

The material you hand in should be legible, well-organized and easy to mark, including
the use of good English. Short, simple answers and proofs will receive more marks than long,
complicated ones. Up to 20% of your mark will be for presentation. Unless stated otherwise,
you must justify your answers.

All computer problems are to be done in Python with Scikit-learn and should be properly
commented and easy to understand. These programs should all be stored in a single file called
source.py, which should be submitted electronically as described on the course web site. We
should be able to import this file as a Python module and execute your programs. Plots, other
computer output, and explanations should be submitted electronically as a single pdf file called
results.pdf. All computer problems are due on Friday March 31 at 11pm.

No more questions will be added

1. (7 points) Prove the following statements in the context of ν-SVC:

(a) if yi(ω • xi + b) > ρ then αi = 0

(b) if yi(ω • xi + b) < ρ then αi = 1/m

2. (15 points) Question 9.2 on page 274 of the text.

3. (10 points) Question 9.16 on page 276 of the text.

4. (5 points) Show that the following optimization problem is equivalent to a soft-margin
SVM:

min
ω,b
‖ω‖2/2 + C

∑
i

h[yi(ω • xi + b)]

where h(z) = max(0, 1− z) is the hinge loss function.

5. (30 points total) In this problem, we will formulate a soft-margin SVM without using
a mapping to a higher-dimensional feature space. Instead, we will search directly for a
decision function of the form f(x) =

∑
i βik(x, xi)+b. In particular, consider the following

optimization problem:

min
β,b

∑
i,j

βiβjk(xi, xj)/2 + C
∑
i

h[yif(xi)]

where f(x) =
∑
i βik(x, xi) + b and h is the hinge loss function (and C > 0). As usual,

the xi range over the training data.
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(a) (5 points) Assuming that k(x, y) is a similarity measure, give an intuitive description
of the term

∑
i,j βiβjk(xi, xj) without referring to a feature space or maximizing a

margin. How is this reflected in the properties of an SVM?

(b) (10 points) Introduce slack variables into the problem, derive the dual, and show
that it is the same as the dual of a soft-margin SVM.

(c) (4 points) Under what conditions are the βi uniquely determined by the solution to
the dual problem? In this case, give a simple formula for βi.

(d) (2 points) Do we need to assume that k(x, y) is positive definite as in the standard
formulation of an SVM? If so, how is it assumed?

(e) (4 points) Do we need to assume that k(x, y) is symmetric as in the standard for-
mulation of an SVM? If so, how is it assumed?

(f) (5 points) Show that the solution to the dual problem (as given on the bottom of
page 205 in the text) does not depend on k being symmetric. That is, if k is not
symmetric, then there is a symmetric k′ that gives exactly the same solution for the
dual variables.

6. (20 points) In this question, you will write Python programs to apply support vector
regression (SVR) to a synthetic data set and visualize the effect of different parameter
values. You will need to import the following Python modules:

from sklearn.svm import SVR

import numpy as np

import numpy.random as rnd

import matplotlib.pyplot as plt

Recall that support vector regression has two parameters, C (the weight of the error
term) and ε (the width of the tube around the prediction function). The following Python
commands set these parameters, and then fit an SVR to a data set using an RBF kernel
(the default):

svr = SVR(gamma=1.0, C=1.0, epsilon=0.1)

svr.fit(X,y)

Here, svr is a Python object representing the SVR. The kernel is given by k(x1, x2) =
exp(−γ‖x1−x2‖2). The training data consists of a set of pairs (x1, y1), ..., (xm, ym), which
are stored in the matrix X and the vector y. Specifically, xi is the ith row of X, and yi is
the ith element of y.

Finally, the following command uses the trained SVR to predict the y values at a list of
points, Xtest:

svr.predict(Xtest)
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Below, we use f̂(x) to denote the predicted value of y at point x. Since we are doing
regression, these predictions are real numbers.

Given the correct y values, Ytest, the following command returns the prediction accuracy,
as measured by the coefficient of determination. The prediction error is 1 minus the
accuracy.

svr.score(Xtest,Ytest)

The coeffcient of determination is derived from mean-squared error. For more details, see

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR.score

The first step below is to generate synthetic data. Each synthetic data point has the
form (x, y) where x and y are random variables. In this assignment, x is uniformly
distributed on the interval [−4, 4], and y = f(x) + η, where f(x) = sin(x)/x + x/20 and
η is independent Gaussian noise with mean 0 and variance σ2, that is, η ∼ N (0, σ2).
Helpfully, the function numpy.sinc evaluates sin(x)/x (and returns 1 when x = 0). Note
that f(x) is the expected value of y for a given value of x.

You should hand in all plots and other computer output you are asked to generate.
Label each piece of output with the question number it refers to and any other pertinent
information, such as the SVR parameter values used to generate it. It should be clear
which question each plot is addressing. Comment the programs you are asked to write
and hand them in. The code should be well-written and easy to understand. Explanations
should be clear, complete and well-written. Points will be deducted for poor English and
long, rambling answers.

(a) Generate two random samples of synthetic data as described above, a training set
with 20 points and a test set with 1000 points. Both sets should have a noise level
of σ = 0.1. Use these two data sets throughout the rest of this question, where you
will be evaluating the training error and the test error of support vector regression
for various SVR parameter values.

(b) SVR with a RBF kernel requires three parameters, C, γ and ε. Write a Python
program that carries out a stochastic search for the best values of these parameters.
(Do not use Scikit-learn’s build-in search facilities.) You should randomly generate
10,000 triples (C, γ, ε), where log(C), log(γ) and log(ε) are chosen independently
from uniform distributions. Choose the range of the uniform distributions so that
C, γ and ε are spread over several orders of magnitude. You may find the function
rand in numpy.random useful.

For each random triple (C, γ, ε), fit an SVR to the training data and evaluate its
test error. Save the triple that gives the lowest test error. Call these values C0, γ0
and ε0. Report these values as well as the test error. In addition, using these values,
generate a plot that shows all of the following on a single pair of axes:

• f̂(x), the predicted value of y given x (in green)

• f(x), the expected value of y given x (in orange)
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• the training data (as blue dots).

The result should look something like Figure 1 below.

(c) In this question you will fix the values of γ and ε and vary the value of C. Generate
two curves, one of test error vs log(C), and one of training error vs log(C). Use
γ = γ0 and ε = ε0, and use 100 different values of log(C) equally spaced between
log(C0)− 4 and log(C0) + 4. For each value of C you will have to retrain and retest
the SVR. Plot both curves on one set of axes, using blue for training error and
orange for test error. The result should look something like Figure 2 below. Provide
an intuitive explanation of any trends you observe.

(d) Generate 9 plots, each similar to that in Figure 1, for different values of C. The
values of log(C) should be equally spaced between log(C0) − 4 and log(C0) + 4,
inclusive. Use γ = γ0 and ε = ε0 for each value of C. Display the 9 plots in a single
figure in a grid, as in Figure 3 below. (You will have to use the Python function
plt.subplot.) Provide an intuitive explanation of the changes you see.

(e) In this question you will fix the values of C and ε and vary the value of γ. Generate
two curves, one of test error vs log(γ), and one of training error vs log(γ). Use
C = C0 and ε = ε0, and use 100 different values of log(γ) equally spaced between
log(γ0)−4 and log(γ0)+4. For each value of γ you will have to retrain and retest the
SVR. Plot both curves on one set of axes, using blue for training error and orange
for test error. Provide an intuitive explanation of any trends you observe.

(f) Generate 9 plots, each similar to that in Figure 1, for different values of γ. The values
of log(γ) should be equally spaced between log(γ0) − 4 and log(γ0) + 4, inclusive.
Use C = C0 and ε = ε0 for each value of γ. Display the 9 plots in a single figure in
a grid pattern, as in Figure 3. Provide an intuitive explanation of the changes you
see.

(g) In this question you will fix the values of C and γ and vary the value of ε. Generate
two curves, one of test error vs log(ε), and one of training error vs log(ε). Use C = C0

and γ = γ0, and use 100 different values of log(ε) equally spaced between log(ε0)− 2
and log(ε0) + 2. (Note the difference from parts (c) and (e) above.) For each value
of ε you will have to retrain and retest the SVR. Plot both curves on one set of
axes, using blue for training error and orange for test error. Provide an intuitive
explanation of any trends you observe.

(h) Generate 9 plots, each similar to that in Figure 1, for different values of ε. The values
of log(ε) should be equally spaced between log(ε0)−2 and log(ε0)+2, inclusive. (Note
the difference from parts (d) and (f) above.) Use C = C0 and γ = γ0 for each value
of ε. Display the 9 plots in a single figure in a grid pattern, as in Figure 3. Provide
an intuitive explanation of the changes you see.
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Figure 1: training data (blue), f(x) (green), f̂(x) (orange)

Figure 2: training error (blue) and testing error (orange)
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Figure 3: varying values of C
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