Logic Programming
with Prolog

Prolog is based on three main ideas:

e Logical Horn rules (day before last)

e Unification (last day)

e Top-down reasoning (today)

46

Reasoning

e Bottom-up (or forward) reasoning: start-
ing from the given facts, apply rules to
infer everything that is true.

e.qg., Suppose the fact B and therule A<+ B
are given. Then infer that A is true.

e Top-down (or backward) reasoning: start-
ing from the query, apply the rules in re-
verse, attempting only those lines of in-
ference that are relevant to the query.

e.g., Suppose the query is A, and the rule
A+ B is given. Then to prove A, try to
prove B.

47

Bottom-up Inference

A rule base:

A <- B (1)
B <- C (2)
C (3)

A bottom-up proof:

infer A

‘ rule (1)
infer B

‘ rule (2)
infer C

‘ rule (3)

start

So, A is proved

48

Top-Down Inference

A rule base:

A <- B (1)
B <- C (2)
C (3)

A top-down proof:

goal A
rule (1)
goal B
rule (2)
goal C
rule (3)
sSuccess

So, A is proved

49

Top-down vs Bottom-up Inference

e Prolog uses top-down inference, although
some other logic programming systems use
bottom-up inference (e.g., Coral).

e Each has its own advantages and disad-
vantages:

— Bottom-up may generate many irrele-
vant facts.

— Top-down may explore many lines of
reasoning that fail.

e [op-down and bottom-up inference are
logically equivalent.

7.e., they both prove the same set of facts.

e However, only top-down inference simu-
lates program execution.

1.e., execution is inherently top down, since
it proceeds from the main procedure down-
wards, to subroutines, to sub-subroutines,
etc.

50

Example 1
Bottom-up inference can derive
many facts.

Rule base:

p(X,Y,Z) <- q(X),q(¥),q(Z).
qal).
q(a2).

q(an) .
Bottom-up inference derives n3 facts of the
fornﬁjp(ai,aj,ak):

p(al, al, al)
p(al, al, a2)
p(al, a2, a3)

51

Example 2
Bottom-up inference can derive
infinitely many facts.

Rule base:

p(f(x)) <- px).
p(a).

Derived facts:

p(f(a))
p(f(£(a)))
p(f(£(£f(a))))

In contast, top-down inference derives only
the facts requested by the user, e.g.

who does jane love?

what is john’s telephone number?

52

Example 3

Top-down inference may fail.

Rule base:

A <- B (1)
B <- C (2)

Failed line of inference:

goal A

rule (1)

goal B

rule (2)
goal C

rule (3)

Y

fail
(no rules infer C)

So, A is not proved

53

Multiple Rules and Premises

A fact may be inferred by many rules. e.g.,

E <- B
E <- C
E <-D

A rule may have many premises. e.g.,
E<-B/\NC/\D

In top-down inference, such rules give rise to
e inference trees

e backtracking

54

Example 1: Multiple Premises

Rule base:

(1) A <- B1 /\ B2
(2) Bl <-C1 /\ C2
(3) B2 <-C3 /\ C4

CiL C2 (€3 ¢4

Query: Is A true?

Goal A
Rule (1)]
Bl AN B2

N

Goal B1 Goal B2
Rule (2)| Rule (3}
Cl1 A C?2 C3 N C4

SONLTN

Goal C1 Goal C2 Goal C3 Goal C4

| | |

SUCCEeSsS SUCCeSS Ssuccess SUCCEeSsS
So, goal A is proved. (all paths must succeed)

55

Example 2: Multiple Rules

Rule base:
A <- B1 Bl <- C1 B2 <- C3
A <- B2 Bl <- C2 B2 <- C4
C4

Query: Is A true?

Goal A
Goal B1 Goal B2
Goal C1 Goal C2Goal C3 Goal C4
fail fail fail SUCCesSSs

So, goal A is proved. (only one path must succeed

56

Example 3: Variables

Rule base:

student (1234,sam) .
student (3456, joe) .

student (5678,1isa).
student (6789,bart).

takes (Name,Course)

enrolled(1234,csc324).
enrolled(1234,csc364).
enrolled(1234,csc378).
enrolled(3456,csc324).
enrolled(3456,csc364).
enrolled(5678,csc378).

student (Number,Name) ,
enrolled (Number,Course) .

% i.e., view course enrollment in terms of

7%, student names, instead of student numbers.

Query:

Find N and C such that takes(N,C) is true.

Answer:

N=sam, C=csc324;
N=sam, C=csc364;
N=sam, C=csc378;
N=joe, C=csc324;
N=joe, C=csc364;
N=lisa, C=csc378;

no

57

Example 3 (continued)

Same rule base:

student (1234,sam) . enrolled(1234,csc324).
student (3456, joe) . enrolled(1234,csc364).
student (5678,1isa). enrolled(1234,csc378).
student (6789,bart). enrolled(3456,csc324).
enrolled(3456,csc364).
enrolled(5678,csc378).

takes (Name,Course) :- student(Number,Name),

enrolled (Number,Course) .

Query:
Find N such that takes(N,csc324) is true.

Answer:
N=sam;
N=joe;

no

58

Example 4: Backtracking

Rule base:

p(X) :- qX),r(X).
q(d). q(e). q(f). q(g) .
r(e). r(g).

Query: Find X such that p(X) is true.

pP(X)

a(x), r(x)

X=d— r(d) fail

r(e) success (print " X=e")
X=g— r(g) success (print " X=g")

59

Example 5: Backtracking

Rule base:

p(X) = q(X),r(X,Y),S(Y).

q(a). r(a,b). r(c,b). s(c).
q(c). r(a,c). r(c,c).
r(a,d).

Query: Find X such that p(X) is true.

pP(X)

|

a(X), r(X,Y), s(Y).
(/2 N (x/e)

r(a,Y),s(Y). r(c,Y),s(Y).
Y/b Y /b Y/C
{ {Y/Cﬁ GRS
s(b) s(c) s(d) s(b) s(¢c)

fail success fail fail success

60

Hints on Debugging

We can follow the execution of Prolog pro-
grams with write statements. e.g.,

Rule base:

p(X) :- qX), write(X), r(X).
q@). qm). qlc). q@@. qCe).
r(a). r(d).

Query: Find X such that p(X) is true.

Then Prolog prints:

a
X = a
bcd

X =4d

no

61

Recursion in Prolog

If a predicate symbol occurs in both the head
and body of a rule, then the rule is recursive.

For example,
a(X) :- b(X,Y), a(y).
i.e., to prove a(X), Prolog must prove a(Y).

The predicate a acts like a recursive subroutine.

It is called a recursively defined predicate, or
simply a recursive predicate.

62

Mutual Recursion

Recursion might be indirect, involving several
rules. For example,

a(X) :- b(X,Y), c(Y).
c(Y) :- d(Y,Z2), a(Z).

Thus, to prove a(X),

Prolog tries to prove c(Y) (and b(X,Y))
SO it tries to prove a(Z) (and d(Y,Zz)).

i.e., to prove a(X), Prolog tries to prove a(Z).

The predicates a and ¢ are said to be
mutually recursive.

63

Non-Linear Recursion

When the head predicate appears multiple times
in the body of a rule, then the recursion is said
to be non-linear.

For example,

a(X) = b(X,Y), a(Y), C(Y,Z), a(Z).

i.e., to prove a(X), Prolog tries to prove both
a(Y) and a(Zz).

T his generates a recursive proof tree.

64

Example (Linear Recursion)

A stack of 4 toy blocks.

d
b
C
d
Rules:
(1) above(X,Y) :- on(X,Y).
(2) above(X,Z) :- on(X,Y), above(Y,Z).
(3) on(a,b).
(4) on(b,c).
(5) on(c,d).

Query: |? - above(a,d)

Use top-down inference.

65

Tree

above(a,d)
rule (2) ¢ IX0\a,2\d}
on(a,Y), above(Y.,d)

TN

on(a,Y) above(b,d)
answer: Y=Db rule (2) ¢ {X\b, Z\d}

on(b,Y), above(Y.,d)

TN

on(b.Y) above(c,d)
answer: Y=c rule (1) ¢ {X\c,N\d}
on(c,d)
answer: yes

All leaves are true, so the root is true,
1.e., above(a,d) 1s true.

66

Observation

Changing the order of rules and/or rule premises
can cause problems for Prolog. Example:

(1) above(X,Z) :- above(Y,Z), on(X,Y).
(2) above(X,Y) :- on(X,Y).

Because Prolog processes premises from left
to right, and rules from first to last, rule (1)

causes an infinite loop.

67

Tree

above

i rule (1)

above, on

N

above

l rule (1)

above, on

i rule (1)

above, on

N

This 1s a flaw in Prolog.

68

Beyond Horn LogicC

e SO far, we have studied what is known as
pure logic programming, in which all the
rules are Horn.

e For some applications, however, we need
to go beyond this.
e For instance, we often need
— Negation
— Existential quantification
— Arithmetic
e Fortunately, these can easily be accomo-

dated by simple extensions to the logic-
programming framework,

69

Negation in Prolog

Prolog uses negation as failure.

1.e., 1T you cannot prove something is true,
then assume it is false. e.g., unless we
have reason to believe otherwise, we as-
sume the sun will rise tommorrow.

This is NOT logical negation, but it is
easy to implement, and it is typical of
much common-sense reasoning.

In Prolog, negation may appear only in
queries and in rule bodies.

For example, the rule
a < b N ~c

IS written in Prolog as
a :—- b, not c.

and it means, “infer a if b can be inferred
and ¢ cannot be inferred.”

70

Example

loves(bill,hX)

:— pretty(X), female(X),

not loves(tom,X).

1.e., Bill loves any pretty female, unless Tom loves her.

loves (tom,X)

: - famous(X), female(X),

not dead(X).

1.e., Tom loves any famous living female.

female (marilyn-monroe) .
female (cindy-crawford) .
female (martha-stewart) .
female(girl-next-door).

pretty(marilyn-monroe) .
pretty(cindy-crawford) .
pretty(girl-next-door).

| ?- loves(tom,X).

X = cindy-crawford;
X = martha-stewart;

no

| ?- loves(bill,X).

X = marilyn-monroe;
X = girl-next-door;

no

famous (marilyn-monroe) .
famous (cindy-crawford) .
famous (martha-stewart) .

dead (marilyn-monroe) .

71

Safety

Consider the following rule:
(*) hates(tom,X) :- not loves(tom,X).

This may NOT be what we want, for several
reasons:

e [he answer is infinite, since for any per-
son p not mentioned in the database, we
cannot infer loves(tom,p), SO we must in-
fer hates(tom,p).

Rule (*) is therefore said to be unsafe.

e [herule does not require X to be a person.
e.g., since we cannot infer

loves (tom,hammer)
loves (tom,verbs)
loves (tom,green)

loves (tom,abc)

we must infer that tom hates all these
things.

72

Safety (Cont’d)

To avoid these problems, rules with negation
should be guarded:

hates(tom,X) :- female(x), pretty(X),

not loves(tom,X).

1.e., Tom hates every pretty female whom he
does not love.

Here, female and pretty are called guard literals.
They guard against safety problems by bind-
ing X to specific values in the database.

73

Quantified Rule Bodies

VX [happy(X) < VY loves(Y, X)]

1.e., A person is happy if everyone loves him.
This rule is not Horn.

VX [happy(X) < TY loves(Y, X)]

1.e., A person is happy if someone loves him.
This rule is not Horn either, but it is equiva-
lent to the following Horn rule:

VX VY [happy(X) < loves(Y, X)]

Why? (Left as an exercise)

Examples:

loves(bill, mary) = happy(mary) {X\mary, Y \bill}
loves(bill, cindy) = happy(cindy) {X\cindy, Y \bill}
loves(tom, cindy) = happy(cindy) {X\cindy, Y \tom}

So, in Horn logic, existential quantifiers can
appear in the premise of a rule.

They can also appear in queries, since a rule
premise is just a query placed inside a rule.

74

Declarative Arithmetic

What we would like:

e GGiven a set of equations with variables, find
values of the variables that satisfy the equa-
tions.

eg,. query: X+ 3 =5,
answer: X = 2
query: X+Y=1,X-Y =2
answer: X =3/2, Y = -1/2
query: X2 = 4.
answers: X = 2
X = -2
query:. X+Y=0, 2X + 2Y = 1.

answer: no
(no solutions since equations
are contradictory)

query: X =1, X = 2.

answer: no

75

Declarative Arithmetic (Cont’d)

There are two problems with this ideal.
(1) There may be infinitely many answers
eg. query: X +Y=0.

answers: X =

(2) The solutions may be difficult (or impos-
sible) to compute
eq. query: XY + XY2 + Y2X = 10.
(X)2 + x2 + v2 = 6.
answers:. 77

These are really problems in numerical analysis,
not logic programming.

76

Dealing with These Problems

Prolog takes a simple, but practical approach
(though somewhat procedural and non-logical).

e Require that queries have the form

X1 is @1, Xo is ¢o, ... Xp is on,
where each ¢; is an arithmetic expression and
each X; is a variable or a constant.

This query is interpreted to mean
X1 =0¢1) N Ko=) N ... N Xp=7n).
This is processed from left to right (as usual):

First X; is set to the value of ¢;
then X, is set to the value of ¢-

Xn IS set to the value of ¢y,.

Note: once a variable is assigned a value, it is
fixed, i.e., it cannot change.

77

Examples

is b+7.
= 12
is b+7, Y is X-2.
= 12
= 10
(x left-to-right evaluation *)
7?7 - Y 1is X-2, X 1s b+T7.

no

)
|
< b4 b b4 b

(* X is unbound here *)

|? - 7 is 4+3.
yes

|7 - 8 is 4+3.
no

A variable can only be given one value. e.g.,

|7 - X is 4, X is 5.

no

1.e., there is no value of X such that
X =4 N X =05.

78

Arithmetic in Rule Bodies

square(X,Y) :- Y is XxX.

e.g. |7
| ?

| 7

i.e., The query
subquery 25 is Xx*X,

square(5,Y).
Y = 25
square(5,25) .
yes
square(5,13).
no

square (X,25)

Error: X is unbound.

square (X,25)
in which X is unbound.

becomes the

79

