University of Toronto Mississauga
CSC 324 - Principles of Programming Languages, Fall 2016

Assignment 1

Due Tuesday October 11 at 11pm.

No late assignments will be accepted.

What to do

The questions below require you to write Scheme functions. The first few questions provide
warm-up problems to get you use to the Scheme syntax, the programming environment
and thinking like a functional programmer. In all questions, your Scheme functions should
be well commented, and should be written in good functional programming style. In
particular, do not use any functions or constructs that change the values of variables or
have other side effects or that use a sequential processing of commands. To help you with
this new way of thinking, I am disallowing the use of do, begin, or any function ending in
I such as set!, set-car!, vector-set!, etc. You must use recursion in all your solutions
and use helper functions wherever appropriate. You may also find the following built-in
Scheme functions useful: 1ist, append, reverse, length, and cadr, cddr, cadar, caddr,
etc. Other than these, use only the functions mentioned in class, unless specified otherwise.
In particular, do not import any Scheme/Racket modules. Also, do not use any built-in
function that would require recursion if you defined it yourself, unless specified otherwise.
You may, of course, use any function you like if you define ityourself (in terms of allowed
functions). The point here is that you should not scour the user manual or the web for
functions that will solve most of a problem for you. Instead, your solution should use only
basic functions, like car, cdr, cons, null?, equal?, cond, if, and, or, lambda, +, -, >, etc.

You should hand in four files: the source code of all your Scheme functions, a sample ter-
minal session with the Scheme interpreter, the answers to the non-programming questions,
and a scanned signed copy of the cover sheet at the end of the assignment. The source code
should be well commented, and the terminal session should be short and should demon-
strate that your functions work correctly. The files should be submitted electronically as
described on the course web page. Be sure that we can run your Scheme code on the UTM
computers. The terminal session should demonstrate that your functions work on all of the
examples given in this assignment and on whatever other examples you deem necessary
to demonstrate that your functions work correctly. (You will be graded on your choice of
extra examples.)

Note: The marker has a limited amount of time for each assignment, so it is your responsi-
bility to provide documentation and testing that allows him to quickly evaluate your work.
In general, simple solutions are preferred and will receive the most marks. To keep things
simple, you may assume that the input to your functions is correct, so no error checking is
required. As with all work in this course, 20% of the grade is for quality of presentation.

No more questions will be added

1. (5 points) Define a Scheme function (sumAbs L) that returns the sum of the absolute
values of the numbers at the top level of list L. For example,

(sumAbs (1 -5 -2 3)) => 1+5+2+3 = 11
(sumAbs (1 -5 a -2 b 3)) => 1+5+2+3 = 11
(sumAbs ’(1 (2 3) (ab) B)) => 1456 =6

You may use the built-in Scheme function abs.

2. (7 points) Define a Scheme function (countEven NL) that returns the number of
even numbers in nested list NL. The even numbers may occur at any depth and may
be repeated. For example,

(countEven ’(2 a 3 b c 4)) => 2
(countEven ’(2 (a (3 (b (c 4)))))) => 2
(countEven ’(2 (4 (2) 4) 2)) => 5
(countEven > ((((4))))) => 1

(countEven 4) => 1

(countEven ’a) => 0

(countEven >()) => 0

You may use the built-in Scheme function even?.

3. (7 points) Define a Scheme function (getSymbols L) that returns a list of all the
symbols at the top level of list L in order. For example,

(getSymbols (1 a2 3 ba)) => (ab a)
(getSymbols ’(1 2 3)) => ()

(getSymbols ’(a (b c) (1 2) 3d) => (ad)

4. (7 points) Define a Scheme function (prefix L A) that returns all the elements of
list L that precede the first occurrence of A at the top level of the list. If A does not
appear at the top level of the list, then return the entire list. For example,

(prefix (1 23 456) 4) => (123)
(prefix ’(abcdcba) ’c) => (ab)
(prefix ’(a b c d) ’a) => O

(prefix ’(a b cd) ’e) => (abcd

(prefix ’(a (b c) d be) ’b) => (a (b c) d)

5. (10 points) Define a Scheme function (transform NL) that replaces all negative
numbers in NL by -1, and replaces all positive numbers by 1, and leaves all other
elements unchanged. Here, NL is a nested list. For example,

(transform (-4 -2 02 4)) = (-1 -1011)
(transform ’(a (-3 (0 () 4) b) -8)) => (a (-1 (0 O 1) b) -1)
(transform -8) => -1

(transform > ((((()))))) => ((CCOII))

6. (7 points) Define a Scheme function (map2 F L1 L2) where L1 and L2 are lists of
equal length. If L1 => (a1l a2 .. aN) and L2 => (bl b2 ... bN), then map2
returns a list of length N who’s ith element is (F ai bi). For example,

(map2 + (1 2 3 4) (667 8)) => (1+5 2+6 3+7 4+8) = (6 8 10 12)
(map2 cons (abc) ’((12)) (de £))) = ((al12) (b) (cde f))

(map2 (lambda (X Y) (+ 1 (x X Y))) (1 234) (567 8))
=> (1%5+1 2x6+1 3x7+1 4%8+1) = (6 13 22 33)

The next three questions require you to define functions on a directed graph. You
should represent a graph as a list of edges, where each edge is a list of two nodes and
each node is a number. For example, the list (3 7) represents an edge pointing from
node 3 to node 7. The graph below is thus represented as the list ((1 2) (2 3) (3
4) (1 3)). Note that each edge appears exactly once in the list and the order of the
edges in the list is unimportant. Likewise, in each of the questions below, the order
of nodes in a list does not matter, since the list represents a set.

2

You may find it useful to define functions that implement set operations. In this
case, we implement sets as lists with no duplicate elements. For example, the list
(a b c¢) would represent a set, whereas the list (a b a) would not. You could then
define (union S1 S2) to return the union of sets S1 and S2, or you could define
(intersect S1 S2) to return their intersection. Likewise, you might want to define
(setDiff S1 S2) to return the difference of sets 81 and 82. (The set difference is
all the elements in S1 that are not in S2.)

Your solutions should be able to handle very large graphs. In particular, your func-
tions should not run in exponential time. To test this, I have provided Scheme code
for generating large graphs, which is available on the course web site. It generates a
graph called G4001 which has 4001 nodes. You should test your functions in Ques-
tions 8 and 9 on this graph using node N = 4000 and depths D = 20, 21, 22, 200,
201, 202. Please include approximate execution times for these values of D when
submitting your solutions. If your functions take more than 10 minutes to terminate
and return the correct answer when D = 200, you will receive at most half points for
the problem.

. (7 points) If a graph contains an edge from node M to node N, then we say that N
is a child of M. Define a Scheme function (children N G) that returns the children
of node N in graph G. For example, if G1 => ((1 2) (1 3) (2 4) (3 4)), then

(children 1 G1) => (2 3)
(children 2 G1) => (4)
(children 3 G1) => (4)
(children 4 G1) => ()

. (15 points) If a graph contains a sequence of m edges (NoN1), (N1N3) ... (Np—1Np),
then we say that the graph has a directed path of length m from node Ny to node

4

N,,. Note that there may be many directed paths, of different lengths, from one
node to another. If the shortest directed path from node M to node N has length D,
then we say that N is distance D from M (or that N is a descendant of M of depth
D). Note that because the paths are directed, the distance from M to N may not be
the same as the distance from N to M.

Define a Scheme function (descendantsAll N D G) that returns a list of all the
nodes in graph G that are distance D or less from node N. The list should not contain
any duplicate nodes. For example,

(descendantsAll 1 0 G1) => (1)
(descendantsAll 1 1 G1) => (1 2 3)
(descendantsAll 1 2 G1) => (1 2 3 4)
(descendantsAll 1 3 G1) => (1 2 3 4)
(descendantsAll 1 7 G1) => (1 2 3 4)
(descendantsAll 2 0 G1) => (2)
(descendantsAll 2 1 G1) => (2 4)
(descendantsAll 3 0 G1) => (3)
(descendantsAll 3 1 G1) => (3 4)
(descendantsAll 4 0 G1) => (4)
(descendantsAll 4 1 G1) => (4)

Likewise, if G2 => ((1 2) (2 3) (3 4) (1 3)), then

(descendantsAll 1 1 G2) => (1 2 3)
(descendantsAll 1 2 G2) => (1 2 3 4)

Hint: define a helper function that carries out breadth-first search in G starting at
node N. (See “breadth-first search” in Wikipedia.)

For full marks, your definition of descendantsAll should be simpler than your
definition of descendants2 in Question 9(b). In Particular, you should not use
descendants? to define descendantsAll.

. (20 points total) Define a Scheme function (descendants N D G) that returns a list
of all the nodes in graph G that are ezactly distance D from node N. The list should
not contain any duplicate nodes. For example,

(descendants 1 0 G1) => (1)
(descendants 1 1 G1) => (2 3)
(descendants 1 2 G1) => (4)
(descendants 1 3 G1) => ()
(descendants 1 7 G1) => ()
(descendants 2 0 G1) => (2)
(descendants 2 1 G1) => (4)
(descendants 3 1 G1) => (4)
(descendants 3 2 G1) => ()

Likewise,

(descendants 1 1 G2) => (2 3)
(descendants 1 2 G2) => (4)
(descendants 1 3 G2) => ()

Likewise, if G3 => ((1 2) (2 3) (3 4) (4 5) (1 4)), then
(descendants 1 1 G3) => (2 4)
(descendants 1 2 G3) => (3 5)
(descendants 1 3 G3) => ()

Finally, if G4 => ((0 1) (1 2) (2 3) (34) (45) (66) (67) (78) (13)
(1 4) (15) (16)),then

(descendants 0 0 G4) => (0)
(descendants 0 1 G4) => (1)
(descendants 0 2 G4) => (2 3 4 5 6)
(descendants 0 3 G4) => (7)
(descendants 0 4 G4) => (8)
(descendants 0 5 G4) => ()

You should define descendants in two different ways, using two different helper
functions, as described below. In each case, descendants is a simple, non-recursive
function and the helper function is recursive and does most of the work. The two
versions should be called descendants1 and descendants2.

(a) (5 points) Define (descendantsl N D G) using descendantsAll as a helper
function.

(b) (15 points) Define (descendants2 N D G) so that it carries out a breadth-first
search of graph G starting at node N. (See “breadth-first search” in Wikipedia.)
You should do this by defining a helper function (descendants2Help L1 L2 D
G), where L1 and L2 are lists of nodes in G. At each recursive call to descendants2Help,
L2 contains all the nodes we have visited so far, and L1 contains all the nodes
we are now visiting for the first time. More specifically, at the n* recursive call,
L2 contains all the nodes at distance less than n, and L1 contains all the nodes
at distance n. descendants2Help should be linear recursive, that is, each call
to descendants2Help should give rise to at most one recursive call to itself. Do
not use descendantsAll in your definition.

If the function call (descendants2 4000 2000 G4001) terminates with the cor-
rect answer in less than 10 minutes, you will receive 5 bonus points. To recieve
the bonus points, we must be able to run your code.

10. (20 points total) Consider the following two Scheme functions:

(define (attach X L)
(if (null? L)
(cons X L)
(cons (car L) (attach X (cdr L)))))

(define (member? X L)
(cond ((null? L) #f)
((equal? X (car L)) #t)
(else (member? X (cdr L)))))

(a) (5 points) Write down the basic properties of these two functions, i.e., properties
that are immediately evident from inspection of the code.

Prove that these functions have the following properties, for all lists L and any
expression A:

(b) (5 points) (member? X (attach X (cons A ’()))) = #t
(c¢) (10 points) (member? X (attach X L)) = #t

Justify every step of your proofs. Do not use (c) to prove (b).

No more questions will be added

University of Toronto Mississauga
CSC 324 - Principles of Programming Languages

Cover sheet for Assignment 1

Complete this page and submit it with your assignment.

Name:

(Underline your last name)

Student number:

I declare that this assignment is solely my own work, and is in accordance
with the University of Toronto Code of Behaviour on Academic Matters.

Signature:

