
Memory Footprint Reduction Techniques 
for DNN Training: An Overview

Episode III. Weight Placement for EX-Large Models
Bojian Zheng

2022/2/18

1



Outline

• EX-Large Models: Bring us better accuracy but also challenges.
• Existing Solutions: Data and Model Parallelism
• ZeRO-Infinity: Data-Parallelism-based Solution for EX-Large Training

2



Recall: A History of Prior Works

3

2015-2016 2016- 2019-

Weight Pruning for 
Efficient Inference

Feature Maps 
Reduction for Efficient 
Training

Weight Placement for 
EX-Large Models

[1] T. Chen et al. DianNao: A Small-Footprint High-
Throughput Accelerator for Ubiquitous Machine-
Learning. ASPLOS 2014

[2] S. Han et al. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. ISCA 2015

[3] S. Han et al. Deep Compression: Compressing 
Deep Neural Networks with Pruning, Trained 
Quantization and Huffman Coding. ICLR 2015

[4] Y. Chen et al. Eyeriss: A Spatial Architecture for 
Energy-Efficient Dataflow for Convolutional Neural 
Networks. ISCA 2016

…

[5] T. Chen et al. Training Deep Nets with Sublinear 
Memory Cost. arXiv 2016

[6] M. Rhu et al. vDNN: Virtualized Deep Neural 
Networks for Scalable, Memory-Efficient Neural 
Network Design. MICRO 2016

[7] A. Jain et al. Gist: Efficient Data Encoding for Deep 
Neural Network Training. ISCA 2018

[8] B. Zheng et al. Echo: Compiler-based GPU Memory 
Footprint Reduction for LSTM RNN Training. ISCA 
2020

…

[9] S. Rajbhandari et al. ZeRO-Infinity: Breaking the 
GPU Memory Wall for Extreme Scale Deep 
Learning. SC 2021

…

Topic for Today!



Recall: GPU Memory Allocations in DNN Training

• Major GPU memory consumers: Model States
• Model States: weights (①), gradients (②), optimizer states (③)

4

①

③②

In state-of-the-art weight update 
optimizers (e.g., Adam[1]), need 
extra states ∀weight.

[1] D. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. ICLR 2015



Why EX-Large Models?

• Rule of Thumb in Deep Learning: 

Larger & Deeper Models ⇒ Better Model Accuracy[1, 2]

• The amount of computation resources consumed by a job can reject 
the problem scale and may also indicate the commercial value of the 
workload[3].

[1] K. He et al. Deep Residual Learning for Image Recognition. CVPR 2016
[2] T. Brown et al. Language Models are Few-Shot Learners. NeurIPS 2020
[3] M. Wang et al. Characterizing Deep Learning Training Workloads on Alibaba-PAI. IISWC 2019 

But at what cost?

5



Challenges with Training EX-Large Models

• BERT[1]

• State-of-the-Art Natural Language 
Processing Model (2018)
• 340M parameters
• Cannot fit into the GPU memory 

even with a batch size of 1[2].
• Addressable with offloading[3], 

checkpointing[4] etc.

6

[1] J. Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding. NAACL 2019

[2] https://github.com/google-research/bert
[3] M. Rhu et al. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-

Efficient Neural Network Design. MICRO 2016
[4] T. Chen et al. Training Deep Nets with Sublinear Memory Cost. arXiv 2016

https://github.com/google-research/bert


Challenges with Training EX-Large Models

• GPT-3[1]

• State-of-the-Art Natural Language 
Processing Model (2020)
• 175B parameters (470× LARGER)
• 700 GB storage ≫ modern GPU 

memory capacity
• 3×700 GB = 2.1 TB more for 

gradients & optimizer states

7
[1] T. Brown et al. Language Models are Few-Shot Learners. NeurIPS 2020



Challenges with Training EX-Large Models

• Multi-Interests[1, 2, 3]

• Industry-scale recommender
• Encodes every object of interest 

into a vector, which assembles into 
an embedding table.
• Up to 240 GB storage ≫ modern 

GPU memory capacity
• Cannot fit a single layer into the 

GPU memory!

8

[1] P. Covington et al. Deep Neural Networks for YouTube Recommendations. 
RecSys 2016

[2] J. Weston et al. Nonlinear Latent Factorization by Embedding Multiple User 
Interests. RecSys 2013

[3] M. Wang et al. Characterizing Deep Learning Training Workloads on Alibaba-
PAI. IISWC 2019



Today’s DNN Training In A Nutshell

9

DNN Models

GPU Memory 
Capacity



Data and Model Parallelism

• Partition into multiple devices? E.g., Data and/or Model Parallelism?

10

! Cool	Dog = 100%



Data Parallelism

• Partitions the data into multiple devices.

11

! Cool	Dog = 100% ! Cool	Dog = 100% ! Cool	Dog = 100%



Model Parallelism

• Partitions the model into multiple devices.

12

! Cool	Dog = 100%



Data vs. Model Parallelism

Data Parallelism
+

+

− Need to replicate the entire 
model. Challenges of the EX-
large models persist!

Model Parallelism
− Need to significantly refactor 

the code for load-balancing.
− Hard to support models with 

complex dependencies.
+

13

Could we have the merits from both?
i.e., generic support for EX-Large 

models with minor code changes?



ZeRO[1]

• A solution that is based on data-parallelism.
• Key Idea Partitions model states among devices and use efficient

communication primitives to gather them.
• However, hungry DNN models need much more memory!

14
[1] S. Rajbhandari et al. ZeRO: Memory Optimizations toward Training Trillion Parameter Models. SC 2020



ZeRO-Infinity[1]

• ZeRO[2] + Infinity Offload Engine
• Observation GPUs are also accompanied with a CPU and NVMe SSDs

• Key Idea Partitions model states among (GPUs + CPU + SSD) and 
Keeps most of the states to the latter two.

15
[1] S. Rajbhandari et al. ZeRO: Memory Optimizations toward Training Trillion Parameter Models. SC 2020

GPUs CPU NVMe SSDs
Memory (TB) 0.5 1.5 28



Challenges

• Challenge #1 How to efficiently get the weights from CPU/SSDs?

• Challenge #2 How to handle cases when the weight of a single layer 
cannot fit into the GPU memory?

16



Key Idea #1. Weight Gathering

• Challenge #1 How to efficiently get the weights from CPU/SSDs?
• Optimization #1 ∀weight, each GPU worker holds a portion of it and 

gathers the rest from others.
• Better utilization than having a single worker broadcast the weight to others.

17



Key Idea #1. Weight Gathering

• Challenge #1 How to efficiently get the weights from CPU/SSDs?
• Optimization #1 ∀weight, each GPU worker holds a portion of it and 

gathers the rest from others.
• Better utilization than having a single worker broadcast the weight to others.

18



Key Idea #1. Weight Gathering

• Challenge #1 How to efficiently get the weights from CPU/SSDs?
• Optimization #1 ∀weight, each GPU worker holds a portion of it and 

gathers the rest from others.
• Better utilization than having a single worker broadcast the weight to others.

19



Key Idea #1. Weight Gathering

• Challenge #1 How to efficiently get the weights from CPU/SSDs?
• Optimization #1 ∀weight, each GPU worker holds a portion of it and 

gathers the rest from others.
• Better utilization than having a single worker broadcast the weight to others.

20
Same effective bandwidth even if 1024 GPUs are reading in parallel



Key Idea #1. Weight Gathering

• Challenge #1 How to efficiently get the weights from CPU/SSDs?
• Optimization #1 ∀weight, each GPU worker holds a portion of it and 

gathers the rest from others.
• Better utilization than having a single worker broadcast the weight to others.

21
4/1.6 TB/s (Gather) vs. 12/12 GB/s (Broadcast)



Key Idea #1. Pipelined Prefetch

• Challenge #1 How to efficiently get the weights from CPU/SSDs?
• Optimization #1 ∀weight, each GPU worker holds a portion of it and 

gathers the rest from others.

• Optimization #2 Pipelined prefetch from SSD→CPU→GPU.

22

𝑖 SSD CPU GPU Compute

𝑖 + 1 SSD CPU GPU

𝑖 + 2 SSD CPU

𝑖 + 3 SSD

Read the weight slice from SSD 
for layer 𝑖 + 3 while layer 𝑖 is 
computing its results.



Key Idea #3. Tiled Computation

• Challenge #2 How to handle cases when the weight of a single layer 
cannot fit into the GPU memory?

• Key Idea Some layers can evaluate their results in tiles and some 
do not need the whole weight for the full results[1].

• E.g., Dense Layer 𝑌 = 𝑋𝑊'

23
[1] M. Wang et al. Characterizing Deep Learning Training Workloads on Alibaba-PAI. IISWC 2019

𝑋

𝑊

𝑌



Key Results

24



Key Results

25

Baseline with Data + Model Parallelism



Key Results

26

Offloading to CPU/SSDs cause 2%
performance degradation



Key Results

27

Support for models that 
have trillion parameters



Conclusions

• EX-Large Models: Bring us better accuracy but also challenges.
• Existing Solutions: Data and Model Parallelism
• Can’t make EX-large training practical while being easily programmable.

• ZeRO-Infinity: Data-Parallelism-based Solution for EX-Large Training
• Key Ideas: Weight Gathering, Pipelined Prefetch, Tiled Computation
• Makes it possible to train models with trillion parameters with small 

performance overhead (2%).

• https://github.com/microsoft/DeepSpeed

28

https://github.com/microsoft/DeepSpeed


Memory Footprint Reduction Techniques 
for DNN Training: An Overview

Episode III. Weight Placement for EX-Large Models
Bojian Zheng

2022/2/18

29



Why Not?

• Reduce the precision of the 
weight parameters[1]? E.g., 
FP32→FP16?
• Challenge: Weights need to be 

in high-precision format to 
accommodate for incremental 
gradient updates.

• E.g., Type equation here.

30



𝑃 Cool Dog = 100%



𝑃 Cool Dog = 100%



ZeRO-Infinity[1]

• ZeRO[2] + Infinity Offload Engine
• Observation GPUs are accompanied with large CPU memory and 
• Key Idea Partitions model states among workers (GPUs + CPU +

NVMe SSD). Offload the states in the latter two 

33
[1] S. Rajbhandari et al. ZeRO: Memory Optimizations toward Training Trillion Parameter Models. SC 2020



! Cool	Dog = 100% ! Cool	Dog = 100% ! Cool	Dog = 100%



35


