Recent Trend in Machine Learning
Compilers: A Survey

Bojian Zheng, Shang Wang, Gennady Pekhimenko

EcoSystem Research Group
Department of Computer Science, University of Toronto
bojian,wangsh46,pekhimenko@cs. toronto.edu

Abstract: Why Machine Learning Compilers?

Machine Learning Frameworks are NOT the end of story!

8 Performance
8 Hardware Backend Portability

Machine Learning Compilers create the separation between
what to compute (Algorithms) and how to compute (Schedules).

Background: Machine Learning

Machine Learning has applications in many domains.

Image Classification

aone it ST - EIEEEN IR S
automobile EIE‘E‘
o sl WES ¥ EES
« EEOHNEEEsP
wer [PRV S N I RS
wg [HESESBPIE a5
frog EESESDANE
horse .iﬂn-nn
ship ag-ialﬂ
truck Wi REESES

Machine Translation

c

Google

Translate

Speech Recognition

«[[|Ihello

Background: Machine Learning Frameworks

Machine Learning Applications are usually developed under Machine Learning
Frameworks (Tensorflow, PyTorch, MXNet, CNTK),
which can be viewed as a language wrapper on top of the Operator Pool.

‘Machine Learning Programmers

5 l.‘ (Language Wrapper (e.g., Python) @X n e t
Tensor (\

Operator Pool

. Vendor Libraries P
O RO/ e
o [

Background: Machine Learning Frameworks

The Operator Pool consists of implementations of machine learning operators
that are tuned in depth, either by framework developers or vendor libraries.

C r\

Tensor

O

(Language

s

Operator Pool
Vendor Libraries

¢ O
g

\

Machine Learning Programmers

Wrapper (e.g., Python)

Background: Machine Learning Frameworks

Machine learning practitioners build up Computation Graphs for development.
Each node is an instantiation of the operator with specific parameters.

2048 \ / 2048 \dense
13 13
-_!- ~
224 [" :
N s 13 dense | |dense
1000
) 192 128 Max L L
Stride Max 128 Max pooling 20%¢ 2048
Uof 4 pooling pooling
3 48

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information
processing systems. 2012.

Problem Statement

So what are the problems with Machine Learning Frameworks?

8 Performance

o Implementing NEW operators using EXISTING ones are costly.

o EXISTING operators CANNOT guarantee

best performance for every input case (dimensions, data types, ...).

8 Hardware Backend Portability

o Many hardwares targeting machine learning workloads.

o E.g., CPUs, GPUs, TPU, FPGAs, ASICs ...

o Different hardwares require different management policy.

o Hard for those frameworks to be ported to new hardwares.

Problem Statement: Performance

“Implementing NEW operators using EXISTING ones are costly.”

- - - —
4 4 -~ ~
. . ' . -~

’ o=z |00

----- Hardware Overhead
" GPU Kernel I—P Execution Timeline
= = = Performance Penalty

Extra Overheads for Splitting/Joining Threads &
Reading/Writing tmp

Problem Statement

So what are the problems with Machine Learning Frameworks?

8 Performance

o Implementing NEW operators using EXISTING ones are costly.

o EXISTING operators CANNOT guarantee

best performance for every input case (dimensions, data types, ...).

8 Hardware Backend Portability

o Many hardwares targeting machine learning workloads.

o E.g., CPUs, GPUs, TPU, FPGAs, ASICs ...

o Different hardwares require different management policy.

o Hard for those frameworks to be ported to new hardwares.

Tensorflow XLA ¥

Tensorflow XLA consists of two separate components:

e Ahead-Of-Time Compiler tfcompile:
o Major Goal: Reduce size of executables on mobile devices.
o ldea: Applications ONLY take subroutines that they need,
rathen than the entire Operator Pool.
e Just-In-Time Compiler XLA:
o Major Goal: Improve performance and portability.
o ldea: Similar Design with LLVM
o Currently, Kernel Fusion is the major optimization that XLA does.

10

TensorComprehensions Tensor @ Comprehensions

e TensorComprehensions is mainly focusing on
runtime performance optimization on GPUs.

e More specifically, it auto-tunes each individual operator.
o This is different from auto-scheduling that

optimizes across multiple different operators.

e Two Major Highlights: (1) Code Generation (2) Auto-tuning

Vasilache, Nicolas, et al. "Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions." arXiv preprint arXiv:1802.04730
(2018).

11

TensorComprehensions: Code Generation

Example: Writing a Matrix Multiply using TensorComprehensions:
import tc, torch
ee = tc.ExecutionEngine()
define a new matmul operator
ee.define("""
def mm(float(M, K) A, float(K, N) B) -> (C)
{
C(m, n) +=! A(m, kk) * B(kk, n)
)
A = torch.randn(3, 4)
B = torch.randn(4, 5)

12

TensorComprehensions: Code Generation

Code Generation of TensorComprehensions relies on PPCG,
the Polyhedral Parallel Code Generator for CUDA.
Features: (1) Polyhedral Scheduling (2) GPU Mapping (3) Memory Promotion

[TC

Y

Halide IR

N

Polyhedral IR

Polyhedral
Transformation

TUDA Kernel

13

TensorComprehensions: Auto-tuning

CPUs

Compilation jobs :

Profiling jobs

—~W

Tuning B
Database

e

- Search Strategy B

14

TensorComprehensions: Auto-tuning

def avgpool(float(B, C, H, W) input) ~-> (output) {{
output(b, ¢, h, w) += input(b, ¢, h * {sH} + kh, w * {sW} + kw)
where kh in 0:{kH}, kw in 0:{kW}
3}

Tensor Comprehension for 2D Average Pooling

15

Case Study: Two-stage Blur Filter

Consider a image processing pipeline consisted of a two-stage blur filter:

blurx(x, y) = in(x-1, y) + in(x, y) + in(x+1, y)

out(x, y) = blurx(x, y-1) + blurx(x, y) + blurx(x, y+1)

What are the possible implementations?

16

Case Study: Two-stage Blur Filter

Parallelism, Locality, No Redundant Computation

== L RS S alloc blurx[2048][3072]

|| | for each y in 0..2048:

|) G0 for each x in 0..3072:

RN “"““"‘—"F ===1i blurx[yl[x] = in[y]l[x-1] + in[yl[x] + in[y][x+1]
] (O] I T [T L Y L | alloc out[2046][3072]

breadth first: each function is for each y in 1..2047:
for each x 1in 0..3072:

g:grely evaluaied ball i out[y]l[x]=blurx[y-1][x] + blurx[y][x] + blurx[y+1][x]

WEE
|
|
|
l

17

Case Study: Two-stage Blur Filter

Parallelism, Locality, No Redundant Computation

e — | alloc out[2946][3972]

| — m + e | || for each y in 1..2047:
Sy for each x in 0..3072:
alloc blurx[-1..1]

) | for each i in -1..1:
total fusion: Va!ues are computed blurx[i]= in[y-1+i][x-1]+in[y-1+i] [x]+in[y-1+1i] [x+1]
on the fly each time that they are out[y][x] = blurx[8] + blurx[1] + blurx[2]

needed.
18

Case Study: Two-stage Blur Filter

Parallelism, Locality, No Redundant Computation

in blurx out alloc out[2046][3072]

------ —IF | | | alloc blurx[3][3672]
] | | for each y in -1..2047:

A] i | i for each x in 0..3072:

vvvvv | blurx[(y+1)%3] [x]=in[y+1][x-1]+in[y+1] [x]+in[y+1] [x+1]
- : : if y < 1: continue
sliding window: values are outly]l[x] = blurx[(y-1)%3] [x]
computed when needed then +# blurx[y % 3 1[x]

stored until not useful anymore. + blurx[(y+1)%3][x]
19

Case Study: Two-stage Blur Filter

id hax filter 3x3{conse In &in, Image &alury) |
m128i cne third =« mm 1 epill I;

vlile < In.heighti); yTile | = |
C, SUMm, avy
x|l Fa -] 3
fint xlile = ;xlile < Inowidth); xTile += 11
ml28i *bluxPir = blurx,

Finding optimal kernel by manually trying el
different combinations.

panst wintlE ¢ *inftr < SlinlyTile+y) [xTolely;

men_load_si
= rmm_acd epil

InPtr +=

ln

BlurxFrr = blurx
finty = [y = v+l 4

_MI1288 "outPrr = _mI1 281 *JWEMIury|yTile+y) xT el
UNRT X = | X o TN s g

a4 = _mim_los blusxPur+(
1= _mn_laa ihlur=Pre
C = mm laa
SUIT = _mm_
awg = _mm_mulh sum, pne thirg;
mm_stare sil2B8icutPtr++, avyg);

20

Halide

e Separation between functional correctness and optimization:
o Algorithm: What to compute.
o Schedule: How to compute.

e (Original) Usage: stencil computations and stream programs.
e Application: Image processing (graphics).
e Motivation: Writing optimized image processing kernels is very hard!

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe, “Halide: a language and compiler for optimizing parallelism, locality, and

recomputation in image processing pipelines,” in Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation, ser.

PLDI ’"13. New York, NY, USA: ACM, 2013, pp. 519-530.

21

A Halide Program

Input: Algorithm
blurx(x,y) = in(x-1,y)
+ 1in(x,y)
+ in(x+1,y)

blurx(x,y-1)
blurx(x,y)
blurx(x,y+1)

out(x,y)

+ %

Input: Schedule

blurx: split x by 4 — X, x,

vectorize: X

store at out.x,
compute at out.y,

out: splitxby4 — x, X,
splityby4—y,,vy,
reorder:y , X, ¥;, X
parallelize: y_
vectorize: X,

i

22

But how to schedule?

e Heuristic Cost Model H :> A, B

Cost = (Number of arithmetic operations)
+ (Number of memory accesses) x (LOAD COST)
Benefit(A, B) = Cost(A) + Cost(B) - Cost(A, B)

e Greedy Grouping until no positive benefit

in—A,B—— ¢,D,E

C,E

Tile size: 8 x 128 Tile size: 8 x 8

Tile size: 8 x 8 Tile size: 8 x 128 Tile size: 8 x 8

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and Kayvon Fatahalian. 2016. Automatically Scheduling Halide Image Processing 23
Pipelines. ACM TOG (2016).

TVM

e Like Halide (not exactly), but in machine learning (ML) domain.

e ML operators (conv2d, relu, etc.) implemented as Algorithm + Schedule.
o Targeted at various hardware backends.
o Optimal schedules are different for different hardware backends.

F ks 8 S oM [[18
NNVM lramewo s & S 'CNTK CoreML - @ |

[Computational Graph]
v

Section 3 High Level Graph Rewriting

[Optimized Computational Graph]

Operator-level Optimization and Code Generation
Declarative Hardware-Aware TV M
Tensor Expressi@s Optimization Primitives
E a~
Machine Learning Based
Automatedv Optimizer

Section 4

Section 5

[Optimized Low Level Loop Program |

——

S

[Accelerator Backend [tvmIR][cubAmMetaropencL |

v
[Deployable Module]

T. Chen et al. TVM: End-to-End Compilation Stack for Deep Learning. In SysML, 2018.

TVM

Graph Level Optimization: e i
@) NNVM data > conv2d > relu & conv2d = relu > f|at+ten
. , |
o Specific Handwritten Rules chamels=32, -~ s
paddin§:(1,1),' '

use_bias=0 shape=(1,10) — softmax

example attributes

Operator Level Optimization:
o TVM
o More schedule primitives targeted at various hardware backends.

E—

operation

inputs

dataflow
dependency

25

Operator Schedule Auto-tuning

e Define a template schedule.

e Automatic Schedule Tuning:
o Cost Model: Gradient Tree Boosting & TreeRNN
o Exploration: Simulated Annealing Algorithm

TengprO_p Schedule Space Device Cluster
Specification Template I |
=% Raspberry Pi
B
~__ l

————— 1log = rpc | Mali GPU |

Schedule Explorer ————> IR
- . get_perf | Nvidia GPU |

£ 'n'n\ query lupdate
raining — T | FPGABoard |
data

ML Cost Model

26

Operator Schedule Auto-tuning

Schedule.

y, X = s[C].op.axis

k = s[C].op.reduce_axis[0]

Get the config object.

cfg = autotvm.get _config()

Define search space.
cfg.define_knob("tile_y", [1, 2, 4, 8, 16])
cfg.define_knob("tile x", [1, 2, 4, 8, 16])
Schedule according to config.

yo, yi = s[C].split(y, cfg['tile_y'].val)
x0, xi = s[C].split(x, cfg['tile_x"'].val)
s[C].reorder(yo, xo, k, yi, xi)

27

Halide v.s. TVM

Halide: Auto-scheduling for the entire pipeline.

TVM:
o Break DAG into operators.
o Auto-tuning for each operator
o Hopefully a bag of optimal operators will yield optimal performance.

Note: “Auto-tuning” does NOT imply “Auto-scheduling”!

o In this sense, “auto-tuning” is a simpler problem than “auto-scheduling”.

o But both aspects are currently under active research.
The schedule space of TVM is a subset of Halide.
o TVM: each operator scheduled at root.

28

Conclusion

e Machine Learning Frameworks are NOT the end of story!
8 Performance and 8 Hardware Backend Portability

e Machine Learning Compilers come for rescue!

o Tensorflow XLA, TensorComprehensions, Halide, TVM
o Not covered today: Glow, Tiramisu, Relay, Diesel, R-Stream, etc.

e Key ldea: separation between what to compute (Algorithms) and
how to compute (Schedules)
e Therefore, this is an interesting research field to pursue!

29

Thank you!

