
Recent Trend in Machine Learning
Compilers: A Survey

Bojian Zheng, Shang Wang, Gennady Pekhimenko

EcoSystem Research Group
Department of Computer Science, University of Toronto
bojian,wangsh46,pekhimenko@cs.toronto.edu

Abstract: Why Machine Learning Compilers?
● Machine Learning Frameworks are NOT the end of story!

✖ Performance
✖ Hardware Backend Portability

● Machine Learning Compilers create the separation between
what to compute (Algorithms) and how to compute (Schedules).

2

Background: Machine Learning
Machine Learning has applications in many domains.

3

Image Classification

Machine Translation

Speech Recognition

Background: Machine Learning Frameworks
Machine Learning Applications are usually developed under Machine Learning
Frameworks (Tensorflow, PyTorch, MXNet, CNTK),
which can be viewed as a language wrapper on top of the Operator Pool.

4

Background: Machine Learning Frameworks
The Operator Pool consists of implementations of machine learning operators
that are tuned in depth, either by framework developers or vendor libraries.

5

Background: Machine Learning Frameworks
Machine learning practitioners build up Computation Graphs for development.

Each node is an instantiation of the operator with specific parameters.

6Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information
processing systems. 2012.

Problem Statement
So what are the problems with Machine Learning Frameworks?

✖ Performance
○ Implementing NEW operators using EXISTING ones are costly.
○ EXISTING operators CANNOT guarantee

best performance for every input case (dimensions, data types, ...).
✖ Hardware Backend Portability

○ Many hardwares targeting machine learning workloads.
○ E.g., CPUs, GPUs, TPU, FPGAs, ASICs …
○ Different hardwares require different management policy.
○ Hard for those frameworks to be ported to new hardwares.

7

Problem Statement: Performance
“Implementing NEW operators using EXISTING ones are costly.”

8

Extra Overheads for Splitting/Joining Threads &
Reading/Writing tmp

Problem Statement
So what are the problems with Machine Learning Frameworks?

✖ Performance
○ Implementing NEW operators using EXISTING ones are costly.
○ EXISTING operators CANNOT guarantee

best performance for every input case (dimensions, data types, ...).
✖ Hardware Backend Portability

○ Many hardwares targeting machine learning workloads.
○ E.g., CPUs, GPUs, TPU, FPGAs, ASICs …
○ Different hardwares require different management policy.
○ Hard for those frameworks to be ported to new hardwares.

9

Tensorflow XLA
Tensorflow XLA consists of two separate components:

● Ahead-Of-Time Compiler tfcompile:
○ Major Goal: Reduce size of executables on mobile devices.
○ Idea: Applications ONLY take subroutines that they need,

rathen than the entire Operator Pool.
● Just-In-Time Compiler XLA:

○ Major Goal: Improve performance and portability.
○ Idea: Similar Design with LLVM
○ Currently, Kernel Fusion is the major optimization that XLA does.

10

TensorComprehensions
● TensorComprehensions is mainly focusing on

runtime performance optimization on GPUs.

● More specifically, it auto-tunes each individual operator.
○ This is different from auto-scheduling that

optimizes across multiple different operators.

● Two Major Highlights: (1) Code Generation (2) Auto-tuning

11Vasilache, Nicolas, et al. "Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions." arXiv preprint arXiv:1802.04730
(2018).

TensorComprehensions: Code Generation
Example: Writing a Matrix Multiply using TensorComprehensions:

import tc, torch

ee = tc.ExecutionEngine()

define a new matmul operator

ee.define("""

def mm(float(M, K) A, float(K, N) B) -> (C)

{

 C(m, n) +=! A(m, kk) * B(kk, n)

}""")

A = torch.randn(3, 4)

B = torch.randn(4, 5)

C = ee.mm(A, B) # use the newly defined operator 12

TensorComprehensions: Code Generation
Code Generation of TensorComprehensions relies on PPCG,

the Polyhedral Parallel Code Generator for CUDA.
Features: (1) Polyhedral Scheduling (2) GPU Mapping (3) Memory Promotion

13

TensorComprehensions: Auto-tuning

14

TensorComprehensions: Auto-tuning

15

Case Study: Two-stage Blur Filter
Consider a image processing pipeline consisted of a two-stage blur filter:

What are the possible implementations?

16

blurx(x, y) = in(x-1, y) + in(x, y) + in(x+1, y)

 out(x, y) = blurx(x, y-1) + blurx(x, y) + blurx(x, y+1)

Case Study: Two-stage Blur Filter

Parallelism, Locality, No Redundant Computation

17

Case Study: Two-stage Blur Filter

18

Parallelism, Locality, No Redundant Computation

Case Study: Two-stage Blur Filter

19

Parallelism, Locality, No Redundant Computation

Case Study: Two-stage Blur Filter

Finding optimal kernel by manually trying
different combinations.

20

Halide
● Separation between functional correctness and optimization:

○ Algorithm: What to compute.
○ Schedule: How to compute.

● (Original) Usage: stencil computations and stream programs.
● Application: Image processing (graphics).
● Motivation: Writing optimized image processing kernels is very hard!

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe, “Halide: a language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines,” in Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation, ser.
PLDI ’13. New York, NY, USA: ACM, 2013, pp. 519–530.

21

A Halide Program

22

But how to schedule?
● Heuristic Cost Model

● Greedy Grouping until no positive benefit

A B A, B

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and Kayvon Fatahalian. 2016. Automatically Scheduling Halide Image Processing
Pipelines. ACM TOG (2016).

23

Cost = (Number of arithmetic operations)

 + (Number of memory accesses) x (LOAD COST)

Benefit(A, B) = Cost(A) + Cost(B) - Cost(A, B)

TVM
● Like Halide (not exactly), but in machine learning (ML) domain.
● ML operators (conv2d, relu, etc.) implemented as Algorithm + Schedule.

○ Targeted at various hardware backends.
○ Optimal schedules are different for different hardware backends.

24T. Chen et al. TVM: End-to-End Compilation Stack for Deep Learning. In SysML, 2018.

NNVM

TVM

TVM
● Graph Level Optimization:

○ NNVM
○ Specific Handwritten Rules

● Operator Level Optimization:
○ TVM
○ More schedule primitives targeted at various hardware backends.

25

Operator Schedule Auto-tuning
● Define a template schedule.
● Automatic Schedule Tuning:

○ Cost Model: Gradient Tree Boosting & TreeRNN
○ Exploration: Simulated Annealing Algorithm

26

Operator Schedule Auto-tuning
Schedule.

y, x = s[C].op.axis

k = s[C].op.reduce_axis[0]

Get the config object.

cfg = autotvm.get_config()

Define search space.

cfg.define_knob("tile_y", [1, 2, 4, 8, 16])

cfg.define_knob("tile_x", [1, 2, 4, 8, 16])

Schedule according to config.

yo, yi = s[C].split(y, cfg['tile_y'].val)

xo, xi = s[C].split(x, cfg['tile_x'].val)

s[C].reorder(yo, xo, k, yi, xi)

27

Halide v.s. TVM
● Halide: Auto-scheduling for the entire pipeline.
● TVM:

○ Break DAG into operators.
○ Auto-tuning for each operator
○ Hopefully a bag of optimal operators will yield optimal performance.

● Note: “Auto-tuning” does NOT imply “Auto-scheduling”!
○ In this sense, “auto-tuning” is a simpler problem than “auto-scheduling”.
○ But both aspects are currently under active research.

● The schedule space of TVM is a subset of Halide.
○ TVM: each operator scheduled at root.

28

Conclusion
● Machine Learning Frameworks are NOT the end of story!

✖ Performance and ✖ Hardware Backend Portability
● Machine Learning Compilers come for rescue!

○ Tensorflow XLA, TensorComprehensions, Halide, TVM
○ Not covered today: Glow, Tiramisu, Relay, Diesel, R-Stream, etc.

● Key Idea: separation between what to compute (Algorithms) and
how to compute (Schedules)

● Therefore, this is an interesting research field to pursue!

29

Thank you!

30

