Machine Learning Compiler: An Overview

Bojian Zheng

2022/4/1 @Amazon Reading Group

Agenda for Today

- Why Machine Learning Compilers?
 - State-of-the-Art Machine Learning Frameworks Design, and Flaws:
 - 1. Vendor libraries not delivering the optimal performance.
- 2 Classes of Machine Learning Compilers:
 - Halide^[1]/TVM^[2]: Easier to write high-performance programs.
- [1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI 2013
- [2] T. Chen et al. *TVM: An Automated End-to-End Optimizing Compiler for Deep Learning*. OSDI 2018

• Example Workload:

$$Y = XW^\top \quad X : [M, K], W : [N, K]$$

- Q: How to efficiently handle for all cases of (*M*, *K*, *N*)?
- Solutions (e.g., cuBLAS):
 - Provide efficient kernels that cover to all the use cases. E.g.,

$$y = xw^{ op} \quad egin{cases} x:[32,*],w:[32,*]\ x:[64,*],w:[64,*]\ x:[128,*],w:[128,*] \end{cases}$$

• Dispatch at runtime to the most suitable kernel.

Even as the shapes vary, cuBLAS only invokes a **handful** of kernels.

• Example Workload:

$$Y = XW^\top \quad X : [M, K], W : [N, K]$$

- Q: How to efficiently handle for all cases of (*M*, *K*, *N*)?
- Solutions (e.g., cuBLAS):
 - Provide efficient kernels that cover to all the use cases. E.g.,

$$y = xw^{\top} \begin{cases} x : [32, *], w : [32, *] \\ x : [64, *], w : [64, *] \\ x : [128, *], w : [128, *] \end{cases}$$
• Dispatch at runtime to the most suitable kernel.

- Leads to <u>sub-optimal</u> performance (up to $13 \times$) due to
 - Low Hardware Utilization^[1] and/or
 - Redundant Computations (by padding)^[2]
- Develop high-performance customized kernels?
 - Requires huge expertise + engineering efforts: thousands of lines per operator per architecture^[3].

- [2] Alibaba. Bringing TVM into TensorFlow for Optimizing Neural Machine Translation on GPU. 2018
- [3] NVIDIA. CUTLASS: CUDA Templates for Linear Algebra Subroutines. https://github.com/NVIDIA/cutlass

^[1] F. Yu et al. Towards Latency-aware DNN Optimization with GPU Runtime Analysis and Tail Effect Elimination. arXiv 2020

- State-of-the-Arts: Halide^[1] & TVM^[2]
 - Halide: image processing
 - TVM: machine learning & better GPU support
- Objective: Easier to write high-performance programs.
- Key Idea: Abstracts low-level implementations using <u>schedules</u>.

45 lines of Python Scheduling Code

```
s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_i, factor=1)
...
```

- State-of-the-Arts: Halide^[1] & TVM^[2]
 - Halide: image processing
 - TVM: machine learning & better GPU support
- Objective: Easier to write high-performance programs.
- Key Idea: Abstracts low-level implementations using <u>schedules</u>.

45 lines of Python Scheduling Code

- State-of-the-Arts: Halide^[1] & TVM^[2]
 - Halide: image processing
 - TVM: machine learning & better GPU support
- Objective: Easier to write high-performance programs.
- Key Idea: Abstracts low-level implementations using schedules.

45 lines of Python Scheduling Code

s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_i, factor=1)
...

946 lines of CUDA Code

```
_global__ default_function(...) {
    ...
    float Y_local[128];
    __shared__ float X_shared[768];
    __shared__ float W_shared[384];
    ...
```

- State-of-the-Arts: Halide^[1] & TVM^[2]
 - Halide: image processing
 - TVM: machine learning & better GPU support
- Objective: Easier to write high-performance programs.
- Key Idea: Abstracts low-level implementations using <u>schedules</u>.

• Easily programed, modified and parameterized.

- Less flexible
 - What if my transformations are NOT supported by primitives?
- Not quite "easily" programmed.

45 lines of Python Scheduling Code

```
s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_i, factor=1)
...
```


• Easily programed, modified and parameterized.

45 lines of Python Scheduling Code

- Less flexible
 - What if my transformations are NOT supported by primitives?
- Not quite "easily" programmed.
- Optimal schedules are hardware-specific.

Want to generate highperformance schedules **automatically**.

Auto-Scheduler

- State-of-the-Arts: Halide^[1] and TVM^[2] Auto-Schedulers
- Objective: Given a compute definition, <u>automatically</u> find a highperformance schedule.

[1] A. Adams et al. *Learning to Optimize Halide with Tree Search and Random Programs*. ACM Transactions on Graphics (TOG) 2019

[2] L. Zheng et al. Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020

Learning. OSDI 2020

Auto-Scheduler Evaluation

DietCode: Automatic Code Generation for Dynamic Tensor Programs

Bojian Zheng^{*1, 2, 3}, Ziheng Jiang^{*4, 5}, Cody Yu², Haichen Shen², Josh Fromm⁴, Yizhi Liu², Yida Wang², Luis Ceze^{4, 5}, Tiangi Chen^{4, 6}, Gennady Pekhimenko^{1, 2, 3}

* Equal Contribution

1

26

• Challenge #1:

• Hard to share schedules across different shapes of the same operator.

Schedule:

}

}

• Challenge #1:

• Hard to share schedules across different shapes of the same operator.

Example

 $t \in \{7\}$

 $A[io \times t + ii] = \dots$

Prohibitably expensive auto-scheduling time for dynamic-shape workloads.

• Challenge #2:

• Can deliver sub-optimal performance for not considering non-perfect candidates.

Observation: Performance overhead of if-checks is negligible with **local padding** (i.e., pad tensors locally by the size of local and/or shared memory variables).

DietCode: A New Auto-Scheduler Framework

- Key Idea #1: Shape-Generic Search Space
 - Composed of <u>micro-kernels</u>. Each does a tile of the entire compute.
 - A micro-kernel can be ported to *all* shapes of the same operator.
 - Sampled from <u>hardware</u> constraints instead of shape factors (i.e., shape-generic).

Example:

 $Y = XW^T X$: [1024, 768], W: [2304, 768] with micro-kernel dense_128x128, which evaluates

 $Y = XW^T X$: [128, 768], W: [128, 768]

dense_128x128

- Key Idea #2: Micro-Kernel-based Cost Model
 - Observation: A cost model trained on one shape can be inaccurate on other shapes.
 - Compute throughputs exhibit predictable linear trend w.r.t. shape dimensions.
 - Decompose the cost model into: $f_{\rm MK} \cdot f_{\rm spatial}$

- Key Idea #2: Micro-Kernel-based Cost Model
 - Observation: A cost model trained on one shape can be inaccurate on other shapes.
 - Compute throughputs exhibit predictable linear trend w.r.t. shape dimensions.
 - Decompose the cost model into:
 - $f_{MK} \cdot f_{spatial}$
 - Trainable Micro-Kernel Cost

- Key Idea #2: Micro-Kernel-based Cost Model
 - Observation: A cost model trained on one shape can be inaccurate on other shapes.
 - Compute throughputs exhibit predictable linear trend w.r.t. shape dimensions.
 - Decompose the cost model into:

$f_{\rm MK} \cdot f_{\rm spatial}$

- Trainable Micro-Kernel Cost
- Analytical Spatial Generalization Cost (linear function)

Evaluation

Hardware: NVIDIA Tesla T4 GPU

Software: TVM + CUDA + cuDNN

CUDA

39

Evaluation

Summary

- DietCode: An auto-scheduler for dynamic-shape workloads.
- Based on 2 key ideas:
 - (1) Shape-Generic Search Space and
 - (2) Micro-Kernel-based Cost Model
- Key Features:
 - Auto-Schedule Once and For All Shapes: Large reduction in the autoscheduling time 5.6× on dynamic-shape workloads.
 - **Better Performance**: Up to 30.5% speedup than Ansor, 15.4% than Vendor.

Last Time

- Why Machine Learning Compilers?
 - State-of-the-Art Machine Learning Frameworks Design, and Flaws:
 - 1. Vendor libraries not delivering the optimal performance.
- 2 Classes of Machine Learning Compilers:
 - Halide^[1]/TVM^[2]: Easier to write high-performance programs.
- [1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI 2013
- [2] T. Chen et al. *TVM: An Automated End-to-End Optimizing Compiler for Deep Learning*. OSDI 2018

Agenda for Today

- Why Machine Learning Compilers?
 - State-of-the-Art Machine Learning Frameworks Design, and Flaws:
 - 1. Vendor libraries not delivering the optimal performance.
 - 2. Distinct representations at different system levels.
- 2 Classes of Machine Learning Compilers:
 - Halide^[1]/TVM^[2]: Easier to write high-performance programs.
 - MLIR^[3]/TensorIR^[4]: Unified compiler infrastructure.
- [1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI 2013
- [2] T. Chen et al. *TVM: An Automated End-to-End Optimizing Compiler for Deep Learning*. OSDI 2018
- [3] C. Lattner et al. *MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.* CGO 2021
- [4] S. Feng et al. Understanding TensorIR: An Abstraction for Tensorized Program Optimization. TVMCon 2021

Why Unity?

• State-of-the-Art Machine Learning Frameworks Design:

TensorFlow

Python Programming Front-end define neural networks

C++ Framework Core

optimize graphs; schedule operators; allocate hardware resources ...

TensorFlow System Overview

TVM System Overview

- Duplicated Infrastructure TVM System Overview
 - Similar utility classes and functions for each IR.
- Premature Lowering
 - Need to lower ALL regions at once.
 - Unidirectional lowering makes it hard to recover high-level IRs.

Multi-Level Intermediate Representation^[1]

- *abbrev*. MLIR
- Objective: Unified compiler infrastructure.
- Key Idea: Same infrastructure, distinct <u>dialects</u> at different levels.
- Each dialect is a set of operators.

IRs	
TensorFlow Graphs	Operators
Affine For	
LLVM Instructions	

[1] C. Lattner. MLIR: A Compiler Infrastructure for the End of Moore's Law. arXiv 2020

TensorIR^[1]

- Objective: Unified compiler infrastructure.
- Key Idea: Remove schedule tree representation.
 - **TVM System Overview**

TensorIR^[1]

Schedule Tree

s = te.create_schedule(Y)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_i, factor=1)

TensorIR

```
def MatMul(x, w, y):
  X = tir.match_buffer(x, (1024, 1024), "float32")
  W = tir.match_buffer(w, (1024, 1024), "float32")
  Y = tir.match_buffer(y, (1024, 1024), "float32")
  reducer = tir.comm_reducer(lambda x, y: x + y, tir.float32(0))
  with tir.block([1024, 1024, tir.reduce_axis(0, 1024)], "Y") \
        as [vi, vj, vk]:
```

```
reducer.step(Y[vi, vj], X[vi, vk] * W[vk, vj])
```

```
(-) Not Intuitive
```

(-) Hard to support even existing hardware primitives.

TensorIR^[1]

Schedule Tree

s = te.create_schedule(Y)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_i, factor=1)

(-) Not Intuitive

(-) Hard to support even existing hardware primitives.

TensorIR

def MatMul(x, w, y): X = tir.match_buffer(x, [1024, 1024]) W = tir.match_buffer(w, [1024, 1024]) Y = tir.match_buffer(y, [1024, 1024]) reducer = tir.comm_reducer(lambda a, b: a + b, tir.float32(0)) for i0_outer, i1_outer, i2_outer, i2_inner, \ i0_inner, i1_inner in tir.grid(32, 32, 256, 4, 32, 32): with tir.block([1024, 1024, tir.reduce_axis(0, 1024)], "C") `` as [vi, vj, vk]: tir.bind(vi, ((i0_outer*32) + i0_inner)) tir.bind(vj, ((i1_outer*32) + i1_inner)) tir.bind(vk, ((i2_outer*4) + i2_inner)) reducer.step(Y[vi, vj], (X[vi, vk]*W[vk, vj]))

(+) Expressive

(+) Hierarchical Block structure makes it easier to map to hardware primitives.

Concluding Remarks

- Why Machine Learning Compilers?
 - State-of-the-Art Machine Learning Frameworks Design, and Flaws:
 - 1. Vendor libraries not delivering the optimal performance.
 - 2. Distinct representations at different system levels.
- 2 Classes of Machine Learning Compilers:
 - Halide^[1]/TVM^[2]: Easier to write high-performance programs.
 - MLIR^[3]/TensorIR^[4]: Unified compiler infrastructure.
- [1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI 2013
- [2] T. Chen et al. *TVM: An Automated End-to-End Optimizing Compiler for Deep Learning*. OSDI 2018
- [3] C. Lattner et al. *MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.* CGO 2021
- [4] S. Feng et al. Understanding TensorIR: An Abstraction for Tensorized Program Optimization. TVMCon 2021


```
X: [{\color{red}\mathbf{129}}, K],
W: [{\color{red}\mathbf{129}}, K]?
```

```
y=xw^\top\quad
\begin{cases}
x: [32, *], w: [32, *] \\
x: [64, *], w: [64, *] \\
x: [128, *], w: [128, *]
\end{cases}
```


Current TensorFlow System

TVM System Overview

