
Machine Learning Compiler:
An Overview

Bojian Zheng
2022/4/1 @Amazon Reading Group

1

Agenda for Today

• Why Machine Learning Compilers?
• State-of-the-Art Machine Learning Frameworks Design, and Flaws:
1. Vendor libraries not delivering the optimal performance.

• 2 Classes of Machine Learning Compilers:
• Halide[1]/TVM[2]: Easier to write high-performance programs.

2

[1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI
2013

[2] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning. OSDI 2018

Why Machine Learning Compilers?

• State-of-the-Art Machine Learning Frameworks Design:

3

Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries

Hardware Architectures

define neural networks

optimize graphs; schedule operators;
allocate hardware resources …

What can go wrong?

Machine Learning Frameworks

• State-of-the-Art Machine Learning Frameworks Design:

4

Python Programming Front-end

C++ Framework Core

Hardware Architectures

Vendor APIs & Libraries

define neural networks

optimize graphs; schedule operators;
allocate hardware resources …

Guaranteed optimal
performance?

Vendor Libraries

• Example Workload:

• Q: How to efficiently handle for all cases of 𝑀,𝐾,𝑁 ?
• Solutions (e.g., cuBLAS):
• Provide efficient kernels that cover to all the use cases. E.g.,

• Dispatch at runtime to the most suitable kernel.

5

Vendor Libraries

6Even as the shapes vary, cuBLAS only invokes a handful of kernels.

1 Color = 1 Unique CUDA Kernel

What if the workloads DO NOT
fit into those kernels?

Vendor Libraries

• Example Workload:

• Q: How to efficiently handle for all cases of 𝑀,𝐾,𝑁 ?
• Solutions (e.g., cuBLAS):
• Provide efficient kernels that cover to all the use cases. E.g.,

• Dispatch at runtime to the most suitable kernel.

7

Vendor Libraries

• Leads to sub-optimal performance (up to 13×) due to
• Low Hardware Utilization[1] and/or
• Redundant Computations (by padding)[2]

• Develop high-performance customized kernels?
• Requires huge expertise + engineering efforts: thousands of lines per

operator per architecture[3].

8

[1] F. Yu et al. Towards Latency-aware DNN Optimization with GPU Runtime
Analysis and Tail Effect Elimination. arXiv 2020

[2] Alibaba. Bringing TVM into TensorFlow for Optimizing Neural Machine
Translation on GPU. 2018

[3] NVIDIA. CUTLASS: CUDA Templates for Linear Algebra Subroutines.
https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

Tensor Program Compilers

• State-of-the-Arts: Halide[1] & TVM[2]

• Halide: image processing
• TVM: machine learning & better GPU support

• Objective: Easier to write high-performance programs.
• Key Idea: Abstracts low-level implementations using schedules.

9[1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI 2013
[2] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. OSDI 2018

s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_o_i, factor=1)
...

𝟒𝟓 lines of Python Scheduling Code

Tensor Program Compilers

• State-of-the-Arts: Halide[1] & TVM[2]

• Halide: image processing
• TVM: machine learning & better GPU support

• Objective: Easier to write high-performance programs.
• Key Idea: Abstracts low-level implementations using schedules.

10[1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI 2013
[2] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. OSDI 2018

s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_o_i, factor=1)
...

𝟒𝟓 lines of Python Scheduling Code

scheduling primitives

Tensor Program Compilers

• State-of-the-Arts: Halide[1] & TVM[2]

• Halide: image processing
• TVM: machine learning & better GPU support

• Objective: Easier to write high-performance programs.
• Key Idea: Abstracts low-level implementations using schedules.

11[1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI 2013
[2] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. OSDI 2018

s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_o_i, factor=1)
...

𝟒𝟓 lines of Python Scheduling Code
__global__ default_function(...) {

...
float Y_local[128];
__shared__ float X_shared[768];
__shared__ float W_shared[384];
...

}

𝟗𝟒𝟔 lines of CUDA Code

Tensor Program Compilers

• State-of-the-Arts: Halide[1] & TVM[2]

• Halide: image processing
• TVM: machine learning & better GPU support

• Objective: Easier to write high-performance programs.
• Key Idea: Abstracts low-level implementations using schedules.

12[1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI 2013
[2] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. OSDI 2018

s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_o_i, factor=1)
...

𝟒𝟓 lines of Python Scheduling Code
__global__ default_function(...) {

...
float Y_local[128];
__shared__ float X_shared[768];
__shared__ float W_shared[384];
...

}

𝟗𝟒𝟔 lines of CUDA Code

automatic inference

Tensor Program Compilers

Pros
• Easily programed, modified and

parameterized.

Cons
• Less flexible
• What if my transformations are

NOT supported by primitives?

• Not quite “easily” programmed.

13

s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_o_i, factor=1)
...

𝟒𝟓 lines of Python Scheduling Code

Tensor Program Compilers

Pros
• Easily programed, modified and

parameterized.

Cons
• Less flexible
• What if my transformations are

NOT supported by primitives?

• Not quite “easily” programmed.
• Optimal schedules are

hardware-specific.s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_o_i, factor=1)
...

𝟒𝟓 lines of Python Scheduling Code

Why 8, 2, 1 ?

Want to generate high-
performance schedules
automatically.

Auto-Scheduler

• State-of-the-Arts: Halide[1] and TVM[2] Auto-Schedulers
• Objective: Given a compute definition, automatically find a high-

performance schedule.

15

[1] A. Adams et al. Learning to Optimize Halide with Tree Search and Random
Programs. ACM Transactions on Graphics (TOG) 2019

[2] L. Zheng et al. Ansor: Generating High-Performance Tensor Programs for Deep
Learning. OSDI 2020

Auto-Scheduler System Overview

16

Operator
Specification

Shape
Description

for i in range(2048):
for j in range(2304):

for k in range(768):
Y[i][j] += X[i][k] * W[j][k]

for i.o.o.o in range(?):
for i.o.o.i in range(?):

for i.o.i in range(?):
for i.i in range(?):

...

Sketch Generation Rules

Auto-Scheduler System Overview

17

Operator
Specification

Shape
Description

for i.o.o.o in range(?):
for i.o.o.i in range(?):

for i.o.i in range(?):
for i.i in range(?):

...

Search Space
Auto-Scheduler

∞ plausible schedules

High-Performance
Schedule

Brute-force permutation
on real hardware?

Time-consuming!

Auto-Scheduler System Overview

18

Operator
Specification

Shape
Description

for i.o.o.o in range(?):
for i.o.o.i in range(?):

for i.o.i in range(?):
for i.i in range(?):

...

Search Space
Auto-Scheduler

Cost ModelPredict performance of many
schedules simultaneously

Auto-Scheduler System Overview

19

Operator
Specification

Shape
Description

for i.o.o.o in range(?):
for i.o.o.i in range(?):

for i.o.i in range(?):
for i.i in range(?):

...

Search Space
Auto-Scheduler

Cost Model
Random Sample

Auto-Scheduler System Overview

20

Operator
Specification

Shape
Description

for i.o.o.o in range(128):
for i.o.o.i in range(8):

for i.o.i in range(2):
for i.i in range(1):

...

Search Space
Auto-Scheduler

Cost Model
Random Sample

Measure
Train

Auto-Scheduler System Overview

Operator
Specification

Shape
Description

for i.o.o.o in range(128):
for i.o.o.i in range(8):

for i.o.i in range(2):
for i.i in range(1):

...

Search Space
Auto-Scheduler

Random Sample

Measure
Train

Learned Cost Model

Measured and Predicted are
strongly correlated.

[1] A. Adams et al. Learning to Optimize Halide with Tree Search and Random
Programs. ACM Transactions on Graphics (TOG) 2019

[2] L. Zheng et al. Ansor: Generating High-Performance Tensor Programs for Deep
Learning. OSDI 2020

[1]

[2]

Auto-Scheduler System Overview

Operator
Specification

Shape
Description

Search Space
Auto-Scheduler

Learned Cost Model

High-Performance
Schedule

Guide

22

Auto-Scheduler Evaluation

23Up to 1.7× better than the 2nd best alternative.

DietCode: Automatic Code Generation
for Dynamic Tensor Programs

Bojian Zheng*1, 2, 3, Ziheng Jiang*4, 5, Cody Yu2, Haichen Shen2,
Josh Fromm4, Yizhi Liu2, Yida Wang2,

Luis Ceze4, 5, Tianqi Chen4, 6, Gennady Pekhimenko1, 2, 3

* Equal Contribution
1 2 3 4 5 6

24

Auto-Scheduler System Overview

Operator
Specification

Shape
Description

Search Space
Auto-Scheduler

Learned Cost Model

High-Performance
Schedule

Guide

25

Auto-Scheduler System Overview

Operator
Specification

Static Shape
Description

Search Space
Auto-Scheduler

26

Compute:
for (int i = 0; i < 50; ++i) {
A[i] = ...

}

Example

An operator has ∞
possible schedules

Auto-Scheduler System Overview

Operator
Specification

Static Shape
Description

Search Space
Auto-Scheduler

27

Schedule:
for (int io = 0; io < 50/𝑡 ; ++io) {
for (int ii = 0; ii < 𝑡; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 50) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
} 𝑡 ∈ 2,∞ !

Example

An operator has ∞
possible schedules

Auto-Scheduler System Overview

Operator
Specification

Static Shape
Description

Search Space
Auto-Scheduler

28

Schedule:
for (int io = 0; io < 50/𝑡 ; ++io) {
for (int ii = 0; ii < 𝑡; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 50) A[i] = ...

}
} 𝑡 ∈ 2, 5, 10, 25

Example

Limit the candidates
to perfect factors

Auto-Scheduler System Overview

Operator
Specification

Static Shape
Description

Shape-Dependent Search Space
Auto-Scheduler

29

Learned Cost Model

High-Performance
Schedule

Guide

Challenges Faced by the Current System

• Challenge #1:
• Hard to share schedules across different

shapes of the same operator.

30

Schedule:
for (int io = 0; io < 𝟓𝟎/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

Operator
Specification

Static Shape
Description

Shape-Dependent Search Space
Auto-Scheduler

Learned Cost Model

High-Performance
Schedule

Guide

𝑡 ∈ 2, 5, 10, 25

Challenges Faced by the Current System

• Challenge #1:
• Hard to share schedules across different

shapes of the same operator.

31

Operator
Specification

Static Shape
Description

Shape-Dependent Search Space
Auto-Scheduler

Learned Cost Model

High-Performance
Schedule

GuideSchedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

𝑡 ∈ 7 ⋂ 2, 5, 10, 25 = ∅

Challenges Faced by the Current System

• Challenge #1:
• Hard to share schedules across different

shapes of the same operator.

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

𝑡 ∈ 7 ⋂ 2, 5, 10, 25 = ∅

Prohibitably expensive auto-scheduling time for dynamic-shape workloads.

Operator
Specification

Static Shape
Description

Shape-Dependent Search Space
Auto-Scheduler

Learned Cost Model

High-Performance
Schedule

Guide

Shape S!
Shape S"

auto-schedule

auto-schedule

Program P!
Program P"

⋯⋯ ⋯

Challenges Faced by the Current System

• Challenge #2:
• Can deliver sub-optimal performance for

not considering non-perfect candidates.

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 49) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 49) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

𝑡 ∈ 7 𝑡 = 2, 3, … might be
better candidates

Observation: Performance overhead of if-checks is
negligible with local padding (i.e., pad tensors locally by
the size of local and/or shared memory variables). 33

Operator
Specification

Static Shape
Description

Shape-Dependent Search Space
Auto-Scheduler

Learned Cost Model

High-Performance
Schedule

Guide

DietCode: A New Auto-Scheduler Framework

Operator
Specification

Shape
Description

DietCode

Micro-Kernel-based
Cost Model Guide

Shape-Generic Search Space

DietCode: Key Ideas

• Key Idea #1: Shape-Generic
Search Space
• Composed of micro-kernels. Each

does a tile of the entire compute.
• A micro-kernel can be ported to all

shapes of the same operator.
• Sampled from hardware

constraints instead of shape
factors (i.e., shape-generic).

Example:
𝑌 = 𝑋𝑊! 𝑋: 1024, 768 ,𝑊: 2304, 768
with micro-kernel dense_128x128,
which evaluates
𝑌 = 𝑋𝑊! 𝑋: 128, 768 ,𝑊: 128, 768

35

DietCode: Key Ideas

• Key Idea #2: Micro-Kernel-based
Cost Model
• Observation: A cost model trained

on one shape can be inaccurate on
other shapes.
• Compute throughputs exhibit

predictable linear trend w.r.t.
shape dimensions.
• Decompose the cost model into:

𝑓/0 0 𝑓1234536

36

DietCode: Key Ideas

• Key Idea #2: Micro-Kernel-based
Cost Model
• Observation: A cost model trained

on one shape can be inaccurate on
other shapes.
• Compute throughputs exhibit

predictable linear trend w.r.t.
shape dimensions.
• Decompose the cost model into:

𝑓/0 0 𝑓1234536
• Trainable Micro-Kernel Cost

37

DietCode: Key Ideas

• Key Idea #2: Micro-Kernel-based
Cost Model
• Observation: A cost model trained

on one shape can be inaccurate on
other shapes.
• Compute throughputs exhibit

predictable linear trend w.r.t.
shape dimensions.
• Decompose the cost model into:

𝑓/0 0 𝑓1234536
• Trainable Micro-Kernel Cost
• Analytical Spatial Generalization Cost

(linear function)
38

Evaluation

Hardware: NVIDIA Tesla T4 GPU Software: TVM + CUDA + cuDNN

v11.3 v8.3

v0.8.dev0

39

Evaluation
Be

tt
er

Performance: 30.5% better than Ansor; 5.3% better than Vendor
Auto-Scheduling Time: 5.6× less than Ansor 40

Evaluation
Be

tt
er

Performance: 24.2% better than Ansor; 15.4% better than Vendor

What about multiple
dynamic axes?

41

Summary

• DietCode: An auto-scheduler for dynamic-shape workloads.
• Based on 2 key ideas:

(1) Shape-Generic Search Space and
(2) Micro-Kernel-based Cost Model

• Key Features:
• Auto-Schedule Once and For All Shapes: Large reduction in the auto-

scheduling time 5.6× on dynamic-shape workloads.
• Better Performance: Up to 30.5% speedup than Ansor, 15.4% than Vendor.

42

Last Time

• Why Machine Learning Compilers?
• State-of-the-Art Machine Learning Frameworks Design, and Flaws:
1. Vendor libraries not delivering the optimal performance.

• 2 Classes of Machine Learning Compilers:
• Halide[1]/TVM[2]: Easier to write high-performance programs.

43

[1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI
2013

[2] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning. OSDI 2018

Agenda for Today

• Why Machine Learning Compilers?
• State-of-the-Art Machine Learning Frameworks Design, and Flaws:

2. Distinct representations at different system levels.

• 2 Classes of Machine Learning Compilers:

• MLIR[3]/TensorIR[4]: Unified compiler infrastructure.

44

[1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI
2013

[2] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning. OSDI 2018

[3] C. Lattner et al. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. CGO 2021

[4] S. Feng et al. Understanding TensorIR: An Abstraction for Tensorized Program
Optimization. TVMCon 2021

Why Unity?

• State-of-the-Art Machine Learning Frameworks Design:

45

Python Programming Front-end

C++ Framework Core

Hardware Architectures

Vendor APIs & Libraries

define neural networks

optimize graphs; schedule operators;
allocate hardware resources …

TensorFlow System Overview

46

Distinct representations at
different system levels

TVM System Overview

47

Distinct representations at
different system levels

Relay

TE

TIR

C++/CUDA etc.

output = relay.dense(data, weight)

s = create_schedule(Y.op)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
...

primfn(X_1: handle, W_1: handle, Y_1: handle) -> ()
attr [IterVar(blockIdx.x: int32)] "thread_extent" = 144;
allocate(Y.local: Pointer(local float32), [64]);
allocate(X.shared: Pointer(shared float32), [512]);
allocate(W.shared: Pointer(shared float32), [512]);
attr [IterVar(threadIdx.x: int32)] "thread_extent" = 256 {

...
}

__global__ void __launch_bounds__(256)
default_function_kernel0(

float* __restrict__ X,
float* __restrict__ W,
float* __restrict__ Y) {

...
}

Schedule Tree
for i in range(...):

for j in range(...):
for k in range(...):

Y[i][j] += X[i][k] * W[j][k]

Hard boundary between representations

• Duplicated Infrastructure
• Similar utility classes and functions

for each IR.

• Premature Lowering
• Need to lower ALL regions at once.
• Unidirectional lowering makes it

hard to recover high-level IRs.

48

What’s wrong about
this design?

TVM System Overview
Relay

TE

TIR

C++/CUDA etc.

Schedule Tree

Multi-Level Intermediate Representation[1]

• abbrev. MLIR
• Objective: Unified compiler infrastructure.
• Key Idea: Same infrastructure, distinct dialects at different levels.
• Each dialect is a set of operators.

49
[1] C. Lattner. MLIR: A Compiler Infrastructure for the End of Moore's Law. arXiv 2020

IRs

Operators
TensorFlow Graphs

Affine For
LLVM Instructions

TensorIR[1]

• Objective: Unified compiler infrastructure.
• Key Idea: Remove schedule tree representation.

50[1] S. Feng et al. Understanding TensorIR: An Abstraction for Tensorized Program Optimization. TVMCon 2021

TVM System Overview
Relay

TE

TIR

C++/CUDA etc.

Schedule Tree

TensorIR[1]

Schedule Tree

(-) Not Intuitive
(-) Hard to support even existing

hardware primitives.

TensorIR

51

s = te.create_schedule(Y)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_o_i, factor=1)
...

def MatMul(x, w, y):
X = tir.match_buffer(x, (1024, 1024), "float32")
W = tir.match_buffer(w, (1024, 1024), "float32")
Y = tir.match_buffer(y, (1024, 1024), "float32")
reducer = tir.comm_reducer(lambda x, y: x + y, tir.float32(0))

with tir.block([1024, 1024, tir.reduce_axis(0, 1024)], "Y") \
as [vi, vj, vk]:

reducer.step(Y[vi, vj], X[vi, vk] * W[vk, vj])

TensorIR[1]

Schedule Tree

(-) Not Intuitive
(-) Hard to support even existing

hardware primitives.

TensorIR

(+) Expressive
(+) Hierarchical Block structure

makes it easier to map to
hardware primitives. 52

s = te.create_schedule(Y)
Y_local = s.cache_write([Y], "local")
i, j, k = tuple(Y_local.op.axis)
i_o_i, i_i = s[Y_local].split(i, factor=8)
i_o_o_i, i_o_i = s[Y_local].split(i_o_i, factor=2)
i_o_o_o, i_o_o_i = s[Y_local].split(i_o_o_i, factor=1)
...

def MatMul(x, w, y):
X = tir.match_buffer(x, [1024, 1024])
W = tir.match_buffer(w, [1024, 1024])
Y = tir.match_buffer(y, [1024, 1024])
reducer = tir.comm_reducer(lambda a, b: a + b, tir.float32(0))
for i0_outer, i1_outer, i2_outer, i2_inner, \

i0_inner, i1_inner in tir.grid(32, 32, 256, 4, 32, 32):
with tir.block([1024, 1024, tir.reduce_axis(0, 1024)], "C") \

as [vi, vj, vk]:
tir.bind(vi, ((i0_outer*32) + i0_inner))
tir.bind(vj, ((i1_outer*32) + i1_inner))
tir.bind(vk, ((i2_outer*4) + i2_inner))
reducer.step(Y[vi, vj], (X[vi, vk]*W[vk, vj]))

Concluding Remarks

• Why Machine Learning Compilers?
• State-of-the-Art Machine Learning Frameworks Design, and Flaws:
1. Vendor libraries not delivering the optimal performance.
2. Distinct representations at different system levels.

• 2 Classes of Machine Learning Compilers:
• Halide[1]/TVM[2]: Easier to write high-performance programs.
• MLIR[3]/TensorIR[4]: Unified compiler infrastructure.

53

[1] J. Ragan-Kelley et al. Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines. PLDI
2013

[2] T. Chen et al. TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning. OSDI 2018

[3] C. Lattner et al. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. CGO 2021

[4] S. Feng et al. Understanding TensorIR: An Abstraction for Tensorized Program
Optimization. TVMCon 2021

Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries

Hardware Architectures

define neural networks

optimize graphs; schedule operators;
allocate hardware resources …

X: [{\color{red}\mathbf{129}}, K],
W: [{\color{red}\mathbf{129}}, K]?

y=xw^\top\quad
\begin{cases}

x: [32, *], w: [32, *] \\
x: [64, *], w: [64, *] \\
x: [128, *], w: [128, *]

\end{cases}

55

56

Operator
Specification

Static Shape
Description

Shape-Dependent Search Space
Auto-Scheduler

Learned Cost Model

High-Performance
Schedule

Guide

Current TensorFlow System

57

• Task #1: Eliminate dead graph nodes.
• Task #2: Eliminate dead C++ code.

Really different?

TVM System Overview
Relay

TE

TIR

C++/CUDA etc.

Schedule Tree

