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Executive Summary

• Challenges posed by CUDA graphs:
• Extra data movements into placeholders.
• Huge GPU memory consumption on dynamic-shape workloads.
• No support for data-dependent control flows.

• Grape🍇 addresses those challenges with: ① Alias Prediction, 
② Metadata Compression, and ③ Predication Contexts.
• Key Result: Up to 𝟏. 𝟒𝟏× speedup over the prior state-of-the-art 

graph-based executor.
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Deep Neural Networks (DNNs)

• State-of-the-art accuracies in many applications:
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Machine Translation[2, 3] Speech Recognition[4, 5]

Text Generation[6, 7]

[1] K. He et al. Deep Residual Learning for 
Image Recognition. CVPR 2016

[2] Y. Wu et al. Google's Neural Machine 
Translation System: Bridging the Gap 
between Human and Machine 
Translation. arXiv 2016

[3] Ashish Vaswani et al. Attention is All 
You Need. NeurIPS 2017

Image Classification[1]

Cool Dog

[4] D. Amodei et al. Deep Speech 2 : End-to-End Speech 
Recognition in English and Mandarin. ICML 2016

[5] A. Baevski et al. wav2vec 2.0: A Framework for Self-
Supervised Learning of Speech Representations. NeurIPS 
2020

[6] A. Radford et al. Language Models are Unsupervised 
Multitask Learners. 2019

[7] W. Ben et al. GPT-J-6B: A 6 Billion Parameter Autoregressive 
Language Model. 2020



Applications

Machine Learning System Overview
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Machine Learning Systems PyTorch[1] TensorFlow[2]

Hardware 
Accelerators

[1] A. Paszke et al. PyTorch: An 
Imperative Style, High-Performance 
Deep Learning Library. NeurIPS 2019

[2] M. Abadi et al. TensorFlow: A System 
for Large-Scale Machine Learning. 
OSDI 2016
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Inefficiency: CPU Overheads

• CPU overheads are ubiquitous in machine learning systems.
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Inefficiency: CPU Overheads

• CPU overheads are ubiquitous in machine learning systems.
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• Python invokes C APIs.
• Frameworks verify 

input tensors’ shape 
and data type.

• CUDA launches kernels 
on GPUs.

• …

Execution TimelineExecution Timeline

Op1 Op2 Op3

CPU OverheadsGPU Operations



CUDA Graphs

• Key Idea: Capture effective GPU computations in the first run and 
replay them in subsequent runs.
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Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(A)

Execution TimelineExecution Timeline

Op1 Op2 Op3

Record



CUDA Graphs

• Key Idea: Capture effective GPU computations in the first run and 
replay them in subsequent runs.
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Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(A)

Replay
graph_ctx.replay()

Execution TimelineExecution Timeline

Op1 Op2 Op3

MyDNN but with 
all CPU overheads 
eliminated.Replay
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OUR DNN 
EXECUTIONS HAVE 
BEEN STRUGGLING 
WITH CPU OVERHEADS 
FOR YEARS.
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STRUGGLE NO MORE. 
I’M HERE TO SOLVE IT 
WITH CUDA GRAPHS.
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WOW. IT IS 
CHALLENGING TO USE 
CUDA GRAPHS HERE.

ONE WEEK LATER
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CUDA Graphs’ Weaknesses

• All computations must be frozen..
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Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(A)

Replay
graph_ctx.replay()

Execution TimelineExecution Timeline

Op1 Op2 Op3

Fixed pointer address, shape, and data type.



CUDA Graphs’ Weaknesses

• All computations must be frozen..
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Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(A)

Replay
graph_ctx.replay()

Execution TimelineExecution Timeline

Op1 Op2 Op3

Constant.



CUDA Graphs’ Weaknesses

• All computations must be frozen.. 
• Every CUDA graph’s creation consumes GPU memory.
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Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(A)

Replay
graph_ctx.replay()



Challenges posed by CUDA Graphs

• Implications:
1. Synthetic inputs are used as 

placeholders at capture time and 
populated with real input values 
at runtime.
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Weaknesses

• All computations must be frozen.. 
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A = Tensor()
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Weaknesses

• All computations must be frozen.. 
• Every CUDA graph’s creation 

consumes GPU memory.

ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(ph_A)

A = Tensor()
ph_A.copyFrom(A)
graph_ctx.replay()

Significant runtime overheads 
(up to 13%).
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Weaknesses

• All computations must be frozen.. 
• Every CUDA graph’s creation 

consumes GPU memory.

ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(ph_A)

A = Tensor()
ph_A.copyFrom(A)
graph_ctx.replay()

Huge GPU memory consumption (20-100 GB).



Challenges posed by CUDA Graphs

• Implications:
1. Synthetic inputs are used as 

placeholders at capture time and 
populated with real input values 
at runtime.

2. To efficiently execute dynamic-
shape workloads, all possible 
shapes have to be captured.

3. Cannot handle data-dependent 
control flows.
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Weaknesses

• All computations must be frozen.. 
• Every CUDA graph’s creation 

consumes GPU memory.

ph_A = Tensor()
graph_ctx = CUDAGraph()
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  MyDNN(ph_A)
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Challenges posed by CUDA Graphs

• CUDA Graphs’ Challenges:
1. Data movements into 

placeholders incur significant 
runtime overheads.

2. Huge GPU memory consumption 
to efficiently execute dynamic-
shape workloads.

3. No support for data-dependent 
control flows.

• Grape🍇, a graph compiler that 
addresses those challenges with:
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② Metadata Compression

③ Predication Contexts

① Alias Prediction
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Grape🍇’s Key Ideas

• If a Python code position yields a 
placeholder alias, the same 
position is likely to yield another 
alias in subsequent iterations.
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① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()
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Grape🍇’s Key Ideas

• If a Python code position yields a 
placeholder alias, the same 
position is likely to yield another 
alias in subsequent iterations.
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① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()
foo.py

42

foo.py +42 yields
ph_A’s aliases.

Alias 
Predictor

Directly give ph_A’s 
memory region to A.

Transparent and
Language-Independent



Grape🍇’s Key Ideas

• The memory allocations of CUDA 
graphs have high sparsity and 
value redundancy and hence are 
highly compressible.
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② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(ph_A)

cudaGraphInstantiate(
  &graph_ctx, …
)

Under the Hood

libcuda.so

malloc Request



Grape🍇’s Key Ideas

• The memory allocations of CUDA 
graphs have high sparsity and 
value redundancy and hence are 
highly compressible.
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② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(ph_A)

cudaGraphInstantiate(
  &graph_ctx, …
)

Under the Hood

malloc Request

libcuda.so
nvidia.ko

Customized NVIDIA’s
open-gpu-kernel-modules



Grape🍇’s Key Ideas

• The memory allocations of CUDA 
graphs have high sparsity and 
value redundancy and hence are 
highly compressible.
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② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(ph_A)

cudaGraphInstantiate(
  &graph_ctx, …
)

Under the Hood

malloc Request

libcuda.so
nvidia.ko

Intercept
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Grape🍇’s Key Ideas

• The memory allocations of CUDA 
graphs have high sparsity and 
value redundancy and hence are 
highly compressible.
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② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(ph_A)

Speculations:
• Sparsity: Underutilize the reserved 

function argument spaces.
• Redundancy: Pointer values.

16 bytes used out of the reserved 4 KB by CUDA
E.g., __global__ void cudaKernelSample(

  const float *const input,
  float *const output
);
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Grape🍇’s Key Ideas

• The memory allocations of CUDA 
graphs have high sparsity and 
value redundancy and hence are 
highly compressible.
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② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
  MyDNN(ph_A)

Speculations:
• Sparsity: Underutilize the reserved 

function argument spaces.
• Redundancy: Pointer values.

Up to 𝟑𝟔. 𝟒× reduction.



Grape🍇’s Key Ideas

• Common data-dependent control 
flows can be replaced with 
predication contexts while fully 
preserving program semantics.
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③ Predication Contexts with Predicate(x):
  # do something
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③ Predication Contexts with Predicate(x):
  # do something

If x is true, all GPU operations 
within can proceed as normal.



Grape🍇’s Key Ideas

• Common data-dependent control 
flows can be replaced with 
predication contexts while fully 
preserving program semantics.
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③ Predication Contexts with Predicate(x):
  # do something

Otherwise, all GPU operations 
within are nullified.



Grape🍇’s Key Ideas

• Common data-dependent control 
flows can be replaced with 
predication contexts while fully 
preserving program semantics.
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③ Predication Contexts with Predicate(x):
  # do something

__global__ void cudaKernelInPyTorch(
  const float *const input,
  float *const output,
) {
// function body
}

Implementation Details:



__global__ void cudaKernelInPyTorch(
  const float *const input,
  float *const output,
const bool predicate

}}

) {
if (predicate) {
// function body

}

Grape🍇’s Key Ideas

• Common data-dependent control 
flows can be replaced with 
predication contexts while fully 
preserving program semantics.
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③ Predication Contexts with Predicate(x):
  # do something

Implementation Details:



Grape🍇’s Key Ideas
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if break continue



Grape🍇’s Key Ideas

• Common data-dependent control 
flows can be replaced with 
predication contexts while fully 
preserving program semantics.
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③ Predication Contexts if x:
# do something
else:
# do other things

for ...:
if x:
break
# do something

if x:
# do something
else:
# do other things

if

for ...:
if x:
break
# do something
break

for ...:
if x:
continue
# do something

for ...:
if x:
continue
# do something
continue



Grape🍇’s Key Ideas

• Common data-dependent control 
flows can be replaced with 
predication contexts while fully 
preserving program semantics.
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③ Predication Contexts if x:
# do something
else:
# do other things

for ...:
if x:
break
# do something

with Predicate(x):
# do something

with Predicate(!x):
# do other things

for ...:
with Predicate(!flag):

flag = x
with Predicate(!flag):
# do something

flag = False

for ...:
if x:
continue
# do something

for ...:
with Predicate(!x):
# do something

Equivalent Forms:



Grape🍇’s Key Ideas

• Common data-dependent control 
flows can be replaced with 
predication contexts while fully 
preserving program semantics.

52

③ Predication Contexts

[1] A. Radford et al. GPT-2. 2019

1.79× performance      in 
GPT-2[1] beam search

with Predicate(!flag):

with Predicate(!flag):

with Predicate(x):
# do something

with Predicate(!x):
# do other things

for ...:

flag = x

# do something

flag = False

for ...:
with Predicate(!x):
# do something

Equivalent Forms:

Strength: CUDA graph-optimizable
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Evaluation

Hardware

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/
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NVIDIA A100 GPU[2]NVIDIA RTX 3090 GPU[1]



Evaluation

Hardware

Software

[3] A. Paszke et al. PyTorch. NeurIPS 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

PyTorch[3] v1.12 v12.0 v8.4
[4] [5]
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NVIDIA A100 GPU[2]NVIDIA RTX 3090 GPU[1]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/



Evaluation

Hardware

Software

Application

[3] A. Paszke et al. PyTorch. NeurIPS 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] A. Radford et al. GPT-2. 2019
[7] W. Ben et al. GPT-J. 2020
[8] A. Baevski et al. Wav2Vec2. NeurIPS 2020

PyTorch[3] v1.12 v12.0 v8.4
[4] [5]
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NVIDIA A100 GPU[2]NVIDIA RTX 3090 GPU[1]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/

1024Number of Different Shapes: 391

GPT-2137M, [6], GPT-J6B, [7] Wav2Vec2[8]



Evaluation

Hardware

Software

Application

Baselines

[3]

[3] A. Paszke et al. PyTorch. NeurIPS 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] A. Radford et al. GPT-2. 2019
[7] W. Ben et al. GPT-J. 2020
[8] A. Baevski et al. Wav2Vec2. NeurIPS 2020

PyTorch[3] v1.12 v12.0 v8.4
[4] [5]

GPT-2137M, [6], GPT-J6B, [7] Wav2Vec2[8]

(PtGraph)
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(Baseline)

NVIDIA A100 GPU[2]NVIDIA RTX 3090 GPU[1]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/
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[3] A. Paszke et al. PyTorch. NeurIPS 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] A. Radford et al. GPT-2. 2019
[7] W. Ben et al. GPT-J. 2020
[8] A. Baevski et al. Wav2Vec2. NeurIPS 2020

PyTorch[3] v1.12 v12.0 v8.4
[4] [5]

(PtGraph)
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(Baseline)

NVIDIA RTX 3090 GPU[1]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/

GPT-2137M, [6], GPT-J6B, [7] Wav2Vec2[8]



Performance vs. PyTorch/PtGraph
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Performance vs. PyTorch/PtGraph
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• 𝟐. 𝟗𝟕×/𝟏. 𝟐𝟔× better than PyTorch/PtGraph on small workloads.



Performance vs. PyTorch/PtGraph
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• 𝟐. 𝟗𝟕×/𝟏. 𝟐𝟔× better than PyTorch/PtGraph on small workloads.

Alias Prediction 34%

Predication Contexts 66%



Performance vs. PyTorch/PtGraph
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• 𝟐. 𝟗𝟕×/𝟏. 𝟐𝟔× better than PyTorch/PtGraph on small workloads.
• 𝟏. 𝟒𝟏× better than PyTorch on large workloads that are impractical 

for PtGraph.



Conclusion

• Challenges posed by CUDA graphs:
• Extra data movements into placeholders.
• Huge GPU memory consumption on dynamic-shape workloads.
• No support for data-dependent control flows.

• Grape🍇 addresses those challenges with: ① Alias Prediction, 
② Metadata Compression, and ③ Predication Contexts.
• Key Results: 
• On GPT-2, 1.26× better performance than PtGraph.
• On GPT-J and Wav2Vec2, up to 1.41× better performance than PyTorch.
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