
Grape🍇: Practical and Efficient
Graph-based Executions for Dynamic

Deep Neural Networks on GPUs
Bojian Zheng1, 2, 3, Cody Hao Yu4, Jie Wang4, Yaoyao Ding1, 2, 3,

Yizhi Liu4, Yida Wang4, Gennady Pekhimenko1, 2, 3

1 2 3 4

Executive Summary

• Challenges posed by CUDA graphs:
• Extra data movements into placeholders.
• Huge GPU memory consumption on dynamic-shape workloads.
• No support for data-dependent control flows.

• Grape🍇 addresses those challenges with: ① Alias Prediction,
② Metadata Compression, and ③ Predication Contexts.
• Key Result: Up to 𝟏. 𝟒𝟏× speedup over the prior state-of-the-art

graph-based executor.

2

Outline

3

Background

Challenges

Key Ideas

Evaluation

What are CUDA graphs?

of using CUDA graphs

of Grape🍇 to resolve these challenges

on state-of-the-art workloads

Outline

4

Background

Challenges

Key Ideas

Evaluation

What are CUDA graphs?

of using CUDA graphs

of Grape🍇 to resolve these challenges

on state-of-the-art workloads

Deep Neural Networks (DNNs)

• State-of-the-art accuracies in many applications:

5

Machine Translation[2, 3] Speech Recognition[4, 5]

Text Generation[6, 7]

[1] K. He et al. Deep Residual Learning for
Image Recognition. CVPR 2016

[2] Y. Wu et al. Google's Neural Machine
Translation System: Bridging the Gap
between Human and Machine
Translation. arXiv 2016

[3] Ashish Vaswani et al. Attention is All
You Need. NeurIPS 2017

Image Classification[1]

Cool Dog

[4] D. Amodei et al. Deep Speech 2 : End-to-End Speech
Recognition in English and Mandarin. ICML 2016

[5] A. Baevski et al. wav2vec 2.0: A Framework for Self-
Supervised Learning of Speech Representations. NeurIPS
2020

[6] A. Radford et al. Language Models are Unsupervised
Multitask Learners. 2019

[7] W. Ben et al. GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model. 2020

Applications

Machine Learning System Overview

6

Machine Learning Systems PyTorch[1] TensorFlow[2]

Hardware
Accelerators

[1] A. Paszke et al. PyTorch: An
Imperative Style, High-Performance
Deep Learning Library. NeurIPS 2019

[2] M. Abadi et al. TensorFlow: A System
for Large-Scale Machine Learning.
OSDI 2016

Applications

Machine Learning System Overview

7

Machine Learning Systems PyTorch[1] TensorFlow[2]

Hardware
Accelerators

[1] A. Paszke et al. PyTorch: An
Imperative Style, High-Performance
Deep Learning Library. NeurIPS 2019

[2] M. Abadi et al. TensorFlow: A System
for Large-Scale Machine Learning.
OSDI 2016

Inefficiency: CPU Overheads

• CPU overheads are ubiquitous in machine learning systems.

8

Inefficiency: CPU Overheads

• CPU overheads are ubiquitous in machine learning systems.

9

• Python invokes C APIs.

Inefficiency: CPU Overheads

• CPU overheads are ubiquitous in machine learning systems.

10

• Python invokes C APIs.
• Frameworks verify

input tensors’ shape
and data type.

Inefficiency: CPU Overheads

• CPU overheads are ubiquitous in machine learning systems.

11

• Python invokes C APIs.
• Frameworks verify

input tensors’ shape
and data type.

• CUDA launches kernels
on GPUs.

Inefficiency: CPU Overheads

• CPU overheads are ubiquitous in machine learning systems.

12

• Python invokes C APIs.
• Frameworks verify

input tensors’ shape
and data type.

• CUDA launches kernels
on GPUs.

• …

Execution TimelineExecution Timeline

Op1 Op2 Op3

CPU OverheadsGPU Operations

CUDA Graphs

• Key Idea: Capture effective GPU computations in the first run and
replay them in subsequent runs.

13

Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(A)

Execution TimelineExecution Timeline

Op1 Op2 Op3

Record

CUDA Graphs

• Key Idea: Capture effective GPU computations in the first run and
replay them in subsequent runs.

14

Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(A)

Replay
graph_ctx.replay()

Execution TimelineExecution Timeline

Op1 Op2 Op3

MyDNN but with
all CPU overheads
eliminated.Replay

15

OUR DNN
EXECUTIONS HAVE
BEEN STRUGGLING
WITH CPU OVERHEADS
FOR YEARS.

16

STRUGGLE NO MORE.
I’M HERE TO SOLVE IT
WITH CUDA GRAPHS.

17

18

WOW. IT IS
CHALLENGING TO USE
CUDA GRAPHS HERE.

ONE WEEK LATER

Outline

19

Background

Challenges

Key Ideas

Evaluation

What are CUDA graphs?

of using CUDA graphs

of Grape🍇 to resolve these challenges

on state-of-the-art workloads

CUDA Graphs’ Weaknesses

• All computations must be frozen..

20

Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(A)

Replay
graph_ctx.replay()

Execution TimelineExecution Timeline

Op1 Op2 Op3

Fixed pointer address, shape, and data type.

CUDA Graphs’ Weaknesses

• All computations must be frozen..

21

Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(A)

Replay
graph_ctx.replay()

Execution TimelineExecution Timeline

Op1 Op2 Op3

Constant.

CUDA Graphs’ Weaknesses

• All computations must be frozen..
• Every CUDA graph’s creation consumes GPU memory.

22

Capture
A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(A)

Replay
graph_ctx.replay()

Challenges posed by CUDA Graphs

• Implications:
1. Synthetic inputs are used as

placeholders at capture time and
populated with real input values
at runtime.

23

Weaknesses

• All computations must be frozen..
• Every CUDA graph’s creation

consumes GPU memory.

A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(A)

graph_ctx.replay()

Challenges posed by CUDA Graphs

• Implications:
1. Synthetic inputs are used as

placeholders at capture time and
populated with real input values
at runtime.

24

Weaknesses

• All computations must be frozen..
• Every CUDA graph’s creation

consumes GPU memory.

ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

A = Tensor()
ph_A.copyFrom(A)
graph_ctx.replay()

Significant runtime overheads
(up to 13%).

Challenges posed by CUDA Graphs

• Implications:
1. Synthetic inputs are used as

placeholders at capture time and
populated with real input values
at runtime.

2. To efficiently execute dynamic-
shape workloads, all possible
shapes have to be captured.

25

Weaknesses

• All computations must be frozen..
• Every CUDA graph’s creation

consumes GPU memory.

ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

A = Tensor()
ph_A.copyFrom(A)
graph_ctx.replay()

Huge GPU memory consumption (20-100 GB).

Challenges posed by CUDA Graphs

• Implications:
1. Synthetic inputs are used as

placeholders at capture time and
populated with real input values
at runtime.

2. To efficiently execute dynamic-
shape workloads, all possible
shapes have to be captured.

3. Cannot handle data-dependent
control flows.

26

Weaknesses

• All computations must be frozen..
• Every CUDA graph’s creation

consumes GPU memory.

ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

A = Tensor()
ph_A.copyFrom(A)
graph_ctx.replay()

Challenges posed by CUDA Graphs

• CUDA Graphs’ Challenges:
1. Data movements into

placeholders incur significant
runtime overheads.

2. Huge GPU memory consumption
to efficiently execute dynamic-
shape workloads.

3. No support for data-dependent
control flows.

• Grape🍇, a graph compiler that
addresses those challenges with:

27

② Metadata Compression

③ Predication Contexts

① Alias Prediction

Outline

28

Background

Challenges

Key Ideas

Evaluation

What are CUDA graphs?

of using CUDA graphs

of Grape🍇 to resolve these challenges

on state-of-the-art workloads

Grape🍇’s Key Ideas

• If a Python code position yields a
placeholder alias, the same
position is likely to yield another
alias in subsequent iterations.

29

① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()

Grape🍇’s Key Ideas

• If a Python code position yields a
placeholder alias, the same
position is likely to yield another
alias in subsequent iterations.

30

① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()

is an alias of

foo.py
42

Grape🍇’s Key Ideas

• If a Python code position yields a
placeholder alias, the same
position is likely to yield another
alias in subsequent iterations.

31

① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()

is an alias of

foo.py
42

foo.py +42 yields
ph_A’s aliases.

Alias
Predictor

Grape🍇’s Key Ideas

• If a Python code position yields a
placeholder alias, the same
position is likely to yield another
alias in subsequent iterations.

32

① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()

is an alias of

foo.py
42

foo.py +42 yields
ph_A’s aliases.

Alias
Predictor

Grape🍇’s Key Ideas

• If a Python code position yields a
placeholder alias, the same
position is likely to yield another
alias in subsequent iterations.

33

① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()

is an alias of

foo.py
42

foo.py +42 yields
ph_A’s aliases.

Alias
Predictor

Directly give ph_A’s
memory region to A.

Grape🍇’s Key Ideas

• If a Python code position yields a
placeholder alias, the same
position is likely to yield another
alias in subsequent iterations.

34

① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()

is an alias of

foo.py
42

foo.py +42 yields
ph_A’s aliases.

Alias
Predictor

Directly give ph_A’s
memory region to A.

Grape🍇’s Key Ideas

• If a Python code position yields a
placeholder alias, the same
position is likely to yield another
alias in subsequent iterations.

35

① Alias Prediction

ph_A.copyFrom(A)
graph_ctx.replay()

A = Tensor()
foo.py

42

foo.py +42 yields
ph_A’s aliases.

Alias
Predictor

Directly give ph_A’s
memory region to A.

Transparent and
Language-Independent

Grape🍇’s Key Ideas

• The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

36

② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

cudaGraphInstantiate(
 &graph_ctx, …
)

Under the Hood

libcuda.so

malloc Request

Grape🍇’s Key Ideas

• The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

37

② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

cudaGraphInstantiate(
 &graph_ctx, …
)

Under the Hood

malloc Request

libcuda.so
nvidia.ko

Customized NVIDIA’s
open-gpu-kernel-modules

Grape🍇’s Key Ideas

• The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

38

② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

cudaGraphInstantiate(
 &graph_ctx, …
)

Under the Hood

malloc Request

libcuda.so
nvidia.ko

Intercept

Grape🍇’s Key Ideas

• The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

39

② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

Grape🍇’s Key Ideas

• The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

40

② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

Grape🍇’s Key Ideas

• The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

41

② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

Speculations:
• Sparsity: Underutilize the reserved

function argument spaces.
• Redundancy: Pointer values.

16 bytes used out of the reserved 4 KB by CUDA
E.g., __global__ void cudaKernelSample(

 const float *const input,
 float *const output
);

Grape🍇’s Key Ideas

• The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

42

② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

Speculations:
• Sparsity: Underutilize the reserved

function argument spaces.
• Redundancy: Pointer values.

E.g., __global__ void cudaKernelSample(
 const float *const input,
 float *const output
);

Grape🍇’s Key Ideas

• The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

43

② Metadata Compression ph_A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:
 MyDNN(ph_A)

Speculations:
• Sparsity: Underutilize the reserved

function argument spaces.
• Redundancy: Pointer values.

Up to 𝟑𝟔. 𝟒× reduction.

Grape🍇’s Key Ideas

• Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

44

③ Predication Contexts with Predicate(x):
 # do something

Grape🍇’s Key Ideas

• Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

45

③ Predication Contexts with Predicate(x):
 # do something

If x is true, all GPU operations
within can proceed as normal.

Grape🍇’s Key Ideas

• Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

46

③ Predication Contexts with Predicate(x):
 # do something

Otherwise, all GPU operations
within are nullified.

Grape🍇’s Key Ideas

• Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

47

③ Predication Contexts with Predicate(x):
 # do something

__global__ void cudaKernelInPyTorch(
 const float *const input,
 float *const output,
) {
// function body

}

Implementation Details:

__global__ void cudaKernelInPyTorch(
 const float *const input,
 float *const output,
const bool predicate

}}

) {
if (predicate) {
// function body

}

Grape🍇’s Key Ideas

• Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

48

③ Predication Contexts with Predicate(x):
 # do something

Implementation Details:

Grape🍇’s Key Ideas

49

if break continue

Grape🍇’s Key Ideas

• Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

50

③ Predication Contexts if x:
do something

else:
do other things

for ...:
if x:
break

do something

if x:
do something

else:
do other things

if

for ...:
if x:
break

do something
break

for ...:
if x:
continue

do something

for ...:
if x:
continue

do something
continue

Grape🍇’s Key Ideas

• Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

51

③ Predication Contexts if x:
do something

else:
do other things

for ...:
if x:
break

do something

with Predicate(x):
do something

with Predicate(!x):
do other things

for ...:
with Predicate(!flag):

flag = x
with Predicate(!flag):

do something

flag = False

for ...:
if x:
continue

do something

for ...:
with Predicate(!x):

do something

Equivalent Forms:

Grape🍇’s Key Ideas

• Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

52

③ Predication Contexts

[1] A. Radford et al. GPT-2. 2019

1.79× performance in
GPT-2[1] beam search

with Predicate(!flag):

with Predicate(!flag):

with Predicate(x):
do something

with Predicate(!x):
do other things

for ...:

flag = x

do something

flag = False

for ...:
with Predicate(!x):

do something

Equivalent Forms:

Strength: CUDA graph-optimizable

Outline

53

Background

Challenges

Key Ideas

Evaluation

What are CUDA graphs?

of using CUDA graphs

of Grape🍇 to resolve these challenges

on state-of-the-art workloads

Evaluation

Hardware

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/

54

NVIDIA A100 GPU[2]NVIDIA RTX 3090 GPU[1]

Evaluation

Hardware

Software

[3] A. Paszke et al. PyTorch. NeurIPS 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

PyTorch[3] v1.12 v12.0 v8.4
[4] [5]

55

NVIDIA A100 GPU[2]NVIDIA RTX 3090 GPU[1]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/

Evaluation

Hardware

Software

Application

[3] A. Paszke et al. PyTorch. NeurIPS 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] A. Radford et al. GPT-2. 2019
[7] W. Ben et al. GPT-J. 2020
[8] A. Baevski et al. Wav2Vec2. NeurIPS 2020

PyTorch[3] v1.12 v12.0 v8.4
[4] [5]

56

NVIDIA A100 GPU[2]NVIDIA RTX 3090 GPU[1]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/

1024Number of Different Shapes: 391

GPT-2137M, [6], GPT-J6B, [7] Wav2Vec2[8]

Evaluation

Hardware

Software

Application

Baselines

[3]

[3] A. Paszke et al. PyTorch. NeurIPS 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] A. Radford et al. GPT-2. 2019
[7] W. Ben et al. GPT-J. 2020
[8] A. Baevski et al. Wav2Vec2. NeurIPS 2020

PyTorch[3] v1.12 v12.0 v8.4
[4] [5]

GPT-2137M, [6], GPT-J6B, [7] Wav2Vec2[8]

(PtGraph)

57

(Baseline)

NVIDIA A100 GPU[2]NVIDIA RTX 3090 GPU[1]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/

Evaluation

Hardware

Software

Application

Baselines

[3]

[3] A. Paszke et al. PyTorch. NeurIPS 2019
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] A. Radford et al. GPT-2. 2019
[7] W. Ben et al. GPT-J. 2020
[8] A. Baevski et al. Wav2Vec2. NeurIPS 2020

PyTorch[3] v1.12 v12.0 v8.4
[4] [5]

(PtGraph)

58

(Baseline)

NVIDIA RTX 3090 GPU[1]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] https://www.nvidia.com/en-us/data-center/a100/

GPT-2137M, [6], GPT-J6B, [7] Wav2Vec2[8]

Performance vs. PyTorch/PtGraph

59

Performance vs. PyTorch/PtGraph

60

Be
tt

er

Performance vs. PyTorch/PtGraph

61

• 𝟐. 𝟗𝟕×/𝟏. 𝟐𝟔× better than PyTorch/PtGraph on small workloads.

Performance vs. PyTorch/PtGraph

62

• 𝟐. 𝟗𝟕×/𝟏. 𝟐𝟔× better than PyTorch/PtGraph on small workloads.

Alias Prediction 34%

Predication Contexts 66%

Performance vs. PyTorch/PtGraph

63

• 𝟐. 𝟗𝟕×/𝟏. 𝟐𝟔× better than PyTorch/PtGraph on small workloads.
• 𝟏. 𝟒𝟏× better than PyTorch on large workloads that are impractical

for PtGraph.

Conclusion

• Challenges posed by CUDA graphs:
• Extra data movements into placeholders.
• Huge GPU memory consumption on dynamic-shape workloads.
• No support for data-dependent control flows.

• Grape🍇 addresses those challenges with: ① Alias Prediction,
② Metadata Compression, and ③ Predication Contexts.
• Key Results:
• On GPT-2, 1.26× better performance than PtGraph.
• On GPT-J and Wav2Vec2, up to 1.41× better performance than PyTorch.

64

Grape🍇: Practical and Efficient
Graph-based Executions for Dynamic

Deep Neural Networks on GPUs
Bojian Zheng1, 2, 3, Cody Hao Yu4, Jie Wang4, Yaoyao Ding1, 2, 3,

Yizhi Liu4, Yida Wang4, Gennady Pekhimenko1, 2, 3

1 2 3 4

