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Executive Summary

* Challenges posed by CUDA graphs:
e Extra data movements into placeholders.
* Huge GPU memory consumption on dynamic-shape workloads.
* No support for data-dependent control flows.

. Grape& addresses those challenges with: @ Alias Prediction,
@ Metadata Compression, and @ Predication Contexts.

* Key Result: Up to 1.41 X speedup over the prior state-of-the-art
graph-based executor.
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Deep Neural Networks (DNNs)

e State-of-the-art accuracies in many applications:

) S

Image Classification Machine Translation Speech Recognition

5%

Text Generation
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Inefficiency: CPU Overheads

* CPU overheads are ubiquitous in machine learning systems.
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Inefficiency: CPU Overheads

* CPU overheads are ubiquitous in machine learning systems.

* Python invokes C APIs.
Machine Learning System Overview
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Inefficiency: CPU Overheads

* CPU overheads are ubiquitous in machine learning systems.

* Python invokes C APIs.
Machine Learning System Overview * Frameworks verify
input tensors’ shape
‘ Applications and data type.
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Inefficiency: CPU Overheads

* CPU overheads are ubiquitous in machine learning systems.

* Python invokes C APIs.
Machine Learning System Overview * Frameworks verify
input tensors’ shape
and data type.
* CUDA launches kernels
on GPUs.

Applications

Hardware
Accelerators

11



Inefficiency: CPU Overheads

* CPU overheads are ubiquitous in machine learning systems.

* Python invokes C APIs.
Machine Learning System Overview * Frameworks verify
input tensors’ shape
‘ Applications and data type.

v e CUDA launches kernels
o P

) on GPUs.
1 TensorFlow ] * .. P

Op1l Op2 Op3

>

Hardware
Accelerators

Execution Timeline

EAVNOIEE i €2 CPU Overheads
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CUDA Graphs

» Key Idea: Capture effective GPU computations in the first run and
replay them in subsequent runs.

Capture

A = Tensor()
graph_ctx = CUDAGraph()

with graph_ctx:
MyDNN (A)

| |
Execution Timeline
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CUDA Graphs

» Key Idea: Capture effective GPU computations in the first run and
replay them in subsequent runs.

Capture Replay

A = Tensor() |graph_ctx.rep1ay25|

h ctx = CUDAG h .
th e e X MyDNN but with
MyDNN ( A)_ . all CPU overheads
_glimina’red.

' Execution Timeline
14



OUR DNN

[ EXECUTIONS HAVE
BEEN STRUGGLING
WITH CPU OVERHEADS
FOR YEARS.
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STRUGGLE NO MORE.
I'M HERE TO SOLVE IT
WITH CUDA GRAPHS.
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ONE WEEK LATER

WOW. ITIS
CHALLENGING TO USE
CUDA GRAPHS HERE.

YOU DONT SAY
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CUDA Graphs’ Weaknesses

e All computations must be frozen.

Capture Replay

A = Tensor() graph_ctx.replay()
graph_ctx = CUDAGraph()

with graph_ctx:
MyDNN (A)

Execution Tlmeline
—|— 1 ‘ Fixed pointer address, shape, and data type.
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CUDA Graphs’ Weaknesses

e All computations must be frozen.

Capture Replay

A = Tensor() graph_ctx.replay()
graph_ctx = CUDAGraph()

with graph_ctx:
MyDNN (A)

Execution Timeline

A —|— ‘ Constant. ‘
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CUDA Graphs’ Weaknesses

e All computations must be frozen.
* Every CUDA graph’s creation consumes GPU memory.

Capture Replay

A = Tensor() graph_ctx.replay()
graph_ctx = CUDAGraph()
lwith graph_ctx:|

MyDNN (A) ‘
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Challenges posed by CUDA Graphs

* Implications:

1. Synthetic inputs are used as
placeholders at capture time and
populated with real input values
at runtime.

A = Tensor() graph_ctx.replay()
graph_ctx = CUDAGraph()
with graph_ctx:

MyDNN (A)

Weaknesses

* All computations must be frozen.

* Every CUDA graph’s creation
consumes GPU memory.



Challenges posed by CUDA Graphs

ph_A = Tensor() A = Tensor()
.. h_ctx = CUDAGraph() |[ph_A. From(A)
e Implications: JTapn-Er raph() [ph_A.copyFrom(A)
o with graph_ctx: graph_ctx.replay()
1. Synthetic inputs are used. as MyDNN (ph_A)
placeholders at capture time and
[populated|with real input values Weaknesses
at runtime. _
* All computations must be frozen.

* Every CUDA graph’s creation

Significant runtime overheads consumes GPU memory.

(up to 13%).
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Challenges posed by CUDA Graphs

ph_A = Tensor() A = Tensor()
. . raph_ctx = CUDAGraph() ph_A.copyFrom(A)
e Implications: .
with graph_ctx: graph_ctx.replay()

1. Synthetic inputs are used as
placeholders at capture time and
populated with real input values Weaknesses
at runtime.

2. To efficiently execute dynamic-
shape workloads,possible + * Every CUDA graph’s creation
shapes have to be captured. I [consumes GPU memory]

‘ Huge GPU memory consumption (20-100 GB). ‘

MyDNN (ph_A)

* All computations must be frozen.
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Challenges posed by CUDA Graphs

* Implications:

1. Synthetic inputs are used as
placeholders at capture time and
populated with real input values
at runtime.

2. To efficiently execute dynamic-
shape workloads, all possible
shapes have to be captured.

3. Cannot handle data-dependent
control flows.

ph_A = Tensor() A = Tensor()
graph_ctx = CUDAGraph()
with graph_ctx:

MyDNN (ph_A)

ph_A.copyFrom(A)
graph_ctx.replay()

Weaknesses

* All computations must be frozen.

* Every CUDA graph’s creation
consumes GPU memory.



Challenges posed by CUDA Graphs

* CUDA Graphs’ Challenges: . Grape&, a graph compiler that
1. Data movements into addresses those challenges with:
placeholders incur significant
runtime overheads. @ Alias Prediction

2. Huge GPU memory consumption
to efficiently execute dynamic-

shape workloads. (2) Metadata Compression
3. No support for data-dependent
control flows. @ Predication Contexts
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Grapea’s Key Ideas

@ Alias Prediction

* If a Python code position yields a A = Tensor()
placeholder alias, the same ph_A.copyFrom(A)
position is likely to yield another graph_ctx.replay()

alias in subsequent iterations.



Grape&.’s Key Ideas

foo.py
(1) Alias Prediction 42 A = TensorO=igy
* |f a Python code position yields a is an alias of
[placeholder alias] the same v
position is likely to yield another ph_A.copyFrom(A)
alias in subsequent iterations. graph_ctx.replay()
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Grape&’s Key Ideas

foo.py
(1) Alias Prediction 42 A = Tensor()
* |f a Python code position yields a is an alias of
[placeholder alias] the same v
position is likely to yield another ph_A.copyFrom(A) -‘
alias in subsequent iterations. graph_ctx.replay()

foo.py +42 yields
ph_A's aliases.

Alias
Predictor



Grapea’s Key Ideas

foo.py
(1) Alias Prediction 4Z A = Tensor =g

* |f a Python code position yields a
[placeholder alias] the same
position is likely to yield another
alias in subsequent iterations.

is an alias of

\ 4
ph_A.copyFrom(A)

graph_ctx.replay()

foo.py +42 yields
ph_A's aliases.

Alias
Predictor



Grape&.’s Key Ideas

foo.py
A = Tensor( )-i

is an alias of

@ Alias Prediction 4

* |f a Python code position yields a
[placeholder alias] the same
position is likely to yield another
alias in subsequent iterations.

\ 4
ph_A.copyFrom(A)

graph_ctx.replay()

oo |
> foo.py +42 yields
ph_A's aliases.
Alias Directly give ph_A's

Predictor |memory region to A.
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Grapeﬁ’s Key Ideas

foo.py
A = Tensor()

@ Alias Prediction 4
* |f a Python code position yields a is an alias of
[placeholder alias] the same v
position is likely to yield another m—i

alias in subsequent iterations. graph_ctx.replay()

B0 |
> foo.py +42 yields
ph_A's aliases.
Alias Directly give ph_A's

Predictor |memory region to A.
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Grapeﬁ’s Key ldeas

foo.py
@ Alias Prediction 42 A = Tensor()

* |f a Python code position yields a
placeholder alias, the same
position is likely to yield another =ty EEewEie
alias in subsequent iterations. graph_ctx.replay()

Oe
- foo.py +42 yields

ph A's aliases. Transparent and
Alias Directly give ph_A's Language-Independent
Predictor |memory region to A.




Grapea’s Key Ideas

i h_ A =T
@ Metadata Compression ph_ ensor ()
graph_ctx = CUDAGraph()

[with graph_ctx:}
MyDNN (ph_A)

‘ Under the Hood

cudaGraphInstantiate(
&graph_ctx, ..
)

* The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

malloc Request

libcuda.so




Grape&.’s Key Ideas

i h_ A =T
@ Metadata Compression ph_ ensor ()
graph_ctx = CUDAGraph()

[with graph_ctx:}
MyDNN (ph_A)

‘ Under the Hood

cudaGraphInstantiate(
&graph_ctx, ..
)

* The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

malloc Request

Customized NVIDIA’s

open—-gpu—kernel—-modules libcuda.so

nvidia.ko




Grape&’s Key Ideas

i h_ A =T
@ Metadata Compression ph_ ensor ()
graph_ctx = CUDAGraph()

[with graph_ctx:}
MyDNN (ph_A)

‘ Under the Hood

cudaGraphInstantiate(
&graph_ctx, ..

)
mallocR t
Intercept ‘- =AHes

libcuda.so

* The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

Invidia.ko




Grapea’s Key Ideas

(2) Metadata Compression

* The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.

ph_A = Tensor
graph_ctx =
with graph_ct

MyDNN(ph_A)




Grapea’s Key Ideas

(2) Metadata Compression

* The memory allocations of CUDA
graphs have high sparsity and
value redundancy and hence are
highly compressible.




Grape&’s Key Ideas

i h_ A =T
(2 [Metadata] Compression ph_A = Tensor
graph_ctx = (@DAGraphj)

* The memory allocations of CUDA
raphs have|high sparsityland
ﬁalue redundancy|and hence are
highly compressible.

with gragM ct
MyDMM (ph_A)

17521 400000N7f521 ffdcON44305424400278ANAANNZF52¢601000N7F520020000N7F52( 0AAAAAA

UU00U000000UTTTTU0000000000000000000000000UTTTTLE0A0UTTITUO0A0OUTTTTLUE000000
. 00000000000000000000000000000000EAOOEEOOEEAAEEAAOEAOOEEOOEEAAEEAEEAOEEEOOEEAOO
S p e C u | at I O n S * 00000000000000000000000000000000000EOOEOEEAEAAEOAEOOEOEEAEAAEOAEOEEOEEOEAAEAO0

° 00000000000000000000000000000A00EAOOEEONEEAAEEAAEEAAEEEAOEEAAEEAAEEAOEEEOEEAAO
000000000000000000000000000000000000000000000EA0OEAOOEEOOEEOOEEAOEEAOOEAOOEEAOO

1 . 1 0000000000000000000000000000000000000000000000000000000000000000000000000000000

¢ S p a rS I ty . U n d e r u tl I I Ze t h e re S e rve d 0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000

M 0000000000000000000000000000000000000000000000000000000000000000000000000000000

fu n Ct I O n a rg u m e nt S p a Ces . 0000000000000000000000000000000000000000000000000000000000000000000000000000000

a

an o ane ane ARG a o ane ane a ARAAA
VO000000000000000 )O000000 000000000000000000000000000000000000000000

0O00OO0OOO96TDE30 (09 ,!!5 400000000000000000000000000000000000000000

E.g.,

lobal__ void cudaKernelSample(
const float xconst input,

float *const output 16 bytes used out of the reserved 4 KB by CUZIi)iA
);




Grape&’s Key Ideas

(2)[Metadatal Compression

* The memory allocations of CUDA

raphs have|high sparsityland

value redundancy and hence are

highly compressible.

Speculations:

* Sparsity: Underutilize the reserved

function argument spaces.
* Redundancy: Pointer values.

ph_A = Tensor

graph_ctx = (@DAGraphl)
with gragM ct
MyDMM (ph_A)

171521 2000007152 fTdcOO RANEAAN7T52¢ 60100007 520020000171 52(.0000000)
UU00U000000UTTTTU0000000000000000000000000UTTTTLE0A0UTTITUO0A0OUTTTTLUE000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000

a

an o ane a ARG a o a ane ARAA aAnA
VO000000000000000 )O000000 000000000000000000000000000000000000000000

0O00OO0OOO96TDE30 (09 ,!!5 400000000000000000000000000000000000000000

E.g., global _
const [float *const input,

float *const output

S
- e

void cudaKernelSample(

42



Grape&.’s Key Ideas

i h_A=T
(D [Metadata]Compression oh_ = Tensor

* The memory allocations of CUDA
graphs havel|high sparsity|and
value redundancy and hence are
highly compressible.

0000000000000000000000000000000000000000000000000000000000000000000000000000000

L]
S p e C u | at I O n S * 00000000000000000000000000000000000EOOEOEEAEAAEOAEOOEOEEAEAAEOAEOEEOEEOEAAEAO0
[ ] vV

0000 0000000000
00000 . 0600000000

. HH 00000 U t 3 6 4. x d t 0000000000

* Sparsity: Underutilize the reserved | [ UP TO : reauction. g
00000 0600000000

. 00000000000000000000000000000000000000000000A000000E0OAE0AEOEAOAEAAEAHAA0

fu N Ct ION a rg ume nt S p daces. 0080000000000000000000000000000000000000000000000000000000000000000000000000000

: Pointer values.




Grapea’s Key Ideas

@ Predication Contexts

* Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

with Predicate(x):



Grapeﬁ’s Key Ideas

@ Predication Contexts

* Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

with Predicate(x):

# do something

@ \!’(I)

&

If x is true, all GPU operations
within can proceed as normal.

45




Grapeﬁ’s Key Ideas

@ Predication Contexts

* Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

with Predicate(x):

# do something

Otherwise, all GPU operations
within are nullified.

46




Grape&.’s Key Ideas

@ Predication Contexts

* Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

with Predicate(x):

Implementation Details:

__global__ void cudaKernelInPyTorch(
const float xconst input,

float *xconst output
) {

}

47



Grape&.’s Key Ideas

@ Predication Contexts

* Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

with Predicat:

Implementation Details:

__global__ void cudaKe
const float xconst j
float *const output]
const bool predicate

) {
if (predicate) {

InPyTorch(
T,

¥
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Grapeﬁ’s Key Ideas

Whyl s It, wh omething happen

;

s, It Is always you three?

m

2
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Grape&.’s Key Ideas

@ Predication Contexts

* Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

if

else:

for ...:

1

X

break

for ...:

1

X

continue
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Grapeﬁ’s Key Ideas

@ Predication Contexts

* Common data-dependent control
flows can be replaced with
predication contexts while fully
preserving program semantics.

1f x:

else:

for ...:
1if x:
break

for ...:
1if x:
continue

Equivalent Forms:
with Predicate(x):

with Predicate(!x):

flag = False
for ...:

with Predicate(!flag):
flag = x
with Predicate(!flag):

for ...:
with Predicate(!x):

51



Grape&’s Key Ideas

Equivalent Forms:
. . ith Predi :
(3) Predication Contexts nith Predicate(x)

e Common data-dependent control with Predicate(:x):
flows can be replaced with
predica’Fion contexts while fully flag = False
preserving program semantics. for ...:

Fégé with Predicate(!flag):

flag = x

S’rreng‘rh CUDA graph- opT|m|zable ‘ with Predicate(:flag):

< ;j‘ (@
. for ...:

1. 79X Per'for'mancem In with Predicate(!x):
GPT-2''' beam search
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Performance vs. PyTorch/PtGraph
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Performance vs. PyTorch/PtGraph

[ Baseline SN PtGraph =~ I Grape

Better
Speedup
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Performance vs. PyTorch/PtGraph

[ Baseline SN PtGraph =~ I Grape

i

GPT-2
¢ 2.97x%/1.26Xx better than PyTorch/PtGraph on small workloads.

Speedup
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Performance vs. PyTorch/PtGraph

[ Baseline SN PtGraph =~ I Grape

_|_
)

:Alias Prediction 34%

¢ 2.97x%/1.26Xx better than PyTorch/PtGraph on small workloads.

Speedup
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Performance vs. PyTorch/PtGraph

[ Baseline SN PtGraph =~ I Grape

SN\ /N
Q ™ Q e
\. \- \. \.

ol ol

GPT-J Wav2Vec?2

¢ 2.97x%/1.26Xx better than PyTorch/PtGraph on small workloads.

* 1.41X better than PyTorch on large workloads that are impractical
for PtGraph. 63

Speedup




Conclusion

* Challenges posed by CUDA graphs:
e Extra data movements into placeholders.
* Huge GPU memory consumption on dynamic-shape workloads.
* No support for data-dependent control flows.

. Grape& addresses those challenges with: @ Alias Prediction,
@ Metadata Compression, and @ Predication Contexts.

* Key Results:
* On GPT-2, 1.26X better performance than PtGraph.
* On GPT-J and Wav2Vec2, up to 1.41X better performance than PyTorch.
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