
with Predicate(x):
 …
with Predicate(!x):
 …

const float* input,
float* outputfloat*

float*

frozenfrozen

Runtime Profile

Grape🍇: Practical and Efficient Graph-based Executions for
Dynamic Deep Neural Networks on GPUs

Bojian Zheng1, 2, 3, Cody Hao Yu4, Jie Wang4, Yaoyao Ding1, 2, 3, Yizhi Liu4,
Yida Wang4, Gennady Pekhimenko1, 2, 3

1CentML 2University of Toronto 3Vector Institute 4AWS
https://github.com/UofT-EcoSystem/Grape-MICRO56-Artifact

1 2 3 4

1. Background: CUDA Graphs 3. Grape ’s Key Ideas🍇
Ubiquitous CPU overheads in machine learning systems:

foo.py

CHECK(A.shape == B.shape);
cudaAddKernel<<<…>>>(…);

E.g., ● Python invokes C APIs.
● Framework checks input shapes.
● CUDA launches compute kernels
 on GPUs.

● …

Execution Timeline

GPU Operation CPU Overheads

leads to

CUDA graphs remove CPU overheads by capturing
effective GPU operations and then replaying them:

Capture Replay
A = Tensor()

C = A + B

graph_ctx = CUDAGraph()

with graph_ctx:

 MyDNN(ph_A)

Execution Timeline

Record
Execution Timeline

graph_ctx.replay()
Replay

No CPU
overheads!

2. Challenges posed by CUDA Graphs

Capture

Replay
A = Tensor()

graph_ctx = CUDAGraph()
ph_A = Tensor()

 MyDNN(A)
with graph_ctx:

ph_A.copyFrom(A)
graph_ctx.replay()

CUDA graphs request computations to be frozen.

Placeholders are used
at capture time.

Placeholders are populated with real
input values at runtime.

One possible shape of A =
One CUDA graph instance

MyDNN cannot have data-dependent
control flows (e.g., if, break, and
continue statements).

Every instance consumes
GPU memory.

❶ Extra data movements into placeholders incur runtime
overheads (up to 13%).

❷ Huge GPU memory consumption to efficiently support
dynamic-shape workloads (20-100 GB).
No support for data-dependent control flows.❸

①Alias Prediction
foo.py

A = Tensor()42

ph_A.copyFrom(A)☞
A, generated at foo.py+42, is
an alias of ph_A.

Next
Iteration

foo.py
A = Tensor()42

Predict A to be an alias, and
directly use ph_A’s memory
region for A.

ph_A.copyFrom(A)

②Metadata Compression

graph_ctx = CUDAGraph()

High sparsity and value
redundancy Up to ⟹ 36.4×
compression ratio.

describes

Underutilize the reserved function argument spaces
(4 KB in CUDA).

Pointer values

__global__ void cudaKernel(
 const float* input,
 float* output
)

③Predication Contexts

with Predicate(x):
GPU operations within are nullified if x is False.

if x:
 …
else:
 …

for …:
 if x:
 break
 …

for …:
 if x:
 continue
 …

flag = CUDATensor(False)
for …:
 with Predicate(!flag):
 flag = x
 with Predicate(!flag):
 …

for …:
 with Predicate(!x):
 …

CUDA graph-optimizable
 ⟹ 1.79× speedup in GPT-2

beam search module.

4. Evaluation

S
pe

ed
up

Infrastructure:

Applications:

NVIDIA RTX 3090 and A100 with

ver. 1.12 and ver. 12.0.

Compared with and .

(Baseline) (PtGraph)

GPT-2137M, GPT-J6B, and Wav2Vec2Base
from Transformers. 🤗

● On GPT-2, 2.97×/1.26× better than Baseline/PtGraph.
● On GPT-J and Wav2Vec2, up to 1.41× better than
 Baseline while PtGraph goes OOM.

GPU

MICRO 2023 56th IEEE/ACM International Symposium on Microarchitecture®

https://github.com/UofT-EcoSystem/Grape-MICRO56-Artifact

	Page 1

