
with Predicate(x):
  … 
with Predicate(!x):
  … 

const float* input,
float* outputfloat*

float*

frozenfrozen
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1. Background: CUDA Graphs 3. Grape ’s Key Ideas🍇
Ubiquitous CPU overheads in machine learning systems:

foo.py

CHECK(A.shape == B.shape);
cudaAddKernel<<<…>>>(…);

E.g., ● Python invokes C APIs.
● Framework checks input shapes.
● CUDA launches compute kernels
 on GPUs.

● … 

Execution Timeline

GPU Operation CPU Overheads

leads to

CUDA graphs remove CPU overheads by capturing 
effective GPU operations and then replaying them:

Capture Replay
A = Tensor()

C = A + B

graph_ctx = CUDAGraph()

with graph_ctx:

  MyDNN(ph_A)

Execution Timeline

Record
Execution Timeline

graph_ctx.replay()
Replay

No CPU 
overheads!

2. Challenges posed by CUDA Graphs

Capture

Replay
A = Tensor()

graph_ctx = CUDAGraph()
ph_A = Tensor()

  MyDNN(A)
with graph_ctx:

ph_A.copyFrom(A)
graph_ctx.replay()

CUDA graphs request computations to be frozen.

Placeholders are used
at capture time.

Placeholders are populated with real 
input values at runtime.

One possible shape of A = 
One CUDA graph instance

MyDNN cannot have data-dependent 
control flows (e.g., if, break, and 
continue statements).

Every instance consumes
GPU memory.

❶ Extra data movements into placeholders incur runtime 
overheads (up to 13%).

❷ Huge GPU memory consumption to efficiently support 
dynamic-shape workloads (20-100 GB).
No support for data-dependent control flows.❸

①Alias Prediction
foo.py

A = Tensor()42

ph_A.copyFrom(A)☞
A, generated at foo.py+42, is 
an alias of ph_A.

Next 
Iteration

foo.py
A = Tensor()42

Predict A to be an alias, and 
directly use ph_A’s memory 
region for A.

ph_A.copyFrom(A)

②Metadata Compression

graph_ctx = CUDAGraph()

High sparsity and value
redundancy  Up to ⟹ 36.4×
compression ratio.

describes

Underutilize the reserved function argument spaces
(4 KB in CUDA).

Pointer values

__global__ void cudaKernel(
  const float* input,
  float* output
)

③Predication Contexts

with Predicate(x):
GPU operations within are nullified if x is False.

if x:
  … 
else:
  … 

for …:
  if x:
    break
  …

for …:
  if x:
    continue
  …

flag = CUDATensor(False)
for …:
  with Predicate(!flag):
    flag = x
  with Predicate(!flag):
    …

for …:
  with Predicate(!x):
    … 

CUDA graph-optimizable
 ⟹ 1.79× speedup in GPT-2 

beam search module.

4. Evaluation

S
pe

ed
up

Infrastructure: 

Applications: 
 

NVIDIA RTX 3090 and A100 with

ver. 1.12 and          ver. 12.0.

Compared with                     and                          .

(Baseline) (PtGraph)

GPT-2137M, GPT-J6B, and Wav2Vec2Base 
from  Transformers. 🤗

● On GPT-2, 2.97×/1.26× better than Baseline/PtGraph.
● On GPT-J and Wav2Vec2, up to 1.41× better than
 Baseline while PtGraph goes OOM.
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