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Executive Summary

 Strategies: CPU Offloading, Data Encoding/Compression,tSeIective Recomputatio_nj

« ECHO addresses 2 key challenges of selective recomputation:
Estimation of 0 memory footprint & Q runtime overhead

* Key Results: 3 X footprint reduction with 1% overhead
— BatchSizeT 1 35X faster convergence to the same validation quality

« ECHO and the MXNet GPU memory profiler are both open-sourced

ECHO: https://issues.apache.org/jira/browse/MXNET-1450, GPU Memory Profiler: https://issues.apache.org/jira/browse/MXNET-1404



https://issues.apache.org/jira/browse/MXNET-1450
https://issues.apache.org/jira/browse/MXNET-1404
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Background: Feature Maps

e Data entries that are stashed by the forward pass
to compute the backward gradients
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:Feature Maps LT Total Memory Consumption |

Storage In-Use

[Large Temporal Gap between Usage]

[1] M. Rhu et al. vDNN: Virtualized Deep Neural

i Th e Ca u Se Of h ig h m e m O ry fo Ot p ri nt i n Networks for Scalable, Memory-Efficient Neural

Network Design. MICRO 2016

Convolutional Neural Networks (CNNs)™ 21 ey san ecar cist gcient bata encoting for

Deep Neural Network Training. ISCA 2018 4



A
Background: LSTM RNN C)' » |

Neural Machine Translation (NMT)

* Long-Short-Term-Memory
Recurrent Neural Network (LSTM RNN)

* Applications in machine translation (NMT)
& speech recognition (DeepSpeech?)

DeepSpeech2

* Its training is inefficient on the GPUs,
especially when compared with CNN!L 2]

[1] J. Bradbury et al. Quasi-Recurrent Neural Networks. ICLR 2016
[2] T. Lei et al. Simple Recurrent Units for Highly Parallelizable Recurrence. EMNLP 2018
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Why LSTM RNN Training is Inefficient?

Training throughput saturates as batch Training throughput is limited by the

Size increases memory capacity
- ResNet-50 (CNN) —~  NMT (LSTM RNN)
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Memory capacity limits the NMT training throughput



GPU Memory Profiling Results

| MXNet GPU Memory Profller

l https://issues.apache.org/jira/browse/MXNET-1404
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m Weights

m Workspace
Untrackable

Feature maps dominate the GPU memory footprint


https://issues.apache.org/jira/browse/MXNET-1404

Memory Capacity Limit: 3 Main Strategies

1. CPU Offloading (e.g., vDNN!1I)

+ General
— Intensive Use of Interconnect

2. Data Encoding/Compression (e.g., Gistl2])
+ Low Performance Overhead
— Model/Layer-Specific
S e T T L T T T T
3. Selective Recomputation] \/
+ General & Low Performance Overhead

[1] M. Rhu et al. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient
Neural Network Design. MICRO 2016
[2] A.Jain et al. Gist: Efficient Data Encoding for Deep Neural Network Training. ISCA 2018



Selective Recomputation

* Key Idea: Trade runtime with memory capacity
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Recomputation

* The recomputation path should only involve lightweight operators



Prior Work on Selective Recomputation

NMT @ NO Recomputation T. Chen et al.lll

Memory (GB) 10.0 7.4 ‘1.35)(
Throughput

17%
(samples/sec) 1192 )83 ‘ ’

Prior work fails to deliver satisfactory memory foorprint reduction

with acceptable overhead

[1] T. Chen et al. Training Deep Nets with Sublinear Memory Cost. ArXiv e-prints 2016 #1604.06174
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Prior Work on Selective Recomputation

Failure to address 2 key challenges:

Estimation of 0 memory footprint &
Q runtime overhead



0 Memory Footprint Estimation

Example: Z = tanh(X + Y)

For each recomputation to be X
efficient, need to estimate its ‘_[1@
effect on the memory footprint

X

(—) memory footprint T (N — 2N) &
(—) performance | (recomputation)!
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0 Memory Footprint Estimation

For each recomputation to be
efficient, need to estimate its
effect on the memory footprint

[(+) feature maps: T?N — 2TN

Global Memory Footprint Analysis:
1. shapes and data types
2. reuse Challenging!




@ Runtime Overhead Estimation

Example: Y = XW7T

For each recomputation to be * Compute-Heavy
efficient, need to estimate its * 50% of the NMT training time
effect on the runtime overhf?d + Excluded in prior works

,\‘?/ E. Compute-Heavy Layers |

Layer-Specific Property:
T
dE _dE ., o QE _ dE
dx  dy dw  dy
(NO Dependency on Y)




ECHO: A selective Recomputation Graph Compiler Pass

* Integrated in the MXNet NNVM!1 module

* Fully Automatic & Transparent
* Requires NO changes in the training source code

* Addresses the 2 key challenges: Estimation of
0 memory footprint: Bidirectional Dataflow Analysis
9 runtime overhead: Layer Specific Optimizations

[1] https://github.com/apache/incubator-mxnet/tree/master/src/nnvm
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https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

ECHO: Bidirectional Dataflow Analysis

Example: Z = tanh(X + V)

V¥ Backward Pass

Breaks at compute-heavy layers to
partition the graph

Constructs a recomputation path
that consists of nodes visited
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ECHO: Bidirectional Dataflow Analysis

Example: Z = tanh(X + V)
[_N - le'] V¥ Backward Pass

- Breaks at compute-heavy layers to
i g partition the graph

+ Practicati&aAecorgteation path

that consists of nodes visited

A Forward Pass

Remove operator nodes from the
recomputation path if
sizeof(FeatureMapsow) <
sizeof(FeatureMaps,;q)
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ECHO: Bidirectional Dataflow Analysis

Example: Z; = tanh(X + Y;),i € [1,T]
T

* Storage Reuse AL
Causes ALL correlated operators to Zfl 7o BT
forward propagate simultaneously 4 [T x N 4@ [T x N] &

sizeof z FeatureMapsneW) <

~——— =i
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Overview

 Memory capacity limits training performance

* Estimation of @ memory footprint &

Challenges ,
@ runtime overhead

* Bidirectional Dataflow Analysis
* Layer-Specific Optimizations

ECHO

e How ECHO performs on real DNN models?
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Evaluation: Benchmarks

e State-of-the-Art Neural Machine

1 . .
SOCkeVe[ ! Translation Toolkit under MXNet
[1] F. Hieber et al. Sockeye: A Toolkit for Neural Machine Translation.
ArXiv e-prints 2017 #1712.05690  Datasets:
el * IWSLT’15 English-Vietnamese
(Small)

« WMT’16 English-German (Large)

* Key Metrics:
* Training Throughput
* GPU Memory Consumption
* Training Time to
Validation Accuracy (BLEU Score)
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Evaluation: Infrastructure

4X NVIDIA RTX 2080 Ti GPU
(Turing; 11 GB GDDR6 Memory)

Hardware

Software 3
oA v10.0  CUDNNV7.6.3 @Xnet v0.12.1

CUDA
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Evaluation: Systems

Baseline System without

Baseline . .
Selective Recomputation
Mirror T. Chen et al.l1l
Compiler-based Automatic and
ECHO P

Transparent Optimizations

[1] T. Chen et al. Training Deep Nets with Sublinear Memory Cost.
ArXiv e-prints 2016 #1604.06174

22



ECHO ’s Effect on Memory and Performance

Small Dataset, Single-GPU Experiment /‘ 2X Training Batch Size
—1 Baselinelgzlgg 0 Echop-— 198 B Echop- 96

[a—
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Reduction Ratio Overhead
Nixror High Hogin
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ECHO ’s Effect on Training Convergence

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

=)

—N— Baseline@i’ il

Target BLEU Score 28.0

— MirrorgezV 6:42 —4a— Echo %2'1:2}5

q) 30-_ ................................
S 04 I L |
2" e L 3[1.00 x ECHO achieves:
F3 181 ' ] . .
m N e + Same Validation BLEU Score
g 19 1 )
g " ' + Faster Convergence
< »| 0.74 x :
';2 . + Fewer Compute Devices
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Other Results in the Paper

 More State-of-the-Art Models:
* DeepSpeech? (1.56X%), Transformer (1.59X%), ResNet-152 (2.13 X)

* More Benefits from Memory Footprint Reduction:
* GPU energy consumption saving (1.35X%)
* maximum number of layers with the same GPU memory budget (2X)



Conclusion

* The GPU memory capacity limits the LSTM RNN training performance.
* Major Strategy: Selective Recomputation

« ECHO addresses 2 key challenges of selective recomputation:
Estimation of 0 memory footprint & Q runtime overhead

* Key Results: 3 X footprint reduction with 1% overhead
— BatchSizeT 1 35X faster convergence to the same validation quality

« ECHO and the MXNet GPU memory profiler are both open-sourced

ECHO: https://issues.apache.org/jira/browse/MXNET-1450, GPU Memory Profiler: https://issues.apache.org/jira/browse/MXNET-1404
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ReLU vs. tanh/sigmoid Activation

* The tanh/sigmoid activation does NOT produce much zero sparsity.

sigmoid " RelLU

R(z) =maz(0, 2)




ECHO ’s Effect on DeepSpeech?2

[ Baseline 1 Mirror 1 Echo
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[ECHO’S benefits are across different models]
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ECHO vs. Hand-tuned

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

Geter 2
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(o)

Hand-tuned Recomputation:

+ Better Performance
— Model/Layer-Specific
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ECHO ’s Effect on EC2 p3.8xlarge Instance

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps
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[ECHO’S benefits are across hardware platforms]
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