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Background: Current Auto-Scheduler Design
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Background: Current Auto-Scheduler Design

o Operator Static Shape
A Specification Description

Auto-Scheduler

[Search Space]
An operator can
have infinitely many
possible scheduyles
Example
/Schedule: A

for (int io = 0; io < [50/t]; ++io) A
for (int ii = 0; ii < t; ++ii) {
if (ioxt+ii <50) Alioxt+ii]l = ...
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}
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Background: Current Auto-Scheduler Design

o Operator Static Shape
A Specification Description

Auto-Scheduler

[Shape-Dependent Search Space]

Limit the candidates
to perfect factors

i
2 Example ~
/Schedule:

for (int io = 0; io < [50/t]; ++io) A
for (int ii = 0; ii < t; ++ii) {

if eoxt+ii<50) Alioxt+ii]l = ...
t € {2,5,10,25)

}
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Challenges Faced by the Current Design
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[Shape—Dependent Search Space]
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* Challenge #1: - [ S S
* Hard to share schedules across different Auto-Scheduler
shapes of the same operator.
e Example ~
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for (int io = 0; io < [B0/t]; ++io) {
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Challenges Faced by the Current Design

Challenge #1.:

* Hard to share schedules across different
shapes of the same operator.
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Example
chedule: A
for (int io = 0; io < [49/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
Alioxt +ii] = ...
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Challenges Faced by the Current Design

* Challenge #1.:

* Hard to share schedules across different
shapes of the same operator.

Example
/Schedule: A

for (int io = 0; io < [49/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
Alioxt +ii] = ...
}
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Prohibitably expensive auto-scheduling
time for dynamic-shape workloads.



Challenges Faced by the Current Design

* Challenge #2:

e Can deliver sub-optimal performance for
not considering non-perfect candidates.

Example
/Schedule: A

for (int io = 0; io < [49/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
if (ioxt+ii <49) A[ioxt+ii] = e
}

.. might be

K ¥ ‘t € {7} ‘ better candldates /

Observation: Performance overhead of if-checks is
negligible with local padding (i.e., pad tensors locally by
the size of local and/or shared memory variables).
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DietCode: A New Auto-Scheduler Framework
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DietCode: Key Ideas

* Key Idea #1: Shape-Generic

Search Space

* Composed of micro-kernels. Each
does a tile of the entire compute.

* A micro-kernel can be ported to all
shapes of the same operator.

 Sampled from hardware
constraints instead of shape
factors (i.e., shape-generic).

Example:

Yy = XxwT X: [1024,768], W: [2304, 768]
with micro-kernel dense 128x128,

which evaluates
Y = XWT X: [128,768], W: [128, 768]

dense_128x128
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DietCode: Key Ideas

* Key Idea #2: Micro-Kernel-based
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Cost Model

* Observation: A cost model trained
on one shape can be inaccurate on
other shapes.

* Compute throughputs exhibit
oredictable linear trend w.r.t.
shape dimensions.
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* Key Idea #2: Micro-Kernel-based

Cost Model
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DietCode: Key Ideas

* Key Idea #2: Micro-Kernel-based

Cost Model

* Observation: A cost model trained
on one shape can be inaccurate on
other shapes.

* Compute throughputs exhibit
oredictable linear trend w.r.t.
shape dimensions.
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(linear function)



DietCode: A New Interface

e Supports dynamic-shape workloads with its new interface.

e Eg.,Y = XWT X: [16xT,768], W:[2304,768],T € [1,128]
T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16xT, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)

)



DietCode: A New Interface

e Supports dynamic-shape workloads with its new interface.

e Eg,Y =XWT X: [16XT,768],W:[2304,768],T € [1,128]
T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16xT, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)

)
* Define a dynamic shape variable T and its instances.



DietCode: A New Interface

e Supports dynamic-shape workloads with its new interface.

e Eg.,Y = XWT X: [16xT,768], W:[2304,768],T € [1,128]
T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16xT, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)

)

e Pass the variable and its instances to the workload function.



DietCode: A New Interface

e Supports dynamic-shape workloads with its new interface.

e Eg.,Y = XWT X: [16xT,768], W:[2304,768],T € [1,128]
T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16xT, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl _inst_weights=([1. for _ in T_valsl],)

)

* [Optional] Assign weight to each shape instance.



Evaluation

Hardware: NVIDIA Tesla T4 GPU Software: TVM + CUDA + cuDNN
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Performance: 30.5% better than Ansor; 5.3% better than Vendor
Auto-Scheduling Time: 5.6 X less than Ansor
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Evaluation
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Summary

* DietCode: An auto-scheduler for dynamic-shape workloads.

* Based on 2 key ideas:

(1) Shape-Generic Search Space and
(2) Micro-Kernel-based Cost Model

* Key Features:
e Auto-Schedule Once and For All Shapes
* Large reduction in the auto-scheduling time.
* Better Performance
e Up to 30.5% speedup than Ansor, up to 15.4% than Vendor.

* Working on integrating into the TVM main branch ...
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DietCode: Key Ideas

* Key Idea #1: Shape-Generic

Search Space

* Composed of micro-kernels. Each
does a tile of the entire compute.

* A micro-kernel can be ported to all
shapes of the same operator.

 Sampled from hardware
constraints instead of shape
factors (i.e., shape-generic).

Example:

Y = XWT X: [16XT, 768], W:[2304, 768]
with micro-kernel dense 128x128,

which evaluates
Y = XWT X: [128,768], W:[128,768]

dense_128x128
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Challenges Faced by the Current Design

Challenge #2:

e Can deliver sub-optimal performance for
not considering non-perfect candidates.
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Example ~
chedule (Loop Tiling):
for (int io = 0; io < [49/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
if (ioxt+ii <49) Alioxt+ii] = ...
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