DietCode: Automatic Code Generation

5 for Dynamic Tensor Programs

S

g Bojian Zheng'- 23, Ziheng Jiang™, Cody YuZ, Haichen Shen?,
§ Josh Fromm?, Yizhi Liu?, Yida Wang?,

— Luis Ceze> ®, Tianqi Chen> 7, Gennady Pekhimenko® 2 3

* Equal Contribution
4 5

2 3
dWSs -\7\ IY\IESC':I'-II-'IC')URTE liil ByteDance OctoML

Background: Current Auto-Scheduler Design

Background: Current Auto-Scheduler Design

o Operator Static Shape
A Specification Description

Auto-Scheduler

[Search Space]

An operator can
have infinitely many
possible scheduyles

el Example
@ /Compute: h

for (int i = 0; i < 50; ++i) {
Ali] = ...
¥

Background: Current Auto-Scheduler Design

o Operator Static Shape
A Specification Description

Auto-Scheduler

[Search Space]
An operator can
have infinitely many
possible scheduyles
Example
/Schedule: A

for (int io = 0; io < [50/t]; ++io) A
for (int ii = 0; ii < t; ++ii) {
if (ioxt+ii <50) Alioxt+ii]l = ...

‘tE [2,00)!‘

}

! Y,

Background: Current Auto-Scheduler Design

o Operator Static Shape
A Specification Description

Auto-Scheduler

[Shape-Dependent Search Space]

Limit the candidates
to perfect factors

i
2 Example ~
/Schedule:

for (int io = 0; io < [50/t]; ++io) A
for (int ii = 0; ii < t; ++ii) {

if eoxt+ii<50) Alioxt+ii]l = ...
t € {2,5,10,25)

}

_ ¥

Background: Current Auto-Scheduler Design

o Operator Static Shape
A Specification Description

— o o O o e M O R SmE B S EEe e EEe e EEm e S M S e S e S e s

Auto-Scheduler

[Shape—Dependent Search Space]

(@)

[Con(lj%lsett(fv});gflramJ predicts Schedu

Background: Current Auto-Scheduler Design

o Operator Static Shape
A Specification Description

Auto-Scheduler

[Shape—Dependent Search Space]

[Complete ProgramJ_{ \

Cost Model L Dl

Background: Current Auto-Scheduler Design

o Operator Static Shape
A Specification Description

Auto-Scheduler

[Shape—Dependent Search Space]

[Complete Program

Cost Model
Learning

High-Performance
Program

Challenges Faced by the Current Design

Static Shape
Description

=

[Shape—Dependent Search Space]

o Op.erato.r
* Challenge #1: - [S S
* Hard to share schedules across different Auto-Scheduler
shapes of the same operator.
e Example ~
SChed u |e: [Complete Program
Cost Model

for (int io = 0; io < [B0/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
Alioxt +ii] = ...

|t € {2,5,10,25} |

/

Learning

Ceming

High-Performance
Program

Challenges Faced by the Current Design

Challenge #1.:

* Hard to share schedules across different
shapes of the same operator.

s

o

Example
chedule: A
for (int io = 0; io < [49/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
Alioxt +ii] = ...
}

} ‘t € {7} ‘ N{2,5,10,25} = @

/

[Operator
a Specification

Auto-Scheduler {\{

Static Shape
Description

[Shape—Dependent Search Space]

[Complete Program

Cost Model
Learning

High-Performance
Program

Challenges Faced by the Current Design

* Challenge #1.:

* Hard to share schedules across different
shapes of the same operator.

Example
/Schedule: A

for (int io = 0; io < [49/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
Alioxt +ii] = ...
}

‘t €1{7} ‘ N{2,5,10,25} = ¢

"’ Y,

o Operator Static Shape
Specification Description

Auto-Scheduler *\i

[Shape-Dependent Search Space]

Complete Program
Cost Model
earning
High-Performance
Program
e e e el e e e e -
~~~~~ '__—\.E_—_:_—_ _______ '
I
Shape 5| Auto-Schedule | ! Program 0 :
e ———
—— |
Shape S, E:) Auto-Schedule I;> Program 1 ,
——— & |
Shape S, Auto-Schedule Program 2 !
1
1

I
i Generated Binary |

Prohibitably expensive auto-scheduling
time for dynamic-shape workloads.



Challenges Faced by the Current Design

* Challenge #2:

e Can deliver sub-optimal performance for
not considering non-perfect candidates.

Example
/Schedule: A

for (int io = 0; io < [49/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
if (ioxt+ii <49) A[ioxt+ii] = e
}

.. might be

K ¥ ‘t € {7} ‘ better candldates /

Observation: Performance overhead of if-checks is
negligible with local padding (i.e., pad tensors locally by
the size of local and/or shared memory variables).

[ Operator

a Specification Description

Static Shape

Auto-Scheduler {\{

[Complete Program

[Shape—Dependent Search Space]

Cost Model
Learning

High-Performance

Program




DietCode: A New Auto-Scheduler Framework

4 Dynamic Shape Operator
[ Description Specification

@‘hape-Generic Search Sp:%\
[N 1
foW

for i.1 in [0, 128):

I i

Cost Model

[ Micro-Kernel-based

Joint Learning

: 2
|
Runtime Shape S J]Dr Dispatcher .

v
= = B = i 1
Deployment I Generated Binary |
@s<t | I
2% I l
S <ty
© (% < C, : Kernel 0 |
® i |
Y, |
Decision Tree v c | Kernel 1 :
i |
: |
| [




DietCode: Key Ideas

* Key Idea #1: Shape-Generic

Search Space

* Composed of micro-kernels. Each
does a tile of the entire compute.

* A micro-kernel can be ported to all
shapes of the same operator.

 Sampled from hardware
constraints instead of shape
factors (i.e., shape-generic).

Example:

Yy = XxwT X: [1024,768], W: [2304, 768]
with micro-kernel dense 128x128,

which evaluates
Y = XWT X: [128,768], W: [128, 768]

dense_128x128

||;<; X // /
A/////////////////

/' o 7/ o

77
[ ] Q. .. / [ ] / [} .. .. ...
SNV 7 = 7 7 7 7
V7 7 7 7 7 7 7 7

>
4 1024/128 = 8




DietCode: Key Ideas

* Key Idea #2: Micro-Kernel-based

[a—
(020]

Cost Model

* Observation: A cost model trained
on one shape can be inaccurate on
other shapes.

* Compute throughputs exhibit
oredictable linear trend w.r.t.
shape dimensions.

--+-- Predicted

* Decompose the cost model into:
| I I

[u—
[\S)

(@)}

—e— Measured

Compute Throughput (TFLOPS)

)

fux - f spatial 82 246 410 574
Shape Dimension



DietCode: Key Ideas

* Key Idea #2: Micro-Kernel-based

Cost Model

* Observation: A cost model trained
on one shape can be inaccurate on
other shapes.

* Compute throughputs exhibit
oredictable linear trend w.r.t.
shape dimensions.

--+-- Predicted

* Decompose the cost model into:
| I I

(@)

—e— Measured

Compute Throughput (TFLOPS)

)

fux - f spatial 82 246 410 574
* Trainable Micro-Kernel Cost Shape Dimension



DietCode: Key Ideas

* Key Idea #2: Micro-Kernel-based

Cost Model

* Observation: A cost model trained
on one shape can be inaccurate on
other shapes.

* Compute throughputs exhibit
oredictable linear trend w.r.t.
shape dimensions.

------- Predicted

* Decompose the cost model into:
I |

/a Ve
s N -
V) 4 ~) ~Ld S
/4

—e— Measured

Compute Throughput (TFLOPS)

)

fuk - fspatial 82 246 410 574
Shape Dimension

* Analytical Spatial Generalization Cost
(linear function)



DietCode: A New Interface

e Supports dynamic-shape workloads with its new interface.

e Eg.,Y = XWT X: [16xT,768], W:[2304,768],T € [1,128]
T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16xT, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)

)



DietCode: A New Interface

e Supports dynamic-shape workloads with its new interface.

e Eg,Y =XWT X: [16XT,768],W:[2304,768],T € [1,128]
T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16xT, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)

)
* Define a dynamic shape variable T and its instances.



DietCode: A New Interface

e Supports dynamic-shape workloads with its new interface.

e Eg.,Y = XWT X: [16xT,768], W:[2304,768],T € [1,128]
T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16xT, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)

)

e Pass the variable and its instances to the workload function.



DietCode: A New Interface

e Supports dynamic-shape workloads with its new interface.

e Eg.,Y = XWT X: [16xT,768], W:[2304,768],T € [1,128]
T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16xT, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl _inst_weights=([1. for _ in T_valsl],)

)

* [Optional] Assign weight to each shape instance.



Evaluation

Hardware: NVIDIA Tesla T4 GPU Software: TVM + CUDA + cuDNN

O
& v0.8.dev0

winav1l.3  cuDNNvs.3
CUDA




Evaluation

3000

2250+

Runtime (us)
s
>
S

< Better |

~l
N
()

©

B Vendor [ Ansor [ DietCode

R T R R T g L

100 119 128

Dense [16 x T, 768 2304, 768])

Performance: 30.5% better than Ansor; 5.3% better than Vendor
Auto-Scheduling Time: 5.6 X less than Ansor

10



Evaluation

What about multiple
m'm 1‘ .
s dynamic axes?
= Vendor Hll DictCode

B B I 8K &&@ KROS5 SNE

300

N
[\
)

Runtime (us)
O
S

< Better |

75
0 e —
5 24 100 119 128 Average
BatchMatmull\l\ 192 T, T|, [192, T, 64]) -
OgCN
- ‘ 24.2% better than Ansor; 15.49% better than Vendor ‘




Summary

* DietCode: An auto-scheduler for dynamic-shape workloads.

* Based on 2 key ideas:

(1) Shape-Generic Search Space and
(2) Micro-Kernel-based Cost Model

* Key Features:
e Auto-Schedule Once and For All Shapes
* Large reduction in the auto-scheduling time.
* Better Performance
e Up to 30.5% speedup than Ansor, up to 15.4% than Vendor.

* Working on integrating into the TVM main branch ...

11



DietCode: Automatic Code Generation

5 for Dynamic Tensor Programs

S

g Bojian Zheng'- 23, Ziheng Jiang™, Cody YuZ, Haichen Shen?,
§ Josh Fromm?, Yizhi Liu?, Yida Wang?,

— Luis Ceze> ®, Tianqi Chen> 7, Gennady Pekhimenko® 2 3

* Equal Contribution
4 5

2 3
dWSs -\7\ IY\IESC':I'-II-'IC')URTE liil ByteDance OctoML




Backup



Scratchpad



DietCode: Key Ideas

* Key Idea #1: Shape-Generic

Search Space

* Composed of micro-kernels. Each
does a tile of the entire compute.

* A micro-kernel can be ported to all
shapes of the same operator.

 Sampled from hardware
constraints instead of shape
factors (i.e., shape-generic).

Example:

Y = XWT X: [16XT, 768], W:[2304, 768]
with micro-kernel dense 128x128,

which evaluates
Y = XWT X: [128,768], W:[128,768]

dense_128x128

L] -

N
v/

e Local liadding
71 7 7 7 7 /&
[ ] [ ] [ ] [ ] [ ] [ ] [ ] /

.. .. .. .. .. [ ] ./ L ]
11 7 7 7 7 VA
/A,
2 T = 60 = [16 x 60/128] = 8




Challenges Faced by the Current Design

Challenge #2:

e Can deliver sub-optimal performance for
not considering non-perfect candidates.

s

o

Example ~
chedule (Loop Tiling):
for (int io = 0; io < [49/t]; ++io) {
for (int ii = 0; ii < &; ++ii) {
if (ioxt+ii <49) Alioxt+ii] = ...
¥ = 2,3, ... might be

t
¥ ‘t € {7} ‘ better candidates /

Operator Static Shape
Specification Description

\+

[Shape—Dependent Search Space]

[c

omplete Program
Cost Model

High-Performance
Program

30



