

DietCode: Automatic Code Generation for Dynamic Tensor Programs

Bojian Zheng^{*1, 2, 3}, Ziheng Jiang^{*4}, Cody Yu², Haichen Shen², Josh Fromm⁵, Yizhi Liu², Yida Wang², Luis Ceze^{5, 6}, Tiangi Chen^{5, 7}, Gennady Pekhimenko^{1, 2, 3}

* Equal Contribution

2

2

• Challenge #1:

• Hard to share schedules across different shapes of the same operator.

• Challenge #1:

• Hard to share schedules across different shapes of the same operator.

- Challenge #1:
 - Hard to share schedules across different shapes of the same operator.

Prohibitably expensive auto-scheduling time for dynamic-shape workloads.

• Challenge #2:

• Can deliver sub-optimal performance for not considering non-perfect candidates.

Observation: Performance overhead of if-checks is negligible with local padding (i.e., pad tensors locally by the size of local and/or shared memory variables).

DietCode: A New Auto-Scheduler Framework

- Key Idea #1: Shape-Generic Search Space
 - Composed of *micro-kernels*. Each does a tile of the entire compute.
 - A micro-kernel can be ported to *all* shapes of the same operator.
 - Sampled from *hardware* constraints instead of shape factors (i.e., shape-generic).

Example:

 $Y = XW^T X$: [1024, 768], W: [2304, 768] with micro-kernel dense_128x128, which evaluates

 $Y = XW^T X$: [128, 768], W: [128, 768]

- Key Idea #2: Micro-Kernel-based Cost Model
 - Observation: A cost model trained on one shape can be inaccurate on other shapes.
 - Compute throughputs exhibit predictable linear trend w.r.t. shape dimensions.
 - Decompose the cost model into: $f_{\rm MK} \cdot f_{\rm spatial}$

- Key Idea #2: **Micro-Kernel-based** Cost Model
 - Observation: A cost model trained on one shape can be inaccurate on other shapes.
 - Compute throughputs exhibit predictable linear trend w.r.t. shape dimensions.
 - Decompose the cost model into:
 - $f_{MK} \cdot f_{spatial}$
 - Trainable Micro-Kernel Cost

- Key Idea #2: **Micro-Kernel-based** Cost Model
 - Observation: A cost model trained on one shape can be inaccurate on other shapes.
 - Compute throughputs exhibit predictable linear trend w.r.t. shape dimensions.
 - Decompose the cost model into:
 - $f_{\rm MK} \cdot f_{\rm spatial}$
 - Trainable Micro-Kernel Cost
 - Analytical Spatial Generalization Cost (linear function)

- Supports dynamic-shape workloads with its new interface.
 - E.g., $Y = XW^T X$: [16×**T**, 768], W: [2304, 768], $T \in [1, 128]$

```
T, T_vals = tir.ShapeVar('T'), list(range(1, 128))
```

- Supports dynamic-shape workloads with its new interface.
 - E.g., $Y = XW^T X$: [16×**T**, 768], W: [2304, 768], $T \in [1, 128]$

```
T, T_vals = tir.ShapeVar('T'), list(range(1, 128))
```

• Define a dynamic shape variable T and its instances.

- Supports dynamic-shape workloads with its new interface.
 - E.g., $Y = XW^T X$: [16×**T**, 768], W: [2304, 768], $T \in [1, 128]$

```
T, T_vals = tir.ShapeVar('T'), list(range(1, 128))
```

- Define a dynamic shape variable *T* and its instances.
- Pass the variable and its instances to the workload function.

- Supports dynamic-shape workloads with its new interface.
 - E.g., $Y = XW^T X$: [16×**T**, 768], W: [2304, 768], $T \in [1, 128]$

```
T, T_vals = tir.ShapeVar('T'), list(range(1, 128))
```

- Define a dynamic shape variable *T* and its instances.
- Pass the variable and its instances to the workload function.
- [Optional] Assign weight to each shape instance.

Evaluation

Hardware: NVIDIA Tesla T4 GPU

Software: TVM + CUDA + cuDNN

Evaluation

Summary

- DietCode: An auto-scheduler for dynamic-shape workloads.
- Based on 2 key ideas:
 - (1) Shape-Generic Search Space and
 - (2) Micro-Kernel-based Cost Model
- Key Features:
 - Auto-Schedule Once and For All Shapes
 - Large reduction in the auto-scheduling time.
 - Better Performance
 - Up to 30.5% speedup than Ansor, up to 15.4% than Vendor.
- Working on integrating into the TVM main branch ...

DietCode: Automatic Code Generation for Dynamic Tensor Programs

Bojian Zheng^{*1, 2, 3}, Ziheng Jiang^{*4}, Cody Yu², Haichen Shen², Josh Fromm⁵, Yizhi Liu², Yida Wang², Luis Ceze^{5, 6}, Tiangi Chen^{5, 7}, Gennady Pekhimenko^{1, 2, 3}

* Equal Contribution

Backup

Scratchpad

- Key Idea #1: Shape-Generic Search Space
 - Composed of *micro-kernels*. Each does a tile of the entire compute.
 - A micro-kernel can be ported to *all* shapes of the same operator.
 - Sampled from *hardware* constraints instead of shape factors (i.e., shape-generic).

Example:

 $Y = XW^T X$: [16×**T**, 768], *W*: [2304, 768] with micro-kernel dense_128x128, which evaluates

 $Y = XW^T X$: [128, 768], W: [128, 768]

