
DietCode: Automatic Code Generation 
for Dynamic Tensor Programs

Bojian Zheng*1, 2, 3, Ziheng Jiang*4, Cody Yu2, Haichen Shen2, 
Josh Fromm5, Yizhi Liu2, Yida Wang2,

Luis Ceze5, 6, Tianqi Chen5, 7, Gennady Pekhimenko1, 2, 3

* Equal Contribution
1 2 3 4 5 6 7



Background: Current Auto-Scheduler Design

2



Background: Current Auto-Scheduler Design

2

An operator can 
have infinitely many
possible schedules

Compute:
for (int i = 0; i < 50; ++i) {
A[i] = ...

}

Example



Background: Current Auto-Scheduler Design

2

An operator can 
have infinitely many
possible schedules

Schedule:
for (int io = 0; io < 50/𝑡 ; ++io) {
for (int ii = 0; ii < 𝑡; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 50) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
} 𝑡 ∈ 2,∞ !

Example



2

Limit the candidates 
to perfect factors

Schedule:
for (int io = 0; io < 50/𝑡 ; ++io) {
for (int ii = 0; ii < 𝑡; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 50) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Schedule:
for (int io = 0; io < 50/𝑡 ; ++io) {
for (int ii = 0; ii < 𝑡; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 50) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
} 𝑡 ∈ 2, 5, 10, 25

Example

Background: Current Auto-Scheduler Design



Background: Current Auto-Scheduler Design

2

Schedulepredicts



Background: Current Auto-Scheduler Design

2



Background: Current Auto-Scheduler Design

2



Challenges Faced by the Current Design 

3

• Challenge #1:
• Hard to share schedules across different 

shapes of the same operator.

Schedule:
for (int io = 0; io < 𝟓𝟎/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

𝑡 ∈ 2, 5, 10, 25



Challenges Faced by the Current Design 

3

• Challenge #1:
• Hard to share schedules across different 

shapes of the same operator.

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

𝑡 ∈ 7 ⋂ 2, 5, 10, 25 = ∅



Challenges Faced by the Current Design 

• Challenge #1:
• Hard to share schedules across different 

shapes of the same operator.

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

𝑡 ∈ 7 ⋂ 2, 5, 10, 25 = ∅

3
Prohibitably expensive auto-scheduling 
time for dynamic-shape workloads.



Challenges Faced by the Current Design 

• Challenge #2:
• Can deliver sub-optimal performance for 

not considering non-perfect candidates.

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 49) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Schedule:
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 49) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

𝑡 ∈ 7 𝑡 = 2, 3, … might be 
better candidates

Observation: Performance overhead of if-checks is 
negligible with local padding (i.e., pad tensors locally by 
the size of local and/or shared memory variables). 4



DietCode: A New Auto-Scheduler Framework

5



DietCode: Key Ideas

• Key Idea #1: Shape-Generic
Search Space
• Composed of micro-kernels. Each 

does a tile of the entire compute.
• A micro-kernel can be ported to all

shapes of the same operator.
• Sampled from hardware

constraints instead of shape 
factors (i.e., shape-generic).

Example:
𝑌 = 𝑋𝑊! 𝑋: 1024, 768 ,𝑊: 2304, 768
with micro-kernel dense_128x128, 
which evaluates
𝑌 = 𝑋𝑊! 𝑋: 128, 768 ,𝑊: 128, 768

6



DietCode: Key Ideas

• Key Idea #2: Micro-Kernel-based
Cost Model
• Observation: A cost model trained 

on one shape can be inaccurate on 
other shapes.
• Compute throughputs exhibit 

predictable linear trend w.r.t. 
shape dimensions.
• Decompose the cost model into:

𝑓,- + 𝑓./01203

7



DietCode: Key Ideas

• Key Idea #2: Micro-Kernel-based
Cost Model
• Observation: A cost model trained 

on one shape can be inaccurate on 
other shapes. 
• Compute throughputs exhibit 

predictable linear trend w.r.t. 
shape dimensions.
• Decompose the cost model into:

𝑓,- + 𝑓./01203
• Trainable Micro-Kernel Cost

7



DietCode: Key Ideas

• Key Idea #2: Micro-Kernel-based
Cost Model
• Observation: A cost model trained 

on one shape can be inaccurate on 
other shapes. 
• Compute throughputs exhibit 

predictable linear trend w.r.t. 
shape dimensions.
• Decompose the cost model into:

𝑓,- + 𝑓./01203
• Trainable Micro-Kernel Cost
• Analytical Spatial Generalization Cost 

(linear function)
7



DietCode: A New Interface

• Supports dynamic-shape workloads with its new interface.
• E.g., 𝑌 = 𝑋𝑊4 𝑋: 16×𝐓, 768 ,𝑊: 2304, 768 , 𝑇 ∈ 1, 128

T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16*T, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)
)

8



DietCode: A New Interface

• Supports dynamic-shape workloads with its new interface.
• E.g., 𝑌 = 𝑋𝑊4 𝑋: 16×𝐓, 768 ,𝑊: 2304, 768 , 𝑇 ∈ 1, 128

T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16*T, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)
)

• Define a dynamic shape variable 𝑇 and its instances.

8



DietCode: A New Interface

• Supports dynamic-shape workloads with its new interface.
• E.g., 𝑌 = 𝑋𝑊4 𝑋: 16×𝐓, 768 ,𝑊: 2304, 768 , 𝑇 ∈ 1, 128

T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16*T, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)
)

• Define a dynamic shape variable 𝑇 and its instances.
• Pass the variable and its instances to the workload function.

8



DietCode: A New Interface

• Supports dynamic-shape workloads with its new interface.
• E.g., 𝑌 = 𝑋𝑊4 𝑋: 16×𝐓, 768 ,𝑊: 2304, 768 , 𝑇 ∈ 1, 128

T, T_vals = tir.ShapeVar('T’), list(range(1, 128))

task = SearchTask(func=Dense, args=(16*T, 768, 2304),
shape_vars=(T,), wkl_insts=(T_vals,)
wkl_inst_weights=([1. for _ in T_vals],)
)

• Define a dynamic shape variable 𝑇 and its instances.
• Pass the variable and its instances to the workload function.
• [Optional] Assign weight to each shape instance.

8



Evaluation

Hardware: NVIDIA Tesla T4 GPU Software: TVM + CUDA + cuDNN

9

v11.3 v8.3

v0.8.dev0



Evaluation

10

Be
tt

er

Performance: 30.5% better than Ansor; 5.3% better than Vendor
Auto-Scheduling Time: 5.6× less than Ansor 



Evaluation

11

Be
tt

er

24.2% better than Ansor; 15.4% better than Vendor

What about multiple 
dynamic axes? 



Summary

• DietCode: An auto-scheduler for dynamic-shape workloads.
• Based on 2 key ideas:

(1) Shape-Generic Search Space and
(2) Micro-Kernel-based Cost Model

• Key Features:
• Auto-Schedule Once and For All Shapes
• Large reduction in the auto-scheduling time.

• Better Performance
• Up to 30.5% speedup than Ansor, up to 15.4% than Vendor.

• Working on integrating into the TVM main branch …

11



DietCode: Automatic Code Generation 
for Dynamic Tensor Programs

Bojian Zheng*1, 2, 3, Ziheng Jiang*4, Cody Yu2, Haichen Shen2, 
Josh Fromm5, Yizhi Liu2, Yida Wang2,

Luis Ceze5, 6, Tianqi Chen5, 7, Gennady Pekhimenko1, 2, 3

* Equal Contribution
1 2 3 4 5 6 7



Backup

27



Scratchpad

28



DietCode: Key Ideas

• Key Idea #1: Shape-Generic
Search Space
• Composed of micro-kernels. Each 

does a tile of the entire compute.
• A micro-kernel can be ported to all

shapes of the same operator.
• Sampled from hardware

constraints instead of shape 
factors (i.e., shape-generic).

Example:
𝑌 = 𝑋𝑊! 𝑋: 16×𝐓, 768 ,𝑊: 2304, 768
with micro-kernel dense_128x128, 
which evaluates
𝑌 = 𝑋𝑊! 𝑋: 128, 768 ,𝑊: 128, 768

6



Challenges Faced by the Current Design 

30

• Challenge #2:
• Can deliver sub-optimal performance for 

not considering non-perfect candidates.

Schedule (Loop Tiling):
for (int io = 0; io < 𝟒𝟗/𝑡 ; ++io) {
for (int ii = 0; ii < 𝒕; ++ii) {
if (𝑖𝑜×𝑡 + 𝑖𝑖 < 49) A[𝑖𝑜×𝑡 + 𝑖𝑖] = ...

}
}

Example

𝑡 ∈ 7 𝑡 = 2, 3, … might be 
better candidates


