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Executive Summary

• Challenges posed by dynamic-shape workloads:
• Vendor Libraries: Hard to be Engineered for Efficiency
• Existing Auto-Schedulers: Long Compilation Time (days for a single operator)

•DietCode addresses the challenges with
① shape-generic search space
② micro-kernel-based cost model.

• Key Results:
• Compilation Time: 𝟓. 𝟖𝟖× saving vs. Ansor.
• Performance: Up to 𝟏. 𝟕𝟎× better vs. Ansor and 𝟏. 𝟏𝟗× vs. the vendor library 

on modern GPUs.
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Background: ML Framework Stack
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Application
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Dispatcher
Built-in Kernel 2

Built-in Kernel 1

• Challenges
• Performance of built-in kernels 

can be suboptimal on the given 
shapes or hardware[4, 5, 6, 7, 8, 9, …].
• Huge engineering efforts and 

expertise required to tune for 
specific use cases.
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Search Candidate: tile size 𝑡

Loop Tiling Schedule:
for (int io = 0; io < 50/$ ; ++io) {
for (int ii = 0; ii < $; ++ii) {
if (%&×$ + %% < 50) A[%&×$ + %%] = ...

}
}

2. Complete Program Cost Model
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(using tile size 𝑡!)

Challenges from Dynamic-Shape Workloads

8

Operator Shape Description Frontend

Auto-Scheduler

Hardware

Shape-Dependent Search Space

Complete-Program
Cost Model

Program 2 

Measure

Train

Program 1

Sample



• Cannot efficiently handle 
dynamic-shape operators, 
common in

Challenges from Dynamic-Shape Workloads

8



• Cannot efficiently handle 
dynamic-shape operators, 
common in

whose input sentences/audios 
have dynamic lengths.

Translation[1] Speech Recognition[2]

Sentiment
Analysis[3]

Text Auto-Complete
[4]

Challenges from Dynamic-Shape Workloads
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Challenges from Dynamic-Shape Workloads

• Cannot efficiently handle 
dynamic-shape operators, 
due to
• Humongous Search Space
• Inaccurate Performance Prediction

•DietCode’s Key Ideas:
• Shape-Generic Search Space
• Micro-Kernel-based 

Cost Model
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Challenge #1. Humongous Search Space

• Hard to share search 
space between operators
of different shapes.
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Challenge #1. Humongous Search Space

• Hard to share search 
space between operators
of different shapes.
• ⋂search space: Tiny
• ⋃search space: Humongous
⇒ Huge Compilation Time
(days for a single operator)
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Key Idea #1. Shape-Generic Search Space

• Composed of micro-
kernels, each 
• Does a tile of the entire compute.
• Sampled uniformly from maximum 

shapes and constrained by 
hardware parameters.
• Can be ported to all shapes of 

the same operator.
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Challenge #2. Inaccurate Performance Prediction

• Cost model trained on 
one shape can be
inaccurate on others.
• E.g., Performance of 𝑌 = 𝑋𝑊)

𝑋: 16×𝑻, 768 ,𝑊: 2304, 768 w.r.t. 𝑻 on 
a NVIDIA Tesla T4 GPU[1], all 
sharing the same micro-kernel.
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Key Idea #2. Micro-Kernel-based Cost Model

• Key Observation: 
Performance scales 
proportionally with hardware 
core occupancy.

𝑓!"#$%&'$(') " 𝑓*'(+),-
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Key Idea #2. Micro-Kernel-based Cost Model

• Key Observation: 
Performance scales 
proportionally with hardware 
core occupancy.

𝑓!"#$%&'$(') " 𝑓*'(+),-
• More Accurate Predictions

12

Micro-Kernel-based
Cost Model
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Future Directions

• We are working on upstreaming DietCode to the TVM main branch:
https://github.com/apache/tvm-rfcs/pull/72, together with 
improvement of the tuning algorithms.

Many thanks to the                  community!

• Evaluations on more hardware platforms (CPUs and NVIDIA GPUs 
using tensor core operations) 
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Conclusion

• Challenges posed by dynamic-shape workloads:
• Vendor Libraries: Hard to be Engineered for Efficiency
• Existing Auto-Schedulers: Long Compilation Time

•DietCode addresses the challenges with
① shape-generic search space
② micro-kernel-based cost model.

• Key Results:
• Compilation Time: 𝟓. 𝟖𝟖× saving vs. Ansor.
• Performance: Up to 𝟏. 𝟕𝟎× better vs. Ansor and 𝟏. 𝟏𝟗× vs. the vendor library 

on modern GPUs.
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Optimization Strategy

• Objective: End-to-End Latency

• All workloads have “optimization priority” as
FLOPs × weight (user-defined, 1 by default)

• Consequently, workloads with higher FLOPs will be given more 
attention compared with smaller ones.
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NVIDIA RTX 3090[1] Preliminary Results

Micro-Kernel-based Cost Model Performance
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[2] L. Zheng et al. Ansor. OSDI 2020

Up to 𝟏. 𝟓𝟐×/𝟏. 𝟐𝟔× better than Ansor/Vendor
(𝟏. 𝟏𝟔×/𝟏. 𝟏𝟏× on average).   
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Conv2D

• NCHW is usually implemented using the Winograd algorithm, which is 
in essence batched matrix multiplies.
• NHWC: 
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Up to 𝟏. 𝟏𝟏×/𝟐. 𝟎𝟏× better than Ansor/Vendor (𝟏. 𝟎𝟐×/𝟏. 𝟖𝟎× on average).   
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vs. Nimble

• Focuses on the runtime system for dynamic-shape workloads, with 
one section (i.e., Section 3.5) discussing about the code generation.
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Nimble cannot cover all shapes efficiently.

[1] H. Shen, J. Roesch et al. Nimble. MLSys 2021
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Local Padding vs. Loop Partitioning

• Common:
• Key Observation: Out-of-boundary checks in the compute stage are what 

negatively affect performance the most.
• Performance difference is usually less than 5%.
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Local Padding vs. Loop Partitioning

Local Padding

• Key Idea: Pads tensors by the 
size of the local workspace when 
loading from the off-chip device 
memory.

(-) Redundant computations

Loop Partitioning

• Key Idea: Partition the regions 
that have predicates and regions 
that do not.

(-) Cannot remove overheads in 
some pathological cases.

(-) Cannot support compute 
intrinsics such as the tensor core 
operations.
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