

DietGode: Automatic Code Generation for Dynamic Tensor Programs

Bojian Zheng^{1, 2, 3 *}, Ziheng Jiang^{4 *}, Cody Yu², Haichen Shen², Josh Fromm⁵, Yizhi Liu², Yida Wang², Luis Ceze^{5, 6}, Tianqi Chen^{5, 7}, Gennady Pekhimenko^{1, 2, 3}

* Equal Contributions

Executive Summary

- Challenges posed by <u>dynamic-shape</u> workloads:
 - Vendor Libraries: Hard to be Engineered for Efficiency
 - Existing Auto-Schedulers: Long Compilation Time (days for a single operator)
- *DietGode* addresses the challenges with

shape-generic search space
 micro-kernel-based cost model.

- Key Results:
 - Compilation Time: **5**. **88**× saving vs. Ansor.
 - Performance: Up to 1.70× better vs. Ansor and 1.19× vs. the vendor library on modern GPUs.

Background: ML Framework Stack

[1] J. Guo et al. GluonCV and GluonNLP. JMLR 2020

[2] https://translate.google.com/

[3] https://github.com/NVIDIA/NeMo

[4] M. Abadi et al. *TensorFlow*. OSDI 2016
[5] A. Paszke et al. *PyTorch*. NeurIPS 2019
[6] https://github.com/google/jax

Background: ML Framework Stack

[4] M. Abadi et al. *TensorFlow*. OSDI 2016[5] A. Paszke et al. *PyTorch*. NeurIPS 2019[6] https://github.com/google/jax

[7] https://netron.app/

[1] https://developer.nvidia.com/cublas [2] https://developer.nvidia.com/cudnn

[2] https://developer.nvidia.com/cudnn [3] https://www.nvidia.com/en-us/data-center/tesla-t4/

- Challenges
 - Performance of built-in kernels can be **suboptimal** on the given shapes or hardware^[4, 5, 6, 7, 8, 9, ...].
 - Huge engineering efforts and expertise required to tune for specific use cases.

- [1] https://developer.nvidia.com/cublas
- [2] https://developer.nvidia.com/cudnn
- [3] https://www.nvidia.com/en-us/data-center/tesla-t4/
- [4] T. Chen et al. *TVI*. OSDI 2018
- [5] N. Vasilache et al. Tensor Comprehensions. TACO 2019
- [6] L. Zheng et al. Ansor. OSDI 2020
- [7] F. Yu et al. Towards Latency-aware DNN Optimization with GPU Runtime Analysis and Tail Effect Elimination. arXiv 2020
- [8] S. Feng, B. Hou et al. TensorIR. arXiv 2022
- [9] https://tvm.apache.org/2018/03/23/nmt-transformer-optimize

[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019

[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019

[3] L. Zheng et al. Ansor. OSDI 2020

Hardware

[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019

[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019

[3] L. Zheng et al. Ansor. OSDI 2020

[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019

[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019

[3] L. Zheng et al. Ansor. OSDI 2020

[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019

[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019

[3] L. Zheng et al. Ansor. OSDI 2020

[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019

[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019

[3] L. Zheng et al. Ansor. OSDI 2020

1. Shape-Dependent Search Space

1. Shape-Dependent Search Space

1. Shape-Dependent Search Space

2. Complete Program Cost Model

 Cannot efficiently handle dynamic-shape operators, common in

 Cannot efficiently handle dynamic-shape operators, due to Humongous Search Space Inaccurate Performance Prediction • *DietGode*'s Key Ideas: Shape-Generic Search Space Micro-Kernel-based **Cost Model**

Challenge #1. Humongous Search Space

• Hard to share search space between operators of different shapes.

9

Challenge #1. Humongous Search Space

- Hard to share search space between operators of different shapes.
 - \cap search space: Tiny
 - U search space: Humongous

9

Challenge #1. Humongous Search Space

- Hard to share search space between operators of different shapes.
 - \cap search space: Tiny
 - U search space: Humongous
 ⇒ Huge Compilation Time (days for a single operator)

Key Idea #1. Shape-Generic Search Space

Shape Description 1 • Composed of microkernels, each • Does a tile of the entire compute. **Shape-Generic** Search Space Sampled uniformly from maximum Sample shapes and constrained by **Micro-Kernel 2** hardware parameters. **Micro-Kernel** 1 • Can be ported to all shapes of the same operator.

Challenge #2. Inaccurate Performance Prediction

Challenge #2. Inaccurate Performance Prediction

• Key Observation: Performance scales proportionally with hardware core occupancy. $f_{\text{MicroKernel}} \cdot f_{\text{Penalty}}$ Trainable function for **Micro-Kernel-based** peak prediction **Cost Model** Compute Throughput (TFLOPS) 95 122 14 41 68 12 Shape Dimension T

• Key Observation: Performance scales proportionally with hardware core occupancy. $f_{\text{MicroKernel}} \cdot f_{\text{Penalty}}$ Analytical linear function **Micro-Kernel-based** of the core occupancy **Cost Model** Compute Throughput (TFLOPS) 95 122 14 41 68 12 Shape Dimension T

• Key Observation: Performance scales proportionally with hardware core occupancy. $f_{\text{MicroKernel}} \cdot f_{\text{Penalty}}$ More Accurate Predictions **Micro-Kernel-based Cost Model** Compute Throughput (TFLOPS) **Real Measurements** Micro-Kernel-based Cost Model 68 122 14 41 95 12 Shape Dimension T

DietGode System Overview

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

[6] J. Devlin et al. BERT. NAACL-HTL 2019

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

Compilation Time

 Ansor: Time estimated to be more than 1 week for only key operators.

- Ansor: Time estimated to be more than 1 week for only key operators.
- *DietGode* reduces the compilation time by **5**. **88**× vs. Ansor

- Ansor: Time estimated to be more than 1 week for only key operators.
- DietGode reduces the compilation time by 5.88× vs. Ansor, as it only needs to compile once for all shapes.
 - 16× increase in compilation time

- Ansor: Time estimated to be more than 1 week for only key operators.
- DietGode reduces the compilation time by 5.88× vs. Ansor, as it only needs to compile once for all shapes.

• 16×-increase in compilation time

Future Directions

• We are working on upstreaming *DietGode* to the TVM main branch: <u>https://github.com/apache/tvm-rfcs/pull/72</u>, together with improvement of the tuning algorithms.

Many thanks to the

• Evaluations on more hardware platforms (CPUs and NVIDIA GPUs using tensor core operations)

[1] https://www.nvidia.com/enus/data-center/tensor-cores/

Future Directions

• We are working on upstreaming *DietGode* to the TVM main branch: <u>https://github.com/apache/tvm-rfcs/pull/72</u>, together with improvement of the tuning algorithms.

community!

 Evaluations on more hardware platforms (CPUs and NVIDIA GPUs using tensor core operations) and workloads.

Many thanks to the

Speech Recognition^[2]

Object Detection^[3]

 https://www.nvidia.com/enus/data-center/tensor-cores/
 https://github.com/NVIDIA/NeMo
 K. He et al. Mask R-CNN. ICCV 2017

Conclusion

- Challenges posed by <u>dynamic-shape</u> workloads:
 - Vendor Libraries: Hard to be Engineered for Efficiency
 - Existing Auto-Schedulers: Long Compilation Time
- *DietGode* addresses the challenges with

shape-generic search space
 micro-kernel-based cost model.

- Key Results:
 - Compilation Time: **5**. **88**× saving vs. Ansor.
 - Performance: Up to 1.70× better vs. Ansor and 1.19× vs. the vendor library on modern GPUs.

DietGode: Automatic Code Generation for Dynamic Tensor Programs

Bojian Zheng^{1, 2, 3 *}, Ziheng Jiang^{4 *}, Cody Yu², Haichen Shen², Josh Fromm⁵, Yizhi Liu², Yida Wang², Luis Ceze^{5, 6}, Tianqi Chen^{5, 7}, Gennady Pekhimenko^{1, 2, 3}

* Equal Contributions

Optimization Strategy

- Objective: End-to-End Latency
- All workloads have "optimization priority" as FLOPs \times weight (user-defined, 1 by default)
- Consequently, workloads with higher FLOPs will be given more attention compared with smaller ones.

NVIDIA RTX 3090^[1] Preliminary Results

Micro-Kernel-based Cost Model

Performance

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/[2] L. Zheng et al. *Ansor*. OSDI 2020

Conv2D

• NCHW is usually implemented using the Winograd algorithm, which is in essence batched matrix multiplies.

• NHWC:

Up to $1.11 \times / 2.01 \times$ better than Ansor/Vendor ($1.02 \times / 1.80 \times$ on average). 55

vs. Nimble

• Focuses on the **runtime system** for dynamic-shape workloads, with one section (i.e., Section 3.5) discussing about the code generation.

Local Padding vs. Loop Partitioning

- Common:
 - Key Observation: Out-of-boundary checks in the <u>compute</u> stage are what negatively affect performance the most.
 - Performance difference is usually less than 5%.

Local Padding vs. Loop Partitioning

Local Padding

- Key Idea: Pads tensors by the size of the local workspace when loading from the off-chip device memory.
- (-) Redundant computations

Loop Partitioning

- Key Idea: Partition the regions that have predicates and regions that do not.
- (-) Cannot remove overheads in some pathological cases.
- (-) Cannot support compute intrinsics such as the tensor core operations.