
DietCode: Automatic Code Generation for
Dynamic Tensor Programs

Bojian Zheng1, 2, 3 *, Ziheng Jiang4 *, Cody Yu2, Haichen Shen2,
Josh Fromm5, Yizhi Liu2, Yida Wang2,

Luis Ceze5, 6, Tianqi Chen5, 7, Gennady Pekhimenko1, 2, 3

* Equal Contributions
1 2 3 4 5 6 7

Executive Summary

• Challenges posed by dynamic-shape workloads:
• Vendor Libraries: Hard to be Engineered for Efficiency
• Existing Auto-Schedulers: Long Compilation Time (days for a single operator)

•DietCode addresses the challenges with
① shape-generic search space
② micro-kernel-based cost model.

• Key Results:
• Compilation Time: 𝟓. 𝟖𝟖× saving vs. Ansor.
• Performance: Up to 𝟏. 𝟕𝟎× better vs. Ansor and 𝟏. 𝟏𝟗× vs. the vendor library

on modern GPUs.

2

Framework

[4] [5] [6]

Background: ML Framework Stack

3

Image Classification[1] Machine Translation[2] Speech Recognition[3]

Application

[4] M. Abadi et al. TensorFlow. OSDI 2016
[5] A. Paszke et al. PyTorch. NeurIPS 2019
[6] https://github.com/google/jax

[1] J. Guo et al. GluonCV and GluonNLP. JMLR 2020
[2] https://translate.google.com/
[3] https://github.com/NVIDIA/NeMo

Framework

[4] [5] [6]

Background: ML Framework Stack

3
[4] M. Abadi et al. TensorFlow. OSDI 2016
[5] A. Paszke et al. PyTorch. NeurIPS 2019
[6] https://github.com/google/jax

Interpretation: Graph of Operators[7]

[7] https://netron.app/

Vendor Libraries

cuBLAS[1]

[2]

Background: Vendor Libraries

Operator
(Matrix Multiply)

Invoke

Hardware
NVIDIA GPU[3]

Dispatcher
Built-in Kernel 2

Built-in Kernel 1

4
[1] https://developer.nvidia.com/cublas
[2] https://developer.nvidia.com/cudnn
[3] https://www.nvidia.com/en-us/data-center/tesla-t4/

Vendor Libraries

cuBLAS[1]

[2]

Background: Vendor Libraries

Operator
(Matrix Multiply)

Invoke

Hardware
NVIDIA GPU[3]

Dispatcher
Built-in Kernel 2

Built-in Kernel 1

4
[1] https://developer.nvidia.com/cublas
[2] https://developer.nvidia.com/cudnn
[3] https://www.nvidia.com/en-us/data-center/tesla-t4/

Vendor Libraries

cuBLAS[1]

[2]

Background: Vendor Libraries

Operator
(Matrix Multiply)

Invoke

Hardware
NVIDIA GPU[3]

Dispatcher
Built-in Kernel 2

Built-in Kernel 1

4
[1] https://developer.nvidia.com/cublas
[2] https://developer.nvidia.com/cudnn
[3] https://www.nvidia.com/en-us/data-center/tesla-t4/

Vendor Libraries

cuBLAS[1]

[2]

Background: Vendor Libraries

Hardware
NVIDIA GPU[3]

[1] https://developer.nvidia.com/cublas
[2] https://developer.nvidia.com/cudnn
[3] https://www.nvidia.com/en-us/data-center/tesla-t4/
[4] T. Chen et al. TVM. OSDI 2018
[5] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[6] L. Zheng et al. Ansor. OSDI 2020
[7] F. Yu et al. Towards Latency-aware DNN Optimization with GPU Runtime

Analysis and Tail Effect Elimination. arXiv 2020
[8] S. Feng, B. Hou et al. TensorIR. arXiv 2022
[9] https://tvm.apache.org/2018/03/23/nmt-transformer-optimize

Dispatcher
Built-in Kernel 2

Built-in Kernel 1

• Challenges
• Performance of built-in kernels

can be suboptimal on the given
shapes or hardware[4, 5, 6, 7, 8, 9, …].
• Huge engineering efforts and

expertise required to tune for
specific use cases.

4

Schedule
(i.e., Implementation)

Background: Auto-Scheduler

• Objective:

5
[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019
[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[3] L. Zheng et al. Ansor. OSDI 2020
[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

Operator Shape Description Frontend

Auto-Scheduler

Hardware

Automatically Generate

[1, 2, 3, 4]

Background: Auto-Scheduler

5
[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019
[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[3] L. Zheng et al. Ansor. OSDI 2020
[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

Operator Shape Description

Search Space

High-Performance Schedule

Frontend

Auto-Scheduler

Hardware

Schedule
(i.e., Implementation)

[1, 2, 3, 4]

Background: Auto-Scheduler

5
[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019
[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[3] L. Zheng et al. Ansor. OSDI 2020
[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

Operator

E.g.,
Operator:

for (int i = 0; i < 50; ++i) {
A[i] = ...

}

Frontend

Auto-Scheduler

Hardware

Shape Description

[1, 2, 3, 4]

Operator:
for (int i = 0; i < 50; ++i) {
A[i] = ...

}

Loop Tiling Schedule:
for (int io = 0; io < 50/$; ++io) {
for (int ii = 0; ii < $; ++ii) {
if (%&×$ + %% < 50) A[%&×$ + %%] = ...

}
}

Background: Auto-Scheduler

5
[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019
[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[3] L. Zheng et al. Ansor. OSDI 2020
[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

Operator

E.g.,

Shape Description Frontend

Auto-Scheduler

Hardware

Search Candidate: tile size 𝑡

[1, 2, 3, 4]

Loop Tiling Schedule:
for (int io = 0; io < 50/$; ++io) {
for (int ii = 0; ii < $; ++ii) {
if (%&×$ + %% < 50) A[%&×$ + %%] = ...

}
}

Background: Auto-Scheduler

5
[1] A. Adams et al. Halide Auto-Scheduler. SIGGRAPH 2019
[2] N. Vasilache et al. Tensor Comprehensions. TACO 2019
[3] L. Zheng et al. Ansor. OSDI 2020
[4] S. Feng, B. Hou et al. TensorIR. arXiv 2022

Operator

E.g.,

Shape Description Frontend

Auto-Scheduler

Hardware

Search Candidate: tile size 𝑡 ∈ 𝟐,∞Search Candidate: tile size 𝑡
Search Techniques:
1. Shape-Dependent Search Space
2. Complete Program Cost Model

[1, 2, 3, 4]

Loop Tiling Schedule:
for (int io = 0; io < 50/$; ++io) {
for (int ii = 0; ii < $; ++ii) {
if (%&×$ + %% < 50) A[%&×$ + %%] = ...

}
}

1. Shape-Dependent Search Space

6

Operator Shape Description Frontend

Auto-Scheduler

Hardware

Search Candidate: tile size 𝑡 ∈ 𝟐,∞

Shape-Dependent Search Space

Loop Tiling Schedule:
for (int io = 0; io < 50/$; ++io) {
for (int ii = 0; ii < $; ++ii) {
if (%&×$ + %% < 50) A[%&×$ + %%] = ...

}
}

1. Shape-Dependent Search Space

6

Operator Shape Description Frontend

Auto-Scheduler

Hardware

Search Candidate: tile size 𝑡 ∈ 𝟐,∞

Shape-Dependent Search Space
Circumscribes

Search Candidate: tile size 𝑡Search Candidate: tile size 𝑡 ∈ 𝟐,∞

Loop Tiling Schedule:
for (int io = 0; io < 50/$; ++io) {
for (int ii = 0; ii < $; ++ii) {
if (%&×$ + %% < 50) A[%&×$ + %%] = ...

}
}

1. Shape-Dependent Search Space

6

Operator Shape Description Frontend

Auto-Scheduler

Hardware

Search Candidate: tile size 𝑡 ∈ 𝟐,∞ 𝟐, 𝟓, 𝟏𝟎, 𝟐𝟓

Shape-Dependent Search Space
Circumscribes

Search Candidate: tile size 𝑡

Loop Tiling Schedule:
for (int io = 0; io < 50/$; ++io) {
for (int ii = 0; ii < $; ++ii) {
if (%&×$ + %% < 50) A[%&×$ + %%] = ...

}
}

2. Complete Program Cost Model

7

Operator Shape Description Frontend

Auto-Scheduler

Hardware

Shape-Dependent Search Space

Complete-Program
Cost Model

Performance = Predictor Complete Program 𝑃 tile size 𝑡
Program 2

Program 1
(using tile size 𝑡!)

Measure

Train

Sample

Program 1
(using tile size 𝑡!)

Challenges from Dynamic-Shape Workloads

8

Operator Shape Description Frontend

Auto-Scheduler

Hardware

Shape-Dependent Search Space

Complete-Program
Cost Model

Program 2

Measure

Train

Program 1

Sample

• Cannot efficiently handle
dynamic-shape operators,
common in

Challenges from Dynamic-Shape Workloads

8

• Cannot efficiently handle
dynamic-shape operators,
common in

whose input sentences/audios
have dynamic lengths.

Translation[1] Speech Recognition[2]

Sentiment
Analysis[3]

Text Auto-Complete
[4]

Challenges from Dynamic-Shape Workloads

8
[1] https://translate.google.com/
[2] https://github.com/NVIDIA/NeMo
[3] J. Devlin et al. BERT. NAACL-HTL 2019
[4] A. Radford et al. GPT-2. 2019

Challenges from Dynamic-Shape Workloads

• Cannot efficiently handle
dynamic-shape operators,
due to
• Humongous Search Space
• Inaccurate Performance Prediction

•DietCode’s Key Ideas:
• Shape-Generic Search Space
• Micro-Kernel-based

Cost Model

8

Challenge #1. Humongous Search Space

• Hard to share search
space between operators
of different shapes.

9

Shape Description

Shape-Dependent Search Space

Shape Description 1

Shape 1’s Search Space

Shape Description 1

Shape 1’s Search Space

Challenge #1. Humongous Search Space

• Hard to share search
space between operators
of different shapes.
• ⋂search space: Tiny
• ⋃search space: Humongous

9

Shape Description 1

Shape 1’s Search Space

Challenge #1. Humongous Search Space

• Hard to share search
space between operators
of different shapes.
• ⋂search space: Tiny
• ⋃search space: Humongous
⇒ Huge Compilation Time
(days for a single operator)

9

Shape Description 1

Shape 1’s Search Space

Shape Description 1

Shape 1’s Search Space

Shape Description 1

Shape 1’s Search Space

Key Idea #1. Shape-Generic Search Space

• Composed of micro-
kernels, each
• Does a tile of the entire compute.
• Sampled uniformly from maximum

shapes and constrained by
hardware parameters.
• Can be ported to all shapes of

the same operator.

10

Shape Description 1Shape Description 1

Micro-Kernel 2
Sample

Micro-Kernel 1

Shape Description 1

Shape-Generic Search Space

Challenge #2. Inaccurate Performance Prediction

• Cost model trained on
one shape can be
inaccurate on others.
• E.g., Performance of 𝑌 = 𝑋𝑊)

𝑋: 16×𝑻, 768 ,𝑊: 2304, 768 w.r.t. 𝑻 on
a NVIDIA Tesla T4 GPU[1], all
sharing the same micro-kernel.

11
[1] https://www.nvidia.com/en-us/data-center/tesla-t4/

Complete-Program
Cost Model

Challenge #2. Inaccurate Performance Prediction

• Cost model trained on
one shape can be
inaccurate on others.
• E.g., Performance of 𝑌 = 𝑋𝑊)

𝑋: 16×𝑻, 768 ,𝑊: 2304, 768 w.r.t. 𝑻 on
a NVIDIA Tesla T4 GPU[1], all
sharing the same micro-kernel.

11
[1] https://www.nvidia.com/en-us/data-center/tesla-t4/
[2] L. Zheng et al. Ansor. OSDI 2020

Cost model trained here

Complete-Program
Cost Model

🙁 Predictions are inaccurate
on other shapes.

[2]

Key Idea #2. Micro-Kernel-based Cost Model

• Key Observation:
Performance scales
proportionally with hardware
core occupancy.

𝑓!"#$%&'$(') " 𝑓*'(+),-

12

Micro-Kernel-based
Cost Model

Key Idea #2. Micro-Kernel-based Cost Model

• Key Observation:
Performance scales
proportionally with hardware
core occupancy.

𝑓!"#$%&'$(') " 𝑓*'(+),-

12

Trainable function for
peak prediction Micro-Kernel-based

Cost Model

Key Idea #2. Micro-Kernel-based Cost Model

• Key Observation:
Performance scales
proportionally with hardware
core occupancy.

𝑓!"#$%&'$(') " 𝑓*'(+),-

12

Analytical linear function
of the core occupancy Micro-Kernel-based

Cost Model

Key Idea #2. Micro-Kernel-based Cost Model

• Key Observation:
Performance scales
proportionally with hardware
core occupancy.

𝑓!"#$%&'$(') " 𝑓*'(+),-
• More Accurate Predictions

12

Micro-Kernel-based
Cost Model

Shape Description 1Shape Description 1Shape Description 1

Shape-Generic Search Space

Program 1
(using tile size 𝑡!)

DietCode System Overview

13

Operator Frontend

DietCode

Hardware

Micro-Kernel-based
Cost Model

Micro-Kernel 2

Measure

Train

Micro-Kernel 1

SampleHow is DietCode
performing on real

workloads?

Evaluation

Hardware

14

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/
[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

NVIDIA Tesla T4 GPU[1] NVIDIA RTX 3090 GPU[2]

Evaluation

Hardware

Software

14

TVM[3] v0.8.dev0 v11.3 v8.3
[4] [5]

[3] T. Chen et al. TVM. OSDI 2018
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/
[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

NVIDIA Tesla T4 GPU[1] NVIDIA RTX 3090 GPU[2]

Evaluation

Hardware

Software

Application

14

TVM[3] v0.8.dev0 v11.3 v8.3

Dynamic sequence lengths uniformly
sampled within the range 1, 128

[4] [5]

[6]

[3] T. Chen et al. TVM. OSDI 2018
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] J. Devlin et al. BERT. NAACL-HTL 2019

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/
[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

NVIDIA Tesla T4 GPU[1] NVIDIA RTX 3090 GPU[2]

Evaluation

Hardware

Software

Application

Baselines

14

TVM[3] v0.8.dev0 v11.3 v8.3

Dynamic sequence lengths uniformly
sampled within the range 1, 128

[4] [5]

[6]

with the Vendor Library

’s Auto-Scheduler Ansor[8]

[7]

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/
[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

[3] T. Chen et al. TVM. OSDI 2018
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] J. Devlin et al. BERT. NAACL-HTL 2019
[7] A. Paszke et al. PyTorch. NeurIPS 2019
[8] L. Zheng et al. Ansor. OSDI 2020

NVIDIA Tesla T4 GPU[1] NVIDIA RTX 3090 GPU[2]

Evaluation

Hardware

Software

Application

Baselines

14

TVM[3] v0.8.dev0 v11.3 v8.3

Dynamic sequence lengths uniformly
sampled within the range 1, 128

[4] [5]

[6]

with the Vendor Library

’s Auto-Scheduler Ansor[8]

[7]

[1] https://www.nvidia.com/en-us/data-center/tesla-t4/
[2] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/

[3] T. Chen et al. TVM. OSDI 2018
[4] https://docs.nvidia.com/cuda/archive/11.3.0/
[5] https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

[6] J. Devlin et al. BERT. NAACL-HTL 2019
[7] A. Paszke et al. PyTorch. NeurIPS 2019
[8] L. Zheng et al. Ansor. OSDI 2020

NVIDIA Tesla T4 GPU[1]

Compilation Time vs. Ansor

15

Be
tt

er

DietCode

Compilation Time

• Ansor: Time estimated to be
more than 1 week for only key
operators.

15

Be
tt

er (Projected)

𝟏𝟔× if all sequence lengths are compiled
(rather than the 8 sampled ones)

Compilation Time vs. Ansor

• Ansor: Time estimated to be
more than 1 week for only key
operators.
•DietCode reduces the

compilation time by 𝟓. 𝟖𝟖× vs.
Ansor

15

Be
tt

er

DietCode

Compilation Time vs. Ansor

• Ansor: Time estimated to be
more than 1 week for only key
operators.
•DietCode reduces the

compilation time by 𝟓. 𝟖𝟖× vs.
Ansor, as it only needs to
compile once for all shapes.
• 16× increase in compilation time

15

Be
tt

er

DietCode

Compilation Time vs. Ansor

• Ansor: Time estimated to be
more than 1 week for only key
operators.
•DietCode reduces the

compilation time by 𝟓. 𝟖𝟖× vs.
Ansor, as it only needs to
compile once for all shapes.
• 16× increase in compilation time

15

Be
tt

er

DietCode

Latency vs. Vendor/Ansor

16

DietCode

Latency vs. Vendor/Ansor

16

Be
tt

er

Uniformly sampled and includes composite and prime numbers.

Latency vs. Vendor/Ansor

16

Be
tt

er

DietCode

√ Up to 𝟏. 𝟕𝟎×/𝟏. 𝟏𝟗× better than Ansor/Vendor.

Latency vs. Vendor/Ansor

16

Be
tt

er

DietCode

√ Up to 𝟏. 𝟕𝟎×/𝟏. 𝟏𝟗× better than Ansor/Vendor.
√ 𝟏. 𝟑𝟎×/𝟏. 𝟎𝟓× on average.

Latency vs. Vendor/Ansor

16

Be
tt

er

DietCode

Contributed by
√ Up to 𝟏. 𝟕𝟎×/𝟏. 𝟏𝟗× better than Ansor/Vendor.
√ 𝟏. 𝟑𝟎×/𝟏. 𝟎𝟓× on average.

Shape Description 1Shape Description 1

Micro-Kernel 2
Sample

Micro-Kernel 1

Shape Description 1

Shape-Generic Search Space

Latency vs. Vendor/Ansor

16

Be
tt

er

DietCode

Contributed by

Shape Description 1Shape Description 1

Micro-Kernel 2
Sample

Micro-Kernel 1

Shape Description 1

Shape-Generic Search Space

√ Up to 𝟏. 𝟕𝟎×/𝟏. 𝟏𝟗× better than Ansor/Vendor.
√ 𝟏. 𝟑𝟎×/𝟏. 𝟎𝟓× on average.

Future Directions

• We are working on upstreaming DietCode to the TVM main branch:
https://github.com/apache/tvm-rfcs/pull/72, together with
improvement of the tuning algorithms.

Many thanks to the community!

• Evaluations on more hardware platforms (CPUs and NVIDIA GPUs
using tensor core operations)

17

[1] https://www.nvidia.com/en-
us/data-center/tensor-cores/

[1]

https://github.com/apache/tvm-rfcs/pull/72

Future Directions

• We are working on upstreaming DietCode to the TVM main branch:
https://github.com/apache/tvm-rfcs/pull/72, together with
improvement of the tuning algorithms.

Many thanks to the community!

• Evaluations on more hardware platforms (CPUs and NVIDIA GPUs
using tensor core operations) and workloads.

17

[1] https://www.nvidia.com/en-
us/data-center/tensor-cores/

[2] https://github.com/NVIDIA/NeMo
[3] K. He et al. Mask R-CNN. ICCV 2017

[1] Speech Recognition[2] Object Detection[3]

https://github.com/apache/tvm-rfcs/pull/72

Conclusion

• Challenges posed by dynamic-shape workloads:
• Vendor Libraries: Hard to be Engineered for Efficiency
• Existing Auto-Schedulers: Long Compilation Time

•DietCode addresses the challenges with
① shape-generic search space
② micro-kernel-based cost model.

• Key Results:
• Compilation Time: 𝟓. 𝟖𝟖× saving vs. Ansor.
• Performance: Up to 𝟏. 𝟕𝟎× better vs. Ansor and 𝟏. 𝟏𝟗× vs. the vendor library

on modern GPUs.

18

DietCode: Automatic Code Generation for
Dynamic Tensor Programs

Bojian Zheng1, 2, 3 *, Ziheng Jiang4 *, Cody Yu2, Haichen Shen2,
Josh Fromm5, Yizhi Liu2, Yida Wang2,

Luis Ceze5, 6, Tianqi Chen5, 7, Gennady Pekhimenko1, 2, 3

* Equal Contributions
1 2 3 4 5 6 7

Optimization Strategy

• Objective: End-to-End Latency

• All workloads have “optimization priority” as
FLOPs × weight (user-defined, 1 by default)

• Consequently, workloads with higher FLOPs will be given more
attention compared with smaller ones.

53

NVIDIA RTX 3090[1] Preliminary Results

Micro-Kernel-based Cost Model Performance

54

[2]

[1] https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
[2] L. Zheng et al. Ansor. OSDI 2020

Up to 𝟏. 𝟓𝟐×/𝟏. 𝟐𝟔× better than Ansor/Vendor
(𝟏. 𝟏𝟔×/𝟏. 𝟏𝟏× on average).

DietCode

Be
tt

er

Conv2D

• NCHW is usually implemented using the Winograd algorithm, which is
in essence batched matrix multiplies.
• NHWC:

55

DietCode

Up to 𝟏. 𝟏𝟏×/𝟐. 𝟎𝟏× better than Ansor/Vendor (𝟏. 𝟎𝟐×/𝟏. 𝟖𝟎× on average).

Be
tt

er

vs. Nimble

• Focuses on the runtime system for dynamic-shape workloads, with
one section (i.e., Section 3.5) discussing about the code generation.

56

Be
tt

er

Nimble cannot cover all shapes efficiently.

[1] H. Shen, J. Roesch et al. Nimble. MLSys 2021

[1]

Local Padding vs. Loop Partitioning

• Common:
• Key Observation: Out-of-boundary checks in the compute stage are what

negatively affect performance the most.
• Performance difference is usually less than 5%.

57

Local Padding vs. Loop Partitioning

Local Padding

• Key Idea: Pads tensors by the
size of the local workspace when
loading from the off-chip device
memory.

(-) Redundant computations

Loop Partitioning

• Key Idea: Partition the regions
that have predicates and regions
that do not.

(-) Cannot remove overheads in
some pathological cases.

(-) Cannot support compute
intrinsics such as the tensor core
operations.

58

