Size-based Scheduling to I mprove Web Perfor mance

Mor Harchol-Balter*

Bianca Schroeder

Nikhil Bansal Mukesh Agrawal

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
(harchol,bianca,nikhil,mukesh) @cs.cmu.edu

Abstr act

Is it possible to reduce the expected response time of
every request at a web server, simply by changing the
order in which we schedule the requests? That is the
question we ask in this paper.

This paper proposes a method for improving the
performance of web servers servicing static HTTP re-
quests. The idea is to give preference to those requests
which are short, or have small remaining processing
requirements, in accordance with the SRPT (Shortest
Remaining Processing Time) scheduling policy.

The implementation is at the kernel level and in-
volves controlling the order in which socket buffers are
drained into the network.

Experiments are executed bothina LAN and a WAN
environment. We use the Linux operating system and
the Apache and Flash web servers.

Results indicate that SRPT-based scheduling of con-
nections yields significant reductions in delay at the
web server. These result in a substantial reduction in
mean response time, mean slowdown, and variance in
response time for both the LAN and WAN environ-
ments.

Significantly, and counter to intuition, the large re-
guestsare only negligibly penalized or not at all penal-
ized as a result of SRPT-based scheduling.

1 Introduction

A client accessing a busy web server can expect a long
wait. This paper considers how we might reduce this
wait for the case of static requests, of the form “Get me
a file.” Measurements [29, 27, 18] have suggested that
the request stream at most web servers is dominated by
dtatic requests. Serving static requests quickly is the

*This research is funded by Cisco Systems via a grant from
the Pittsburgh Digital Greenhouse 00-1, by NSF-ITR 99-167 ANI-
0081396, and by NSF Career Grant CCR-0133077.

focus of many companies eg., Akamai Technologies,
and much ongoing research.

In this paper we will be concerned with response
time which is defined to be the time from when the
client sends out the SYN-packet requesting to open a
connection until the client receives the last byte of the
file requested.

Our idea is simple. Traditionally, requests at a web
server are time-shared: the web server proportions its
resources fairly among those requests ready to receive
service. We call this scheduling policy FAIR schedul-
ing. We propose, instead, unfair scheduling, in which
priority is given to short requests, or those requests
with short remaining time, in accordance with the
well-known scheduling algorithm preemptive Shortest-
Remaining-Processing-Time-first (SRPT). It is well-
known from queueing theory that SRPT scheduling
minimizes queueing time, [37]. Allowing short jobs
to preempt long jobs is desirable because forcing long
jobs to wait behind short jobs results in much lower
mean response time than the situation where short jobs
must wait behind long jobs. Our expectation is that us-
ing SRPT scheduling of requests at the server will re-
duce the queueing time at the server, and therefore the
total response time.

Despite the obvious advantages of SRPT scheduling
with respect to mean response time, applications have
shied away from using this policy for two reasons: First
SRPT requires knowing the size of therequest! (i.e. the
time required to service the request). Our experiments
show that the size of a request is well-approximated by
the file size, which is well-known to the server. We
found a linear relationship between the service time of
the request, modulo a small overhead. Second, there is
the fear that SRPT “starves” big requests [9], [39] (p.
410), [38] (p. 162). A primary goal of this paper will
be to investigate whether this fear is valid in the case of

IStrictly spesking, it is not the size of the request but the size
of the response that we are talking about. We use these two terms
interchangeably.

web servers serving typical web workloads.

It is not immediately clear what SRPT means in
the context of a web server. A web server is not a
single-resource system. To understand which of the
web server’s resources need to be scheduled, we need
to understand which resource in a web server experi-
ences high load first, i.e., which is the bottleneck re-
source. The three contenders are: the CPU; the disk to
memory bandwidth; and the server’s limited fraction of
its ISP’s bandwidth. On a site consisting primarily of
static content, a common performance bottleneck is the
limited bandwidth which the server has bought from its
ISP [25, 12, 4]. Even a fairly modest server can com-
pletely saturate a T3 connection or 100Mbps Fast Eth-
ernet connection. Also, buying more bandwidth from
the ISP is typically relatively more costly than upgrad-
ing other system components like memory or CPU. In
fact, most web sites buy sufficient memory so that all
their files fit within memory (keeping disk utilization
low) [4]. For static workloads, CPU load is typically
not an issue.

In this paper, we model the limited bandwidth that
the server has purchased from its ISP by placing a
limitation on the server’s uplink, as shown in Fig-
ure 1. In all our experiments (using both a 10Mbps
and 100 Mbps uplink, and 256 MB of RAM, and run-
ning various trace-based workloads) the bandwidth on
the server’s uplink is always the bottleneck resource.
System load is therefore defined in terms of the load
on server’s uplink. For example, if the web server has
a 100 Mbps uplink and the average amount of data re-
quested by the clients is 80 Mbps, then the system load
is 0.8. Although in this paper we assume that the bottle-
neck resource is the limited bandwidth that the server
has purchased from its ISP, the main ideas can also be
adapted for alternative bottleneck resources.

The focus in the rest of the paper will be on how
to schedule the server’s uplink bandwidth, and the per-
formance effects of this scheduling. To schedule the
server’s uplink bandwidth, we need to apply the SRPT
algorithm at the level of the network. Our approach is
to control the order in which the server’s socket buffers
are drained. Recall that for each (non-persistent) re-
quest a connection is established between the client
and the web server. Corresponding to each connec-
tion, there is a socket buffer on the web server end
into which the web server writes the contents of the re-
quested file. Traditionally, the different socket buffers
are drained in Round-Robin Order, with equal turns be-
ing given to each connection with data ready to send.
Thus each ready connection receives a fair share of the
bandwidth of the server’s uplink. We instead propose
to give priority to those sockets corresponding to con-

ISP's connection to Internet

Server buys limited fraction
of ISP's bandwidth

/ ISP
SERVER'S router,
PERFORMANCE

BOTTLENECK

(a)

Server’s Uplink
We limit the bandwidth
on the server’s uplink

to represent the limitation
on server’s portion of
I1SP's bandwidth.

SERVER'S

PERFORMANCE
BOTTLENECK

f WAN
o

. AN|_
Client

(b)

Figure 1: (a) Server’s bottleneck is the limited frac-
tion of bandwidththat it has purchased fromits1SP. (b)
How our implementation setup models this bottleneck
by limiting the server’s uplink bandwidth.

nections for small file requests or where the remaining
data required by the request is small. Throughout, we
use the Linux OS.

The goal of this paper is to compare FAIR scheduling
with SRPT scheduling. These are defined as follows:

FAIR scheduling This uses standard Linux (fair-share
draining of socket buffers) with an unmodified
web server.

SRPT scheduling This uses modified Linux (SRPT-
based draining of socket buffers) with the web
server modified only to update socket priorities.

We experiment with two different web servers: the
common Apache server [19], and the Flash web server
[33], which is known for speed. Since results are quite
similar, we primarily show here only the results for the
case of Apache, and leave the Flash results for the asso-
ciated technical report [24]. Our clients make requests
according to a web trace, which specifies both the time
the request is made and the size of the file requested.
Experiments are also repeated using requests generated
by a web workload generator.

Experiments are executed first in a LAN, so as to
isolate the reduction in queueing time at the server. Re-
sponse time in a LAN is dominated by queueing delay

at the server and TCP effects. Experiments are next re-
peated in a WAN environment. The WAN allows us to
incorporate the effects of propagation delay, network
loss, and congestion in understanding more fully the
client experience. WAN experiments are executed both
using a WAN emulator and by using geographically-
dispersed client machines.

Synopsis of results obtained for a LAN:

e SRPT-based scheduling decreases mean response
time in a LAN by a factor of 3 — 8 for system load
greater than 0.5 (recall that system load is the uti-
lization of the server’s uplink.)

o SRPT-based scheduling helps small requests a lot,
while negligibly penalizing large requests. Under
a system load of 0.8, 80% of the requests improve
by a factor of 10 under SRPT-based scheduling.
Only the largest request suffers an increase in
mean response time under SRPT-based schedul-
ing (by a factor of only 1.2).

¢ The variance in the response time is far lower un-
der SRPT as compared with FAIR, in fact two or-
ders of magnitude lower for most requests.

o There is no negative effect on network throughput
or CPU utilization from using SRPT as compared
with FAIR.

Synopsis of results obtained for a WAN:

¢ Propagation delay significantly diminishes the im-
provement of SRPT over FAIR. Nevertheless, for
an RTT of 100ms, under a system load of 0.9,
SRPT’s improvement over FAIR is still a factor
of 2.

e Network loss diminishes the improvement of
SRPT over FAIR further. Under high network loss
(10%), SRPT’s improvement over FAIR is only
25% under a system load of 0.9.

e Unfairness to large jobs remains negligible under
WAN conditions, as under LAN conditions.

Section 2 describes our implementation of SRPT
scheduling. Section 3 describes the LAN experimen-
tal setup and the LAN results. Section 4 describes the
WAN experimental setup and the WAN results. Sec-
tion 5 provides an in depth look at why SRPT schedul-
ing improves over FAIR scheduling. Section 6 de-
scribes previous work. Finally in Section 7, we elab-
orate on broader applications of SRPT-based schedul-
ing, including its application to other resources, and to
non-static requests. We also discuss SRPT applied to
web server farms and Internet routers.

2 Implementation of SRPT

In Section 2.1 we explain how socket draining works
in standard Linux, and we describe how to achieve pri-
ority queueing in Linux (versions 2.2 and above). Sec-
tion 2.2 describes the implementation end at the web
server and also deals with the algorithmic issues such
as how to choose good priority classes and the setting
and updating of priorities. Furthermore we consider the
problem that for small requests, a large portion of the
time to service the request is spent before the size of the
request is even known, and we find a solution for this
problem.

2.1 Achieving priority queueing in Linux

Figure 2(left) shows data flow in standard Linux.

There is a socket buffer corresponding to each con-
nection. Data streaming into each socket buffer is en-
capsulated into packets which obtain TCP headers and
IP headers. Throughout this processing, the packet
streams corresponding to each connection is kept sepa-
rate. Finally, there is a single? “priority queue” (trans-
mit queue), into which all streams feed. All streams
that have data ready to send take equal turns draining
into the priority queue. Although the Linux kernel does
not explicitly enforce fairness, we find that under con-
ditions where clients are otherwise equal, TCP governs
the flows so that they share fairly on short time scales.
This single “priority queue,” can get as long as 100
packets. Packets leaving this queue drain into a short
Ethernet card queue and out to the network.

To implement SRPT we need more priority levels.
To do this, we first build the Linux kernel with sup-
port for the user/kernel Netlink Socket, QOS and Fair
Queueing, and the Prio Pseudoscheduler. Then we use
the t c[2] user space tool to switch the Ethernet card
queue from the default 3-band queue to the 16-band
prio queue. Further information about the support for
differentiated services and various queueing policies in
Linux can be found in [21, 34, 2, 3].

Figure 2(right) shows the flow of data in Linux af-
ter the above modification: The processing is the same
until the packets reach the priority queue. Instead of a
single priority queue (transmit queue), there are 16 pri-
ority queues. These are called bands and they range in
number from 0 to 15, where band 15 has lowest priority
and band 0 has highest priority. All the connections of
priority i feed fairly into the ith priority queue. The pri-
ority queues then feed in a prioritized fashion into the
Ethernet Card queue. Priority queue i is only allowed

2The queue actually consists of 3 priority queues, ak.a. bands.
By default, however, all packetsare queued to the same band.

Socket 1

TP, P
processng processng
Socket2 Singe Priority Quee Ethenet Card

TCP IP
-> > M —]] —> Network
Wire

processng processing
Socket 3 N (ensmit queue)

TP, P

pooessig pocesing FEED FAIRLY

(a) Standard Linux - FAIR

Socket 1 1t Priority Queve
P _, IP
M L Mﬁd\ thermet Card
i
Socket 2]] Network
— TP IP and PnonyQueue// Wire
proc. proc.
Socket 3 / seoond,
TP, IP

poc. proc

(b) Modified Linux - SRPT

Figure 2: (Left) Data flow in standard Linux. The important thing to observe is that there is a single priority queue into which
all ready connections drain fairly. (Right) Linux with priority queueing. It is important to observe that there are several priority
queues, and queue ¢ is serviced only if all of queues 0 through : — 1 are empty.

to flow if priority queues 0 through ¢ — 1 are all empty.

A note on experimenting with the above implemen-
tation of priority queueing: Consider an experiment
where each connection is assigned to one of two pri-
orities. We have found that when the number of simul-
taneous connections is very low, the bandwidth is not
actually split such that the first priority connections get
100% of the bandwidth and the second priority con-
nections get 0% of the bandwidth. The reason is that
with very few connections, the first priority connec-
tions are unable to fully utilize the link, and thus the
second priority connections get a turn to run. However,
when the number of simultaneous connections is higher
(e.g., above 10), this is not a problem, and the first pri-
ority connections get 100% of the bandwidth. In all the
experiments in this paper, we have hundreds of simul-
taneous connections and the above implementation of
priority queueing works perfectly.

2.2 Modifications to web server and al-
gorithmic issues in approximating
SRPT

The modified Linux kernel provides mechanisms for
prioritized queueing. In our implementation, the
Apache web server uses these mechanisms to imple-
ment the SRPT-based scheduling policy. Specifically,
after determining the size of a request, Apache sets
the priority of the corresponding socket by calling
set sockopt . As Apache sends the file, the remain-
ing size of the request decreases. When the remaining
size falls below the threshold for the current priority
class, Apache updates the socket priority with another
call to set sockopt .

2.2.1 Implementation Design Choices

Our implementation places the responsibility for prior-
itizing connections on the web server code. There are

two potential problems with this approach. These are
the overhead of the system calls to modify priorities,
and the need to modify server code.

The issue of system call overhead is mitigated by
the limited number of set sockopt calls which must
be made. Typically only one call is made per connec-
tion. Even in the worst case, we make only as many
set sockopt calls as there are priority classes (6 in
our experiments) per connection.

A clean way to handle the changing of priorities
totally within the kernel would be to enhance the
sendf i | e system call to set priorities based on the re-
maining file size. We do not pursue this approach here
as neither our version of Apache (1.3.14) nor Flash uses
sendfil e.

2.2.2 Size cutoffs

SRPT assumes infinite precision in ranking the remain-
ing processing requirements of requests. In practice,
we are limited to only 16 priority bands (16).

Based on experimentation, we have come up with
some rules-of-thumb for partitioning the requests into
priority classes which apply to the heavy-tailed web
workloads. The reader not familiar with heavy-tailed
workloads will benefit by first reading Section 5.

Denoting the cutoffsby z1 < 25 < ... < 2y:

e The lowest size cutoff z; should be such that
about 50% of requests have size smaller than z; .
The requests comprise so little total load in a
heavy-tailed distribution that there’s no point in
separating them.

o The highest cutoff z,, needs to be low enough that
the largest (approx.) .5% — 1% of the requests
have size > z,. This is necessary to prevent the
largest requests from starving.

e The middle cutoffs are far less important. Any-
thing remotely close to a logarithmic spacing

works well.

In the experiments throughout this paper, we use
only 6 priority classes to approximate SRPT. Using
more improved performance only slightly.

2.2.3 Priority to SYNACKSs

At this point one subtle problem remains: For small
requests, a large portion of time to service the request
is spent during the connection setup phase, before the
size of the request is even known. The packets sent
during the connection startup might therefore end up
waiting in long queues, making connection startup very
costly. For short requests, a long startup time is espe-
cially detrimental to response time. It is therefore im-
portant that the SYNACK be isolated from other traffic.
Linux sends SYNACKS, to priority band 0. It is impor-
tant when assigning priority bands to requests that we:

1. Never assign any sockets to priority band 0.

2. Make all priority band assignments to bands of
lower priority than band 0, so that SYNACKSs al-
ways have highest priority.

Observe that giving highest priority to the
SYNACKSs doesn’t negatively impact the performance
of requests since the SYNACKSs themselves make up
only a negligible fraction of the total system load.

Giving priority to SYNACKSs is important in SRPT
because without it the benefit that SRPT gives to small
requests is not noticeable. Later in the paper (Sec-
tion 5.1) we consider whether the FAIR policy might
also benefit by giving priority to SYNACKS, but find
the improvement to FAIR to be less significant.

2.2.4 The final algorithm

Our SRPT-like algorithm is thus as follows:

1. When a request arrives, it is given a socket
with priority 0 (highest priority). This allows
SYNACKS to travel quickly as explained in Sec-
tion 2.2.3.

2. After the request size is determined (by looking at
the URL of the file requested), the priority of the
socket corresponding to the request is reset based
on the size of the request, as shown in the table
below.

Priority Size (Kbytes)

0 (highest) -

1 <1K

2 1K - 2K

3 2K - 5K

4 5K-20K

5 20K - 50K
6 (lowest) > 50K

3. As the remaining size of the request diminishes,
the priority of the socket is dynamically updated
to reflect the remaining size of the request.

3 LAN setup and results

In Section 3.1 we describe the experimental setup and
workload for the LAN experiments. Section 3.2 com-
pares SRPT versus FAIR with respect to mean response
time, in a LAN environment. Section 3.3 again com-
pares SRPT versus FAIR in a LAN environment, but
this time with respect to their performance on large re-
quests. Finally Section 3.4 illustrates a simplification
of the SRPT idea which involves only two priorities
and yet still yields quite good performance.

3.1 LAN experimental setup
3.1.1 Machine Configuration

Our experimental setup involves six machines con-
nected by a 10/100 Ethernet switch. Each machine has
an Intel Pentium Il 700 MHz processor and 256 MB
RAM, and runs Linux 2.2.16. One of the machines is
designated as the server and runs Apache 1.3.14. The
other five machines act as web clients and generate re-
quests as described below. Below we show results for
both the case where the server uplink bandwidth is 10
Mbps and the case where the server uplink bandwidth
is 100 Mbps. For the case of the 10 Mbps bandwidth,
at any moment in time there may be a couple hundred
simultaneous connections at the server. For the case of
100 Mbps bandwidth the number of simultaneous con-
nections is in the thousands.

In all the figures throughout, unless stated otherwise,
we assume that the server’s uplink bandwidth is 10
Mbps.

3.1.2 Open versus closed systems

To properly evaluate the performance of a server it is
important to understand how clients generate requests
which drive the web server. The process by which
clients generate requests is typically modeled either as

an open system or as a closed system, as shown in Fig-
ure 3.

In an open system each user is assumed to visit the
web site just once. The user requests a file from the
web site, waits to receive the file, and then leaves. The
point is that a request completion does not trigger a new
request. A new request is only triggered by a new user
arrival.

In a closed system model, it is assumed that there is
some fixed number of users, say N users. These sit at
the same web site forever. Each user repeats these 2
steps, indefinitely: (i) request a file, (ii) receive the file.
In a closed system, a new request is only generated at
the time of completion of a previous request — request
completions trigger new requests.

When using a trace to generate requests under an
open system model, the requests are generated at the
times indicated by the trace, where interarrival times
have been scaled to create the appropriate test system
load. When using a trace to generate requests under a
closed system model, the arrival times of requests in
the trace are ignored. New requests are only triggered
by completions of requests.

Open System

User visits web site just once.
Each user has this behavior:

Generate request—s Get response — Leave

Closed System

Fixed number of users (N) sit at same web site forever.
Each user has this behavior:

Generate request

Get response

Partly—open system

Each user visits web site, makes k repetitions of
generating request and waiting for response, then leaves.

Generate request

. Ri t thi
Arrive—» < > Kimes —= Leave
Get response

Figure 3: Three models for how the requests to a web
server are generated. In all cases, every individual re-
guest set out averagesinto the mean response time. We
present resultsfor an open systemand for a partly-open
system, where we look at a range of k.

Neither the open system model nor the closed sys-
tem model is entirely realistic. Throughout this paper
we use the open system model. We also present re-
sults, however, for a different model which we call the
partly-open model. The partly-open model is more re-
alistic because it captures properties of both the open
and closed models. Under the partly-open model, each
user is assumed to visit a web site, make k requests for
files at the web site, and then leave the web site. The
k requests are made consecutively, with each request
completion triggering the next request. In Section 3.2
we will show the performance of our web server as-
suming both an open system model and a partly-open
system model, as a function of £. We will find that the
results are largely similar to an open model.

In all the figures below, unless otherwise stated, we
assume an open system model.

3.1.3 Trace-based workload

Throughout the paper we use a trace-based workload
consisting of 1-day from the Soccer World Cup 1998,
obtained from the Internet Traffic Archive [22]. The
trace contains 4.5 million HTTP requests, virtually all
of which are static. In our experiments, we use the trace
to specify the time the client makes the request and the
size in bytes of the request.

The entire 1 day trace contains requests for approx-
imately 5000 different files. Given the mean file size
of 5K, it is clear why all files fit within main memory.
This explains why the disk is not a bottleneck. Each ex-
periment was run using a busy hour of the trace (10:00
a.m. to 11:00 a.m.). This hour consisted of about 1
million requests.

Some additional statistics about our trace workload:
The minimum size file requested is a 41 byte file. The
maximum size file requested is about 2 MB. The dis-
tribution of the file sizes requested fits a heavy-tailed
truncated Pareto distribution (with «-parameter =~ 1.2).
The largest < 3% of the requests make up > 50% of
the total system load, exhibiting a strong heavy-tailed
property. 50% of files have size less than 1K bytes.
90% of files have size less than 9.3K bytes. The distri-
bution of file sizes is shown in Figure 4.

We also repeated all experiments using a web work-
load generator, Sur ge [8] to generate the requests at
the client machines. The Sur ge workload is created
to be statistically representative of the file sizes at a web
site, the sizes of files requested from a web site, the
popularity of files requested, and more. We modified
Sur ge simply to make it an open system. We have in-
cluded in the associated technical report [24] the same
set of results for the Sur ge workload. The Sur ge
workload had a higher mean request size (7K, rather

Inverse Cumulative Distribution Function

Probability
o o
>

©
IS

o
[N

10? 10* 10°
File size (bvtes)

Figure 4: Inverse Cumulative Distribution Func-
tion, F'(x), for the trace-based workload. F(xz) =
Pr{Jobsize > z}

than 5K), however in all other respects was statistically
very similar to our trace-based workload. Not surpris-
ingly, the factor improvement of SRPT over FAIR is
very similar under the Sur ge and trace-based work-
loads. To be precise, all the response times for both
FAIR and for SRPT are 50% higher under the Sur ge
workload, and therefore the factor improvement is the
same.

3.1.4 Generating requests at client machines

In our experiments, we use scl i ent [5] for creating
connections at the client machines. The original ver-
sion of scl i ent makes requests for a certain file in
periodic intervals. We modify scl i ent to read in
traces and make the requests according to the arrival
times and file names given in the trace.

To create a particular system load, say 0.8, we sim-
ply scale the interarrival times in the trace’s request se-
quence until the average number of bits requested per
second is 8Mb/sec. We validate the system load both
analytically and via measurement.

3.1.5 Performance Metrics

For each experiment, we evaluate the following perfor-
mance metrics:

e Mean response time. The response time of a re-
quest is the time from when the client submits the
request until the client receives the last byte of the
request.

e Mean dowdown. The slowdown metric attempts
to capture the idea that clients are willing to tol-
erate long response times for large file requests

and yet expect short response times for short re-
quests. The slowdown of a request is therefore its
response time divided by the time it would require
if it were the sole request in the system. Slowdown
is also commonly known as normalized response
timeand has been widely used [9, 36, 16, 23].

¢ Mean response time as a function of request size.
This will indicate whether big requests are be-
ing treated unfairly under SRPT as compared with
FAIR-share scheduling.

3.2 Mean improvements of SRPT under
LAN

Before presenting the results of our experiments, we
make some important comments.

o Inall of our experiments the server’s uplink band-
width was the bottleneck resource. CPU utiliza-
tion during our experiments remained below 5%
for all the 10 Mbps experiments and below 80%
for the 100 Mbps experiments, even for system
load 0.95.

e The measured throughput and bandwidth utiliza-
tion under the experiments with SRPT schedul-
ing is identical to that under the same experiments
with FAIR scheduling. The same exact set of re-
quests complete under SRPT scheduling and un-
der FAIR scheduling.

e There is no additional CPU overhead involved
in SRPT scheduling as compared with FAIR
scheduling. Recall that the overhead due to up-
dating priorities of sockets is insignificant, given
the small number of priority classes that we use.

Figure 5 shows the mean response time under SRPT
scheduling as compared with the traditional FAIR
scheduling as a function of system load. Figure 5(a) as-
sumes that requests are generated according to an open
model and Figure 5(b) assumes a partly-open system
model, where each user generates k£ = 5 requests. Re-
sults are very similar in (a) and (b). For lower system
loads the mean response times are similar under FAIR
and SRPT. However for system loads > 0.5, the mean
response time is a factor of 3 — 8 lower under SRPT
scheduling.

Another way to state the results in Figure 5 is to ob-
serve that the mean response time under FAIR with a
system load of 0.5 is the same as the mean response
time under SRPT with a system load of 0.85. Thus
SRPT can be viewed as offering an increase in through-
put of 3.5 Mbps under a 10 Mbps uplink, without a sac-
rifice in response time.

o o
o ©
: :

o
IS

Response Time (sec)

o
[N
:

(a) Open system model

— FAIR
--- SRPT
0.8+
)
Q
@
Q L
£06
'_
Q
o
50.4t
o
(%]
Q
e
0.2r

(b) Partly-open system model

Figure 5: Mean response time under SRPT versus FAIR as a function of system load, under trace-based workload,
in LAN environment uplink bandwidth 10 Mbps. (a) Assumes open system model (b) Assumes partly-open system

model with £ = 5 request-iteration cycles per user.

The performance results are even more dramatic for
mean slowdown. Figure 6 shows the mean slowdown
under SRPT scheduling as compared with the tradi-
tional FAIR scheduling as a function of load. For
lower loads the slowdowns are the same under the two
scheduling policies. For system loads 0.5, the mean
slowdown improves by a factor of 4 under SRPT over
FAIR. Under a system load of 0.9, mean slowdown im-
proves by a factor of 16.

Looking at the partly-open system model more
closely we observe that mean response times are al-
most identical, regardless of the value of k. Figure 7
shows the performance of FAIR under a range of & val-
ues: k =1, k = 5,and k£ = 50. It turns out that SRPT
is even less sensitive to the choice of k. 3

Throughout we show results for the open system
model, however we have verified that all these re-
sults are almost identical under the partly-open system
model with k£ = 5.

We conclude this section by once again considering
the improvement of SRPT over FAIR, but this time in
the case of a 100 Mbps uplink. Results are shown in
Figure 8 for a system load of p = 0.8 under the Flash
web server (i.e., 80 Mbps requested through a 100Mbps

3 Having experimented with many k values, we fi nd the following
subtle trend aswe increase k: When we initially increase &, we fi nd
that responsetimesdrop abit. Thereasonisthat by synchronizingthe
times at which requestsare generated, so that they are generated only
when a previous request completes, we do abetter job of eveningthe
burstiness in the number of connectionsat the server. As k increases
further, however, the partly-open system starts to look like a closed
systemwith zero think time. This hasthe effect of creating anear-one
system load at all times, which causes responsetimes to go up.

Mean slowdown vs. load

250

— FAR
--- SRPT

200¢

N
[
o

Mean slowdown
=
o
o

a
o

Figure 6: Mean dowdown under SRPT versus FAIR as
a function of systemload, under trace-based workl oad,
in LAN environment.

uplink). We see that SRPT performs 5 times better than
FAIR at a system load of 0.8. This is comparable to
the improvement achieved in the case of the 10Mbps
uplink.

In moving from a 10 Mbit network to a 100 Mbit net-
work, observe that the arrival rate of jobs increases by
a factor of 10, and the service requirement of jobs de-
creases by a factor of 10. Queueing theory thus tells us
that we should expect mean response times to improve
by a factor of 10 (as is easy to see by looking at the
formula for an M/G/1 queue). However, in comparing
Figure 5 and Figure 8, we note that the improvement
in practice for both FAIR and SRPT is not as high as
predicted by theory (more like a factor of 4-6). We
suspect that the performance limits of other system el-
ements (load) may be preventing the realization of the
full 10 times improvement.

Another way to state the results in Figure 8 is to ob-
serve that the mean response time under FAIR with a
system load of 0.5 is higher than the mean response
time under SRPT with a system load of 0.95. Thus
SRPT can be viewed as offering an increase in through-
put of 45 Mbps under a 100 Mbps uplink, without sac-
rificing response time.

1 e
--- FAIR k=50
— FAIR k=0
0.8/ " FAIR k=5
o
Q
k)
]
206
'_
Q
g
504
o
%]
(0]
ad
0.2
82 0.4 06 0.8 1

Load

Figure 7: Performance of FAIR shown for a partly-open
systemmodel, where k = 1, £ = 5, and & = 50.

The significant improvements of SRPT over FAIR
observed in this section is easily explained. The time-
sharing behavior of FAIR causes short requests to be
delayed in part by long requests, whereas SRPT allows
short requests to jump ahead of long requests. Since
most requests are short requests, most requests see an
order of magnitude improvement under SRPT. Another
way to think of this is that SRPT is an opportunistic
algorithm which schedules requests so as to minimize
the number of outstanding requests in the system (it al-
ways works on those requests with the least remaining

work to be done). By minimizing the number of out-
standing requests in the system, Little’s Law [28] tells
us that SRPT also minimizes the mean response time.

Mean response time vs. load
0.25 ‘

— FAIR
--- SRPT

o
N

(sec)

me
o©
[y
a0

o
[N

Response ti

0.05-

Figure 8: Mean response time under SRPT versus FAIR
as a function of system load, under trace-based work-
load, in LAN environment with server uplink bandwidth
100Mb/sec.

3.3 Performance of large requests under
SRPT in LAN

The important question is whether the significant im-
provements in mean response time come at the price
of significant unfairness to large requests. We will an-
swer this question for both the open system model and
the partly-open system model. We will look first at the
case of 10 Mbps uplink and then at the case of 100
Mbps uplink.

Figure 9 shows the mean response time as a function
of request size, in the case where the system load is 0.6,
0.8, and 0.9 and the bandwidth on the server’s uplink is
10 Mbps. In the left column of Figure 9, request sizes
have been grouped into 60 bins, and the mean response
time for each bin is shown in the graph. The 60 bins are
determined so that each bin spans an interval [z, 1.2z].
It is important to note that the last bin actually contains
only requests for the very biggest file. Observe that
small requests perform far better under SRPT schedul-
ing as compared with FAIR scheduling, while large re-
quests, those > 1 MB, perform only negligibly worse
under SRPT as compared with FAIR scheduling. For
example, under system load of 0.8 (see Figure 9(b))
SRPT scheduling improves the mean response times of
small requests by a factor of close to 10, while the mean
response time for the very largest size request only goes
up by a factor of 1.2.

10 10 :
10° b E
510°]
Q
< 5
g)
= Q -1
2 £10
2 £
2
S S o
-10 ¢ 1 7 s
% Q 1 e lor
. L o P iyl Vi
g x 10 “2liiel Yt s pncnip T DA L s [Nt i
.
2 et
10°5 n 5 ; ; 16° ‘ ‘ : :
10 10 10 10 10 10 0 20 40 60 80 100
Size of request (bytes) Percentile of Job Sizes
() system load = .6
2
10 ‘ 10t ‘
=
— - SRP SRP
1
10" b]
B 10
8 ~
-~ (8}
E g
- (4]
g10°t] g
& £
2
2 g
g 810 -
g 10-17 o~ o | [y
-
=2
10 : : : : 107 ‘ ‘ ‘ ‘
10° 10° 10* 10° 10° 10’ 0 20 40 60 80 100
Size of request (bytes) Percentile of Job Sizes
(b) system load = .8
2
10 10 ;
10"]
T 10°F
Z —~
~ (S}
g k)
S, .0 @
310 i 2
& £
I / 8. 4 J
& o g1 el
2107 R | i
p
, ;
=2
10 : : : : 107 ‘ ‘ ‘ ‘
10° 10° 10* 10° 10° 10’ 0 20 40 60 80 100

Figure 9: Mean response time as a function of request size under trace-based workl oad, shown for a range of system
loads (corresponds to Figure 5(a)). The left column shows the mean response time as a function of request size. The

Size of request (bytes)

(c) systemload = .9

Percentile of Job Sizes

right column shows the mean response time as a function of the percentile of the request size distribution.

10

Note that the above plots give equal emphasis to
small and large files. As requests for small files are
much more frequent, these plots are not a good measure
of the improvement offered by SRPT. To fairly assess
the improvement, the right column of Figure 9, presents
the mean response time as a function of the percentile
of the request size distribution, in increments of half
of one percent (i.e. 200 percentile buckets). From this
graph, it is clear that at least 99.5% of the requests ben-
efit under SRPT scheduling. In fact, the 80% small-
est requests benefit by a factor of 10, and all requests
outside of the top 1% benefit by a factor of > 5. For
lower system loads, the difference in mean response
time between SRPT and FAIR scheduling decreases,
and the unfairness to big requests becomes practically
nonexistent. For higher system loads, the difference in
mean response time between SRPT and FAIR schedul-
ing becomes greater, and the unfairness to big requests
also increases. Even for the highest system load tested
though (.95), there are only 500 requests (out of the 1
million requests) which complete later under SRPT as
compared with FAIR. These requests are so large how-
ever, that the effect on their slowdown is negligible.

Results for the partly-open system model are similar
to those in Figure 9, with slightly more penalty to the
large jobs, but still hardly noticeable penalty. For the
case of & = 5, with system load p = 0.8, the mean re-
sponse time for the largest 1% of requests is still lower
under SRPT (1.09 seconds under SRPT as compared
with 1.12 seconds under FAIR). The very largest re-
quest has a mean response time of 9.5 seconds under
SRPT versus 8.0 seconds under FAIR.

For the 100 Mb/sec experiments all jobs, large and
small, preferred SRPT scheduling in expectation under
all system loads tested.

Figure 10 shows the variance in response time for
each request size as a function of the percentile of the
request size distribution, for system load equal to 0.8.
The improvement under SRPT with respect to variance
in response time is 2 — 4 orders of magnitude for the
99.5% smallest files. The improvement with respect to
the squared coefficient of variation (variance /mean?) is
about 30.

3.4 SRPT with only two priorities

Our SRPT algorithm is only a rough approximation of
true SRPT since we use only 6 priority classes. An
interesting question is how much benefit one could get
with only 2 priority classes. That is, each request would
simply be classified as being large or small, and would
be prioritized accordingly.

To explore the performance of SRPT with only two

11

Variance
=
o

Moy,
Y
17k
{
1y
N
vl
AT ‘
o (A | NI
. .o IR
E 1 o Ul
10 [VYT
[t ‘,v\\n I
" | i\y 0o
10"t (A !
{ ! y
| h

)
[TRP] i
A
|l “'
Y

e |
i

[

RTWHE

RN
W

. . . .
0 20 40 60 80
Percentile of Job Size

100

Figure 10: Variance in response time as a function of
the percentile of the request size distribution for SRPT
as compared with FAIR, under trace-based workload
with systemload = 0.8, ina LAN.

priority classes, we define small requests as the small-
est 50% of requests and large requests as the largest
50% of requests (note, this is not the same thing as
equalizing system load) The cutoff falls at 1K. We find
that this simple algorithm results in a factor of 2.5 im-
provement in mean response time and a factor of 5 im-
provement in mean slowdown over FAIR. We also find
that all requests, big and small, have lower expected re-
sponse times under SRPT than under FAIR using this
simple algorithm.

4 WAN setup and experimental
results

To understand the effect of network congestion, loss,
and propagation delay in comparing SRPT and FAIR,
we also conduct WAN experiments. We perform
two types of WAN experiments: (i) experiments us-
ing our LAN setup together with a WAN emula-
tor (Section 4.1) and (ii) experiments using physi-
cally geographically-dispersed client machines (Sec-
tion 4.2).

4.1 WAN emulator experiments

The two most frequently used tools for WAN emulation
are probably NistNet [31] and Dummynet [35].
NistNet is a separate package available for Linux
which can drop, delay or bandwidth-limit incoming
packets. Dummynet applies delays and drops to both
incoming and outgoing packets, hence allowing the

user to create symmetric losses and delays. Since Dum-
mynet is currently available for FreeBSD only we im-
plement Dummynet functionality in form of a sepa-
rate module for the Linux kernel. More precisely, we
changed the i p_rcv() andthei p_out put () func-
tion in the TCP-IP stack to intercept in- and out-going
packets to create losses and delays.

In order to delay packets, we use the ti meout ()
facility to schedule transmission of delayed packets.
We recompile the kernel with HZ=1000 to get a finer-
grained millisecond timer resolution.

In order to drop packets we use an independent, uni-
form random loss model (as in Dummynet) which can
be configured to a specified probability.

The experimental setup for our experiments is iden-
tical to that used for the LAN experiments (see Sec-
tion 3.1) except that the WAN emulator functionality is
now included in each client machine.

Figure 11 shows the effect of increasing the round-
trip propagation delay (RTT) from O ms to 100 ms for
FAIR and SRPT in the case of system load 0.9 and sys-
tem load 0.7. Adding WAN delays increases response
times by a constant additive factor on the order of a few
RTTs for both FAIR and SRPT. The effect is that the
relative improvement of SRPT over FAIR drops. Un-
der system load p = 0.9, SRPT’s improvement over
FAIR drops from a factor of 4 when the RTT is 0 ms to
a factor of 2 when the RTT is 100 ms. Under system
load p = 0.7, the factor improvement of SRPT over
FAIR drops from a factor of 2 to only 15%.

With respect to unfairness to large jobs, we find that
any unfairness to large jobs decreases as the RTT is
increased. The reason is obvious — any existing unfair-
ness to large jobs is mitigated by the additive increase
in delay imposed on both FAIR and SRPT.

Figure 12 assumes that the RTT is 0 ms and shows
the effect of increasing the network loss from 0% to
10% under both FAIR and SRPT. Increasing loss has a
more pronounced effect than increasing the RTT. We
observe that the response times don’t grow linearly
in the loss rate. This is to be expected since TCPs
throughput is inversely proportional to the square root
of the loss. Under system load p = 0.9, SRPT’s im-
provement over FAIR drops from a factor of 4 when
loss is 0% to a factor of 25% when loss is 10%. Under
system load p = 0.7, loss beyond 2% virtually elimi-
nates any improvement of SRPT over FAIR.

With respect to unfairness to large jobs, we find that
loss slightly increases the unfairness to the largest job
under SRPT. The largest job performs 1.1 times worse
under 3% loss, but 1.5 times worse under loss rates up
to 10%. Nevertheless, even in a highly lossy environ-
ment, the mean response time for the largest 1% of jobs

12

is still higher under FAIR as compared to SRPT.
Finally Figure 13 combines loss and delay. Since the

effect of loss dwarfs the effect of propagation delay, the

results are similar to those in Figure 12 with loss only.

4.2 Geographically-dispersed WAN ex-
periments

We now repeat the WAN experiments using physically
geographically-dispersed client machines. The experi-
mental setup is again the same as that used for the LAN
(see Section 3.1) except that this time the client ma-
chines are located at varying distances from the server.
The table below shows the location of each client ma-
chine, indicated by its RTT from the server machine.

Location Avg. RTT
IBM, New York 20ms
Univ. Berkeley 55ms

UK 90-100ms
Univ. Virginia 25ms
Univ. Michigan 20ms
Boston Univ. 22ms

Unfortunately, we were only able to get accounts for
Internet2 machines (schools and some research labs).
The limitation in exploring only an Internet2 network
is that loss and congestion may be unrealistically low.

Figure 14 shows the mean response time (in ms) as a
function of system load for each of the six hosts. This
figure shows that the improvement in mean response
time of SRPT over FAIR is a factor of 8-20 for high
system load (0.9) and only about 1.1 for lower system
load (0.5).

Figure 15(a) and 15(b) shows the mean response
time of a request as function of the percentile the re-
quest size at a system load of 0.8 for the hosts at IBM
and UK respectively. It’s not clear from looking at the
figures whether there is any starvation. It turns out that
all request sizes have higher mean response time under
FAIR, as compared with SRPT. For the largest file, the
mean response time is almost the same under SRPT and
FAIR. The reason for the lack of unfairness is the same
as that pointed out in the WAN emulation experiments
for the case of significant RTT, but near-zero loss.

We also measured the variance in response time in
the WAN environment for a system load of 0.8. While
the variance for FAIR stayed the same under the LAN
and WAN environments, the variance for SRPT in-
creased somewhat in the WAN environment due to mild
losses. Still, however, the variance in response time un-
der SRPT remains over an order of magnitude below
that in FAIR, for a system load of 0.8.

We now compare the numbers in Figure 14 with

0.6, o

5 5
Q Q
20, 202
[[
E E
F F
Q - Q
2 B 2
o o
20.2 20.1]
o) B o)
24 . 24

0 0

0 20 80 100 0 20 80 100

40 60 40 60
RTT (msec) RTT (msec)

(a) system load = 0.9 (b) system load = 0.7.

Figure 11: Effect on SRPT and FAIR of increasing RTT from 0 ms to 100 ms.

L
L)

1.2

Response Time (sec)

0 2 4 6 8 0 2 4 6
loss rate (%) Loss Rate (%)

(a) system load = 0.9 (b) system load = 0.7.

Figure 12: Effect on SRPT and FAIR of increasing loss from 0% to 10%.

o

— FAIR - 100ms RTT 2 — FAIR - 100 ms RTT
--- FAIR - 20ms RTT - SRPT - 100 ms RTT
25| -~ SRPT - 100ms RTT --- FAIR - 20 ms RTT
[y SRPT - 20ms RTT e T SRPT - 20 ms RTT
o} @15
2 2 o
[} [
£ £
e -
1.5
b g1
2 2
2 2
g ! g
x xo.5
0.5F~
% 2 % 2

4 6 4 6
loss rate (%) Loss Rate (%)

(a) system load = 0.9 (b) system load = 0.7.

Figure 13: Effect on SRPT and FAIR of increasing |oss and delay.

13

Figure 14
(d) 0.5.

: Mean response time under SRPT versus FAIR in a WAN under system load (a) 0.9, (b) 0.8, (c) 0.7, and

Load=0.9

Response Time (sec)

IBM Berkeley

UK

(a) system load 0.9

Virginia Michigan Boston

Load=0.8

o o

Response Time (sec)

1)

Il FAR
I SRPT

BM Berkeley UK Virginia Michigan Boston

(b) system load 0.8

Load=0.7 Load=0.5
04 03
Bl FAR Bl FAR
B SRPT
035
025
03
5 g02
B0.25 8
© ®
£ E
E
0.2 015
8 4
2 2
g 2
20.15 2
o o

o
s

o
°
@

o

1BM

Berkeley

UK

(c) system load 0.7

Virginia Michigan Boston

10 ‘ ‘ ‘ ;
——FAR
-~ SRPT
o o
g0t
]
g i
I h
8
S |
o
n
[}
oM RN
" " 4
“AN '.,/\\/, ~\L \///\, - 4‘\,/’\\,\ PRV
1072 L L L L
0 20 80

Figure 15: Responsetime as a percentile of request size under SRPT scheduling versus traditional FAIR scheduling

40 60
Percentile of Job Size

(a) IBM clients

100

1)
s

0.05

BM

Berkeley

UK Virginia Michigan Boston

(d) system load 0.5

10 T T T
— FAIR
- - SRPT
o
@
L
@
E
(=}
5 10° s
[2} !
5
>3 !
u
1) N
o L
L
ZNNAN
”~ N N
"\ AN ~ '
/"\r = \4’\/\\&’\\/4\/‘/\,’\’\/\’ VAN
10’1 L L L L
0 20 80 100

at system load 0.8, measured for (a) the IBM host and (b) the UK host.

14

40 60
Percentile of Job Size

(b) UK clients

those obtained using the WAN emulation. First of all,
observe that for the case of system load 0.5, 0.7, and
0.8, the values of response time in Figure 14 are com-
parable with those obtained using the WAN emulator
with propagation delay, but near-zero loss (compare
with Figure 11).

Observe that the values of response time under sys-
tem load 0.9 in Figure 14 are much higher than those
for the WAN emulator for the case of FAIR but not for
SRPT. The reason is that the WAN environment creates
some variance in the system load. Thus an average sys-
tem load of 0.9 translates to fluctuations ranging from
0.75 to 1.05, which means that there are moments of
transient overload. Transient overload affects FAIR far
worse than SRPT because the buildup in number of re-
quests at the server during overload is so much greater
under FAIR than under SRPT. Transient overload even
occasionally results in a full SYN queue under FAIR.
This means that incoming SYNs may be dropped, re-
sulting in a timeout and retransmit. In the LAN en-
vironment where system load can be better controlled,
we never experience SYN drops.

The trends shown in Figure 14 are in agreement
with the WAN emulator experiments. To summarize:
(i) The improvement of SRPT over FAIR is higher at
higher system loads; (ii) The improvement of SRPT
over FAIR is diminished for far away clients; (iii) The
unfairness to large jobs under SRPT becomes non-
existent as propagation delay is increased.

5 Why does SRPT work?

In this section we will look in more detail at where
SRPT’s performance gains come from and we explain
why there is no starvation of long jobs.

5.1 Where do mean gains come from?

The high-level argument has been given before: SRPT
is an opportunistic algorithm which schedules requests
so as to minimize the number of outstanding requests
in the system (it always works on those requests with
the least remaining work to be done). By minimizing
the number of outstanding requests in the system, Lit-
tle’s Law tells us that SRPT also minimizes the mean
response time. In fact our measurements show that
when the load is 0.7 the number of open connections
is 3 times higher under FAIR than under SRPT. At load
0.9, this number jumps to 5 times higher. This corre-
sponds to the improvement in mean response time of
SRPT over FAIR.

Mathematically, the improvement of SRPT over
FAIR scheduling with respect to mean response time

15

has been derived for an M/G/1 queue in [7].

At an implementation level, while our implementa-
tion of SRPT, described in Section 2.1 is not an exact
implementation of the SRPT algorithm, it still has the
desirable properties of the SRPT algorithm: Short re-
quests (those with small file size or small remaining
file size) are separated from long requests and have pri-
ority over long requests. Note that our implementation
does not interact illegally with the TCP protocol in any
way: scheduling is only applied to those connections
which are ready to send via TCP’s congestion control
algorithm.

The above discussion shows that one reason that
SRPT improves over FAIR with respect to mean re-
sponse times is because it allows short jobs to avoid
time-sharing with long jobs. We now explore two other
potential reasons for the improvement of SRPT over
FAIR and eliminate both.

It has been stated that a problem for clients access-
ing a busy web server is that the web server’s SYN
queue might fill up, thereby preventing new connec-
tion requests from being handled. This in turn creates
expensive timeouts for the clients (on the order of 3
seconds). Our measurements show in none of our ex-
periments (except for one WAN experiment with high
system load) does the SYN queue ever fill up — not un-
der FAIR nor under SRPT — although the SYN queue
is significantly fuller under FAIR than under SRPT for
high system loads.

Another potential reason for SRPT’s performance
gains over FAIR is that by having multiple priority
queues SRPT is essentially getting to use more buffer-
ing, as compared with the single transmit queue of
FAIR (see Figure 2). It is possible that there could be an
advantage to having more buffering inside the kernel,
since under high system loads we have observed some
packet loss (5%) within the kernel at the transmit queue
under FAIR, but not under SRPT. To see whether SRPT
is obtaining an unfair advantage, we experimented with
increasing the length limit for the transmit queue under
FAIR from 100 to 500, and then to 700, entirely elim-
inating the losses. This helped just a little — reducing
mean response time from about 400ms to 350ms un-
der FAIR. Still, performance was nowhere near that of
SRPT.

5.2 Why are long requests not hurt?

It has been suspected by many that SRPT is a very un-
fair scheduling policy for large requests. The above
results have shown that this suspicion is false for web
workloads. It is easy to see why SRPT should pro-
vide huge performance benefits for the small requests,

which get priority over all other requests. In this section
we describe briefly why the large requests also benefit
under SRPT, in the case of a heavy-tailed workl oad.
In general a heavy-tailed distribution is one for
which
Pr{X >z} ~27%

where 0 < a < 2. A set of request sizes following
a heavy-tailed distribution has some distinctive proper-
ties:

1. Infinite variance (and if a < 1, infinite mean). (In
practice, variance is not really infinite, but simply
very high, since there is a finite maximum request
size).

2. The property that a tiny fraction (usually < 1%)
of the very longest requests comprise over half of
the total system load. We refer to this important
property as the heavy-tailed property.

The lower the parameter «, the more variable the dis-
tribution, and the more pronounced is the heavy-tailed
property, i.e. the smaller the fraction of long requests
that comprise half the system load.

Request sizes are well-known to follow a heavy-
tailed distribution [13, 15]. Our traces also have strong
heavy-tailed properties. (In our trace the largest < 3%
of the requests make up > 50% of the total system
load.)

Consider a workload where request sizes exhibit the
heavy-tailed property. Now consider a large request,
in the 99%-tile of the request size distribution. This re-
quest will actually do much better under SRPT schedul-
ing than under FAIR scheduling. The reason is that
this big request only competes against 50% of the sys-
tem load under SRPT (the remaining 50% of the sys-
tem load is made up of requests in the top 1%-tile
of the request size distribution) whereas it competes
against 100% of the system load under FAIR schedul-
ing. The same argument could be made for a request in
the 99.5%-tile of the request size distribution.

However, it is not obvious what happens to a request
in the 100%-tile of the request size distribution (i.e. the
largest possible request). It turns out that, provided the
system load is not too close to 1, the request in the
100%-tile will quickly see an idle period, during which
it can run. As soon as the request gets a chance to run,
it will quickly become a request in the 99.5%-tile, at
which time it will clearly prefer SRPT. For a mathemat-
ical formalization of the above argument, in the case of
an M/G/1 queue, we refer the reader to [7].

Despite our understanding of the above theoretical
result, we were nevertheless still surprised to find that
results in practice matched those in theory — i.e., there

16

was little if any unfairness to large jobs. It is under-
standable that in practice there should be more unfair-
ness to large jobs since large requests pay some addi-
tional penalty for moving between priority queues.

6 PreviousWork

There has been much literature devoted to improving
the response time of web requests. Some of this lit-
erature focuses on reducing network latency, e.g. by
caching requests ([20], [11], [10]) or improving the
HTTP protocol ([32]). Other literature works on re-
ducing the delays at a server, e.g. by building more
efficient HTTP servers ([19], [33]) or improving the
server’s OS ([17], [6], [26], [30]).

In the remainder of this section we discuss only work
on priority-based or size-based scheduling of requests.
We first discuss related implementation work and then
discuss relevant theoretical results.

Almeida et. al. [1] use both a user-level approach
and a kernel-level implementation to prioritizingHTTP
requests at a web server. The user-level approach in [1]
involves modifying the Apache web server to include a
Scheduler process which determines the order in which
requests are fed to the web server. This modification is
all in the application level and therefore does not have
any control over what the OS does when servicing the
requests. The kernel-level approach in [1] simply in-
volves setting the priority of the process which handles
a request in accordance with the priority of the request.
Observe that setting the priority of a process only al-
lows very coarse-grained control over the scheduling of
the process, as pointed out in the paper. The user-level
and kernel-level approaches in this paper are good start-
ing points, but the results show that more fine-grained
implementation work is needed. For example, in their
experiments, the high-priority requests only benefit by
20% and the low priority requests suffer by up to 200%.

Another attempt at priority scheduling of HTTP re-
quests which deals specifically with SRPT scheduling
at web servers is that of Crovella et. al. [14]. This
implementation does not involve any modification of
the kernel. The authors experiment with connection
scheduling at the application level only. They design
a specialized Web server which allows them to control
the order in which read() and write() calls are
made, but does not allow any control over the low-level
scheduling which occurs inside the kernel, below the
application layer (eg., control over the order in which
socket buffers are drained). Via the experimental Web
server, the authors are able to improve mean response
time by a factor of up to 4, for some ranges of system
load, but the improvement comes at a price: a drop in

throughput by a factor of almost 2. The explanation,
which the authors offer repeatedly, is that scheduling
at the application level does not provide fine enough
control over the order in which packets enter the net-
work. In order to obtain enough control over schedul-
ing, the authors are forced to limit the throughput of re-
quests. This will not be a problem in our paper. Since
the scheduling is done at the kernel, we have absolute
control over packets entering the network. Our perfor-
mance improvements are greater than those in [14] and
do not come at the cost of any decrease in throughput.

The papers above offer coarser-grained implementa-
tions for priority scheduling of connections. \ery re-
cently, many operating system enhancements have ap-
peared which allow for finer-grained implementations
of priority scheduling [21, 34, 2, 3].

Several papers have considered the idea of SRPT
scheduling in theory.

Bender et. al. [9] consider size-based scheduling in
web servers. The authors reject the idea of using SRPT
scheduling because they prove that SRPT will cause
large files to have an arbitrarily high max slowdown.
However, that paper assumes a worst-case adversarial
arrival sequence of web requests. The paper goes on to
propose other algorithms, including a theoretical algo-
rithm which does well with respect to max slowdown
and mean slowdown.

Roberts and Massoulie [36] consider bandwidth
sharing on a link. They suggest that SRPT scheduling
may be beneficial in the case of heavy-tailed (Pareto)
flow sizes.

Lastly, Bansal and Harchol-Balter [7] investigate
SRPT scheduling analytically for an M/G/1/SRPT
queue (Poisson arrivals and general service times). We
discussed these theoretical results in Section 5.

7 Conclusion and Futurework

This paper demonstrates that the delay at a busy server
can be greatly reduced by SRPT-based scheduling of
the bandwidth that the server has purchased from its
ISP. We show further that the reduction in server de-
lay often results in a reduction in the client-perceived
response time.

In a LAN setting, our SRPT-based scheduling algo-
rithm reduces mean response time significantly over the
standard FAIR scheduling algorithm. In a WAN setting
the improvement is still significant for very high sys-
tem loads, but is far less significant at moderate system
loads.

Surprisingly, this improvement comes at no cost to
large requests, which are hardly penalized, or not at all

17

penalized. Furthermore these gains are achieved under
no loss in byte throughput or request throughput.

Our current setup involves only staticrequests. In fu-
ture work we plan to expand our technology to schedule
cgi-scripts and other non-static requests. Determining
the size (processing requirement) of non-static requests
is an important open problem, but companies are mak-
ing excellent progress on predicting the size of dynamic
requests. We propose additionally to deduce the size of
a dynamic request as it runs. The request will initially
be assigned high priority, but its priority will decrease
as itruns.

Our current setup considers the bottleneck resource
at the server to be the server’s limited bandwidth
purchased from its ISP, and thus we do SRPT-based
scheduling of that resource. In a different application
(e.g. processing of cgi-scripts) where some other re-
source was the bottleneck (e.g., CPU), it might be de-
sirable to implement SRPT-based scheduling of that re-
source.

Although we evaluate SRPT and FAIR across many
system loads, we do not in this paper consider the case
of overload. This is an extremely difficult problem both
analytically and especially experimentally. Our prelim-
inary results show that in the case of transient over-
load SRPT outperforms FAIR across a long list of met-
rics, including mean response time, throughput, server
losses, etc.

Our SRPT solution can also be applied to server
farms. Again the bottleneck resource would be the lim-
ited bandwidth that the web site has purchased from its
ISP. SRPT-based scheduling would then be applied to
the router at the joint uplink to the ISP.

8 Acknowledgements

We would like to thank Mark Crovella for many pro-
ductive discussions on the topic of scheduling in web
servers and Linux flow control. Greg Kesden, Jan
Harkes, and Srini Seshan also provided us with help-
ful information about Linux internals. We would also
like to thank Alexey Kuznetsov, Steven Ives and Tim
Canfield for helping us with the initial Linux Diffserv
experimentation. Lastly, we thank our many readers
who gave us feedback on this paper including lon Sto-
ica and M. Satyanarayanan and Srini Seshan.

References

[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Pro-
viding differentiated quality-of-service in Web hosting
services. In Proceedings of the First Workshop on In-
ternet Server Performance, June 1998.

(2]

(3]

(4]

(5]

6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

Linux network traffic con-
Available at

W. Almesberger.
trol — implementation overview.
http://lrcwww.epflch/linux-diffservy/.

W. Almesberger, Jamal Hadi, and Alexey Kuznetsov.
Differentiated services on linux. Available at
http://lrcwww.epflch/linux-diffservy.

Akamai Technologies B. Maggs, Vice President of Re-
search. Personal communication., 2001.

G. Bangaand P. Druschel. Measuring the capacity of
a web server under realistic loads. World Wide Web,
2(1-2):69-83, 1999.

G. Banga, P. Druschel, and J. Mogul. Better operating
system features for faster network servers. ACM SIG-
METRICS Performance Evaluation Review, 26(3):23—
30, 1998.

Nikhil Bansal and Mor Harchol-Balter. Analysis of
SRPT scheduling: Investigating unfairness. In Proceed-
ings of ACM SIGMETRICS’01, 2001.

P. Barford and M. E. Crovella. Generating represen-
tative Web workloads for network and server perfor-
manceevaluation. In Proceedings of SIGMETRICS 98,
pages 151160, July 1998.

M. Bender, S. Chakrabarti, and S. Muthukrishnan.
Flow and stretch metrics for scheduling continuous job
streams. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1998.

A. Bestavros, R. L. Carter, M. E. Crovella, C. R. Cunha,
A. Heddaya, and S. A. Mirdad. Application-level docu-
ment caching in the internet. In Proceedings of the Sec-
ond International Workshop on Services in Distributed
and Networked Environments (SDNE’95), June 1995.

H. Braun and K. Claffy. Web traffi ¢ characterization:
an assessment of the impact of caching documentsfrom
NCSA’s Web server. In Proceedings of the Second In-
ternational WWW Conference, 1994.

A. Cockcroft. Watching your web server. The Unix
Insider at http://www.unixinsider.com, April 1996.

M. Crovella and A. Bestavros. Self-similarity in

World Wide Web traffi ¢: Evidenceand possible causes.

IEEE/ACM Transactions on Networking, 5(6):835-846,
December 1997.

M. Crovella, R. Frangioso, and M. Harchol-Balter.
Connection schedulingin web servers. In USENIX Sym-
posium on Internet Technologies and Systems, October
1999.

M. Crovella, Murad S. Tagqu, and A. Bestavros. Heavy-
tailed probability distributions in the World Wide Web.
In A Practical Guide To Heavy Tails, pages 3—26. Chap-
man & Hall, New York, 1998.

A. B. Downey. A parallel workload model and its im-
plications for processor allocation. In Proceedings of
High Performance Distributed Computing, pages 112—
123, August 1997.

18

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

P. Druschel and G. Banga. Lazy receiver processing
(LRP): A network subsystem architecture for server
systems. In Proceedings of OSDI ’96, pages 261-275,
October 1996.

A. Feldmann. Web performance characteristics. IETF
plenary Nov. 99.
http://ww.research.att.com/ anja/feldmann/papers.html.

The Apache Group. Apache web server.
http://ww. apache. org.

J. Gwertzman and M. Seltzer. Thecasefor geographical
push-caching. In Proceedings of HotOS ’94, May 1994.
Abhijith Halikhedkar, Ajay Ug-
girala, and Dilip Kumar Tammana. Implemenation of
differentiated servicesin linux (diffspec). Available at
http:/Amww.rsl.ukans.edu/ dilip/845/FAGA SAPhtml.

Internet Town
Hall. Theinternet traffi ¢ archives. Availableatht t p: -
//town. hal | . org/ Archi ves/ pub/ | TA/ .

M. Harchol-Balter and A. Downey. Exploiting process
lifetime distributions for dynamic load balancing. ACM
Transactions on Computer Systems, 15(3), 1997.

M. HarcholBalter, N. Bansal, B. Schroeder, and
M. Agrawal. Implementation of SRPT scheduling in
web servers. Technical Report CMU-CS-00-170, 2000.

Microsoft TechNet Insights
and Answers for IT Professionals. The arts and science
of web server tuning with internet information services
5.0. http://www.microsoft.com/technet/, 2001.

M. Kaashoek, D. Engler, D. Wallach, and G. Ganger.
Server operating systems. In SIGOPS European Work-
shop "96, pages 141-148, 1996.

B. Krishnamurthy and J. Rexford. Web Protocols and
Practice: HTTP/1.1, Networking Protocols, Caching,
and Traffic Measurement. Addison-Wesley, 2001.

J. Little. A proof of the theorem | = lw. Operations
Research, 9, 1961.

S. Manley and M. Seltzer. Web facts and fantasy. In
Proceedings of the 1997 USITS, 1997.

J. C. Mogul. Network behavior of a busy Web server
and its clients. Technical Report 95/5, Digital Western
Research Laboratory, October 1995.

National Institute of Standards and Technology. Nist-
net.
http://snad.ncsl.nist.gov/itg/nistnet/.
V. N. Padmanabhan and J. Mogul. Improving HTTP
latency. Computer Networks and ISDN Systems, 28:25—
35, December 1995.

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
effi cient and portable web server. In Proceedings of
USENIX 1999, June 1999.

Saravanan Radhakrish-
nan. Linux — advanced networking overview version
1. Available at http://gos.ittc.ukans.edu/howtol.

(39]

[36]

(37]

(38]

(39]

L. Rizzo. Dummynet: a simple approach to the evalu-
ation of network protocols. ACM Computer Communi-
cation Review, 27(1), 1997.

J. Roberts and L. Massoulie. Bandwidth sharing and
admission control for elastic traffi c. In ITC Specialist
Seminar, 1998.

L. E. Schrageand L. W. Miller. The queue M/G/1 with
the shortest remaining processing time discipline. Op-
erations Research, 14:670-684, 1966.

A. Silberschatz, P. Galvin, and G. Gagne. Operating
System Concepts, Sixth Edition. John Wiley & Sons,
2002.

W. Stallings. Operating Systems, Fourth Edition. Pren-
tice Hall, 2001.

19

