
Achieving class-based QoS for transactional workloads

Bianca Schroeder Mor Harchol-Balter∗

Carnegie Mellon University
Department of Computer Science

Pittsburgh, PA USA
<bianca, harchol>@cs.cmu.edu

Arun Iyengar Erich Nahum
IBM T.J. Watson Research Center

Yorktown Heights, NY USA
<aruni,nahum>@us.ibm.com

1. Introduction

Transaction processing systems lie at the core of mod-
ern e-commerce applications such as on-line retail stores,
banks and airline reservation systems. The economic suc-
cess of these applications depends on the ability to achieve
high user satisfaction, since a single mouse-click is all that
it takes a frustrated user to switch to a competitor. Given
that system resources are limited and demands are varying,
it is difficult to provide optimal performance toall users at
all times. However, often transactions can be divided into
differentclassesbased on how important they are to the on-
line retailer. For example, transactions initiated by a “big
spending” client are more important than transactions from
a client that only browses the site. A natural goal then is to
ensure short delays for the class of important transactions,
while for the less important transactions longer delays are
acceptable.

It is in the financial interest of an online retailer to be able
to ensure that certain classes of transactions (financiallylu-
crative ones) are completed within sometarget mean re-
sponse time. It is also financially desirable for the online
retailer to be able to offer a Service Level Agreement (SLA)
to certain customers, guaranteeing them some target mean
response time that they desire (with possible deteriorated
performance for customers without SLAs). This paper pro-
poses and implements algorithms for providing such perfor-
mance targets on a per-class basis.

A guaranteed mean response time for some class of
transactions is one form of aQuality of Service (QoS) tar-
get. In many situations it is useful to provide more gen-
eral QoS targets such aspercentile targets, wherex% of
response times for a class are guaranteed to be below some
valuey. Percentile targets are often demanded by clients as
part of a Service Level Agreement (SLA), for example to
ensure that at least 90% of the client’s transactions see a re-
sponse time below a specified threshold. In addition to per-

∗Supported by NSF grants CCR-0133077, CCR-0311383, 0313148,
and a 2005 Pittsburgh Digital Greenhouse Grant.

class response time and percentile targets, another common
QoS target is to provide lowvariability in response times.
The reason is that users may judge a relatively fast service
still unacceptable unless it is also predictable [1,4,10].

Because the dominant time associated with serving an
e-commerce transaction is often the time spent at the back-
end database (rather than the front-end web/app server), itis
important that the QoS be applied to the backend database
system to control the time spent there. Yet, commercial
database management systems (DBMS) do not provide ef-
fective service differentiation between different classes of
transactions.

In designing a framework for providing class-based QoS
targets one strives for the following high-level design goals:

Diverse per-class QoS target metricsThe system should
allow for an arbitrary number of different classes,
where the classes can differ in their arrival rates, trans-
action types, etc. Each class is associated with one or
more QoS targets for (per-class) mean response time,
percentiles of response time, variability in response
time, best effort, or any combination thereof.

Portability and ease of implementation Ideally the sys-
tem should be portable across DBMS, and easy to im-
plement.

Self-tuning and adaptive The system should ideally have
few parameters, all of which are determined by the sys-
tem, as a function of the QoS targets, without interven-
tion of the database administrator. The system should
also automatically adapt to changes in the workloads
and QoS targets.

Effective across workloadsDatabase workloads are di-
verse with respect to their resource utilization charac-
teristics (CPU, I/O, etc.). We aim for a solution which
is effective across a large range of workloads.

No sacrifice in throughput & overall mean response time
Achieving per-class targets should not come at the



cost of an increase in the overall (over all classes)
mean response time or a drop in overall throughput.

With respect to the above design goals, the prior work is
limited. Commercial DBMS provide tools to assign prior-
ities to transactions; however these are not associated with
any specific response time targets. Research on real-time
databases does not consider mean per-class response time
goals, but rather looks only at how an individual transac-
tion can be made to either meet a deadline or be dropped
(in our system, transactions are not dropped). The only
existing work on per-class mean response time guarantees
for databases is based on modified buffer pool management
algorithms [2, 3, 5, 7]. These techniques are not effective
across workloads, since they focus only on one resource;
For example, tuning the buffer pool will have little effect
on CPU-bound or lock-bound workloads. Moreover, they
don’t cover more diverse QoS goals such as percentile or
variability goals. A major limitation of all the above ap-
proaches is that they rely on changes to DBMS internals.
Their implementation depends on complex DBMS specifics
and is neither simple nor portable across different systems.

2 The EQMS

Our approach aims at achieving the above high-level de-
sign goals through an external frontend scheduler called the
EQMS (External Queue Management System).

The core idea behind the EQMS is to maintain an up-
per limit on the number of transactions executing simulta-
neously within the DBMS called the Multi-Programming
Limit, or “MPL” (see illustration in Figure 1). If a transac-
tion arrives and finds MPL number of transactions already
in the DBMS, the arriving transaction is held back in an ex-
ternal queue. Response time for a transaction includes both
waiting time in the external queue (queueing time) and time
spent within the DBMS (execution time).

The immediately apparent attribute of our approach is
that it lends itself to portability and ease of implementation
as there is no dependence on DBMS internals. Also mov-
ing the scheduling outside the DBMS, rather than schedul-
ing individual DBMS resources (such as the bufferpool or
lock queues), makes it effective across different workloads,
independent of the resource utilization.

With respect to obtaining diverse QoS targets, the core
idea is that by maintaining a low MPL, we obtain a better
estimate of a transaction’s execution time within the DBMS,
and hence we are able to maintain accurate estimates of the
per-class mean execution times. This in turn gives us an
upper bound on the queueing time for a transaction, which
can be used by the scheduler in order to ensure that QoS
targets are met. The actual algorithms that we use are more
complex and rely on queueing analysis in order to meet a

DBMS

MPL=4incoming
transactions external

queue

Figure 1. Simplified view of mechanism used to
achieve QoS targets. A fixed limited number of trans-
actions (MPL=4) are allowed into the DBMS simul-
taneously. The remaining transactions are held in an
unlimited external queue. Response time is the time
from when a transaction arrives until it completes, in-
cluding queueing time.

more diverse set of QoS targets, and behave in an adaptive
manner.

The external scheduler achieves class differentiation by
providing short queueing times for classes with very strin-
gent QoS targets, at the expense of longer queueing times
for classes with more relaxed QoS targets. There are no
transactions dropped. One inherent difficulty in this ap-
proach is that not every set of targets is feasible, e.g., not
every class can be guaranteed a really low response time.
An external scheduler therefore also needs to include meth-
ods for determining whether a set of QoS targets is feasible.

The effectiveness of external scheduling and whether it
requires sacrifices in overall performance (e.g. through-
put or mean response time) depends on the choice of the
MPL. For scheduling to be most effective a very low MPL
is desirable, since then at any time only a small number
of transactions will be executing inside the DBMS (outside
the control of the external scheduler), while a large number
are queued under the control of the external scheduler. On
the other hand, too low an MPL can hurt the overall per-
formance of the DBMS, e.g., by underutilizing the DBMS
resources resulting in a drop in system throughput. There-
fore, another core problem an external scheduler needs to
solve is that of choosing the MPL.

The EQMS presents a unified external scheduling frame-
work that addresses all of the above problems. Figure 2
gives an overview of the EQMS architecture. The EQMS
takes as input a set of classes with one or several QoS tar-
gets for each class. These are specified by the online retailer
and are not part of the EQMS. A QoS target can be a target
on the mean response time, the x-th percentile of response
time, variability in response time or a combination thereof.
The core component of the EQMS is theSchedulerwhich
decides on the order in which transactions are dispatched to
the DBMS such that the associated QoS targets are met. The
scheduler relies on theMPL Advisorto determine an MPL
that provides sufficient scheduling control, while keeping



Figure 2. Overview of the EQMS system.

performance penalties, such as loss in throughput, below a
threshold defined by the DBA (database administrator). The
MPL Advisor also checks for the feasibility of a given set
of targets.

An important feature of the EQMS is that its two main
components, the Scheduler and the MPL Advisor, operate
in a self-tuning and adaptive fashion making the EQMS ro-
bust to dynamic changes in the system load or workload
characteristics. For example, the MPL Advisor combines
feedback control (based on information collected by the
Performance Monitor) with queueing theory to automati-
cally tune the MPL parameter and update it when necessary.

A detailed description of the EQMS is presented in [6].

3 Summary of results

We experimented with IBM DB2 and PostgreSQL under
a range of workloads, including CPU-bound, I/O-bound,
and high vs. low lock contention workloads, based on dif-
ferent configurations of TPC-C [8] and TPC-W [9]. We
created between 2 and 5 different transaction classes. Each
class was assigned a mean response time target or a target
on the x-th percentile of response time. In addition, we tried
to minimize the variability of response time for each class
as much as possible. Lastly, we evaluated the self-tuning
features of the EQMS by varying the overall system load.

In short, we find that per-class mean response time tar-
gets are typically met with an error of less than 5%. Fur-
thermore, the percentile targets are usually met with an er-
ror of less than 1%. We also find that the EQMS is able to
reduce the squared coefficient of variation (variability) for
each class from 2.3 to 0.11 for TPC-C type workloads, and
from 15 to 0.19 for TPC-W type workloads. Lastly, we find
that the EQMS responds quickly to changes in load.

Moreover, we observe that the EQMS works well across
all workloads studied. The reason is that the core idea of
limiting the MPL reduces contention within the DBMS at

the bottleneck resource, independently of what the particu-
lar bottleneck resource is.

A detailed description of the results is presented in [6].

References

[1] A. Bouch and M. Sasse. It ain’t what you charge it’s the
way that you do it: A user perspective of network QoS and
pricing. InProceedings of IM’99, 1999.

[2] K. P. Brown, M. J. Carey, and M. Livny. Managing memory
to meet multiclass workload response time goals. InPro-
ceedings of Very Large Database Conference, pages 328–
341, 1993.

[3] K. P. Brown, M. J. Carey, and M. Livny. Goal-oriented
buffer management revisited. InProceedings of the 1994
ACM SIGMOD Conference on Management of Data, pages
353–346, 1996.

[4] B. Dellart. How tolerable is delay? Consumers evaluation
of internet web sites after waiting.Journal of Interactive
Marketing, 13:41–54, 1999.

[5] K. D. Kang, S. H. Son, and J. A. Stankovic. Service differ-
entiation in real-time main memory databases. InProceed-
ings of the Fifth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC ’02),
2002.

[6] B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum.
Achieving class-based QoS for transactional workloads.
Technical Report CMU-CS-05-186, Carnegie Mellon Uni-
versity, 11, 2005.

[7] M. Sinnwell and A. Koenig. Managing distributed memory
to meet multiclass workload response time goals. In15th
IEEE Conference on Data Engineering (ICDE’99), 1997.

[8] Transaction Processing Performance Council. TPC bench-
mark C. Number Revision 5.1.0, December 2002.

[9] Transaction Processing Performance Council. TPC bench-
mark W (web commerce). Number Revision 1.8, February
2002.

[10] M. Zhou and L. Zhou. How does waiting duration informa-
tion influcence customers’ reactions to waiting for services.
Journal of Applied Social Psychology, 26:1702–1717, 1996.


