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Abstract

The diversity of a word’s contexts affects its acquisition and
processing. Can differences between word types such as
monosemes (unambiguous words), polysemes (multiple related
senses), and homonyms (multiple unrelated meanings) be re-
lated to distributional properties of these words? We tested for
traces of number and relatedness of meaning in vector repre-
sentations by comparing the distance between words of each
type and vector representations of various “contexts”: their dic-
tionary definitions (an extreme disambiguating context), their
use in film subtitles (a natural context), and their semantic
neighbours in vector space (a vector-space-internal context).
Whereas dictionary definitions reveal a three-way split between
our word types, the other two contexts produced a two-way split
between ambiguous and unambiguous words. These inconsis-
tencies align with some discrepancies in behavioural studies
and present a paradox regarding how models learn meaning
relatedness despite natural contexts seemingly lacking such
relatedness. We argue that viewing ambiguity as a continuum
could resolve many of these issues.

Keywords: lexical/semantic ambiguity; homonymy; polysemy;
vector space models; contextual diversity

Introduction
Extracting the statistical structure in a stream of words pro-
vides the observer—be it a human or a computational model—
with important information about word meanings (e.g., Smith
& Yu, 2008; Erk, 2012). Encountering a word in a number
of diverse contexts permits the accumulation of information
regarding the frequent versus idiosyncratic co-occurrence rates
with other words, thereby revealing the word’s meaning based
on “the company that it keeps” (Firth, 1957). Indeed, varied
contexts are necessary for the human or machine learner to
pinpoint the consistent semantic aspects (across situations)
that are relevant to a word, such that overall, contextual di-
versity helps the learner to predict a word’s meaning (e.g.,
Kachergis et al., 2017). Moreover, contextual diversity is ap-
parently reflected in the resulting learned representations of
words, acting as a key principle of lexical organization (e.g.,
Jones et al., 2017).

Treating contextual diversity as a monolithic property, how-
ever, is a major simplification: We need a better understanding
of how the interpretations of words can be shaped by diverse
contexts that vary in partially systematic ways, and how this
impacts their learned representations. For example, some of
the contextual diversity for a homonym such as bank is due not
only to using this word in varied contexts discussing MONEY,
but also to using this word in varied and (relative to MONEY
contexts) distinct contexts discussing RIVERS. Thus, the sim-
ilarity structure of the contexts of a homonym should display

a different topology or shape from that of the contexts of a rel-
atively unambiguous word with essentially a single meaning
(hereafter a monoseme). In a similar vein, a polyseme, with
multiple related interpretations, such as a chicken referring to
a FARM ANIMAL or to MEAT OF THAT ANIMAL, should
also differ from a monoseme in the similarity structure of its
contexts, even if those have some semantic overlap.

Given that ambiguous words make up the bulk of content
words in language (Klein & Murphy, 2001), understanding
how the interpretations of semantically ambiguous words are
resolved by context, and the trace this process leaves in lexical
representations, is key to advancing multidisciplinary research
in this area. In particular, it may contribute to theoretical
debates regarding some apparently inconsistent experimental
results obtained using monosemes, polysemes, and homonyms.
For example, some lexical decision experiments indicate an
overall processing advantage for all ambiguous words, with no
differences between polysemes and homonyms (e.g., Hino et
al., 2006). If these results correlate with the differences in the
topology of contexts noted above, they suggest that homonyms
and polysemes occur in equally diverse contexts, and in more
diverse contexts than monosemes. In contrast, other lexi-
cal decision experiments reveal a processing advantage only
for polysemes, whereas homonyms show a processing dis-
advantage relative to monosemes (e.g., Armstrong & Plaut,
2016). These results suggest that the structure of the contexts –
whether the diverse contexts of a word arise due to related or
unrelated senses – may differently impact the representation
of polysemes and homonyms.

Based on past work, it is therefore unclear how the repre-
sentations of monosemes, polysemes, and homonyms differ.
Here, we ask whether such representational differences are a
by-product of systematic differences between the range of con-
texts in which each type of word is encountered—specifically,
differences in the topology of each word’s contexts. Do both
types of ambiguous words occur in more distinctive contexts
than monosemes? Is the relatedness of a polyseme’s interpre-
tations associated with a greater degree of similarity in its set
of contexts as compared to homonyms?

To investigate these questions, we draw on the wealth of
research in both psycholinguistics and computational model-
ing on vector-based representations of word meanings (e.g.,
Landauer & Dumais, 1997; Erk, 2012). These approaches use
the aggregate contexts of a word to represent word meaning as
a distributional semantic vector (DSV) in a high-dimensional
space. Following Firth (1957), and given the above-noted



(a) Monoseme (wacky) (b) Polyseme (uncertain) (c) Homonym (jerky)

Figure 1: Multidimensional scaling plots for the GloVe vectors of three target words (in capitals) and of words in their dictionary
definitions (cf. Exp. 1) for the three ambiguity types. Words from the same dictionary definition are indicated by the color and
shape of the symbols and the ellipses around them (definition 1 in red ’x’s, definition 2 in green triangles, definition 3 in blue
squares). The same two-dimensional space was used for all words so variation in the distances can be compared across plots.

importance of contextual diversity in learning and organiz-
ing lexical meaning, it is perhaps not surprising that such
context-based DSVs have been successful in modeling hu-
man behaviour in a number of semantic tasks, such as sim-
ilarity judgments and analogy completion (e.g., McNamara,
2011; Baroni et al., 2014). Recent work has further examined
whether the meanings of an ambiguous word can be usefully
“extracted” from its DSV (e.g., Arora et al., 2016).

We build on such work with a new approach to using the
spatial relations among DSVs to inform us about the meaning
structure of a word. The overarching goal of the present work
is quite straightforward: Do the properties of DSVs reflect
the number and relatedness of a word’s interpretations? To
gain insight into this issue that is robust and relevant to a wide
array of psycholinguistic and computational researchers, we
examined the distance between a word’s DSV and the DSVs
of its contexts as defined in various ways.

Our Approach: Delineating Monosemes,
Polysemes, and Homonyms

Above, we noted the convergence between research on contex-
tual diversity as a key property of word usages, and the use of
context-derived word representations (distributional semantic
vectors, or DSVs). Our goal is to see whether the “traces” of
contextual diversity that are encoded in DSVs are revealing
about the properties of a word’s semantics: especially whether
the similarity structure of the contexts is encoded in a DSV.
In particular, do properties of DSVs—which are created by
aggregating over the contexts of usages of words—tell us
something about the number and relatedness of interpretations
that a word encodes?

To this end, we investigated how DSVs relate to relevant
portions of the semantic space they occur in. Following much
previous work (McNamara, 2011; Baroni et al., 2014), we
assume that the semantic similarity between two DSVs is

indicated by their relative positioning in the high-dimensional
semantic space: DSVs that cluster in a similar region of the
space are more semantically similar than those that are more
spread out in the space.

With this in mind, Figure 1 illustrates the components of
our main hypothesis here: (1) We assume that the DSV for a
monoseme aggregates over relatively similar contexts; since
its resulting vector representation has fewer distinctions to
encode, the expected distance between it and (a vector repre-
senting) any of those contexts should be relatively small. (2) A
DSV for a polyseme will be relatively more distant from (the
vectors for) its contexts, since the varying contexts of its multi-
ple senses pull its word vector representation somewhat away
from any one particular context. (3) A DSV for a homonym
will be the most distant from its contexts, since its encoding
reflects contexts in which it has various interpretations with no
overlap in semantics; the resulting DSV must encode and thus
“sit between” these more distant, non-overlapping contexts.

To test this hypothesis, we require DSVs for a set of target
words from our three ambiguity types (monosemes, polysemes,
and homonyms), and DSVs that represent the contexts of these
target words, so that we can measure the distance between
them. We use standard, off-the-shelf DSVs whose usage is
widespread in psycholinguistics and computational linguistics.
Several models were included to explore whether any potential
differences we find among the ambiguity types are robust to
the particular methods for creating DSVs.

There are various ways to identify relevant contexts to com-
pare these target items to. First, we consider—as an extreme
example of disambiguating context—the dictionary defini-
tion(s) of a word. Such definitions have been carefully con-
structed to elaborate the distinctive semantics of a word, and
as such, they serve as a proxy to a set of very clearly biased
contexts that reflect all of the word’s interpretations, and po-
tentially their relationship to one another. In this way, the



definitions of a target word should serve as highly effective
“probes” of whether and how the word’s interpretations are
captured in its DSV. Going back to the lay-out of monosemes,
polysemes, and homonyms in semantic space, we expect these
definitional contexts to accurately pinpoint salient spatial re-
gions whose distances to the target are highly informative
(cf. Figure 1).

Second, we consider the actual linguistic usage contexts
of a word. Specifically, we use a sample of corpus usages
of the target word as examples of its natural contexts. Since
these contexts are similar to the contexts used to create the
word vectors, they are a natural probe to measure the extent to
which the resulting DSV of a word is closer to or further from
its contexts. These results should help reveal how the DSV is
related to actual contextual aspects of its meaning, in contrast
to the definitional aspects.

Finally, we consider the context of the target DSV as it is
situated within the semantic space; that is, the context is the
target’s most semantically-similar neighbours (cf. Burgess,
2001). Here, we are probing whether hypothesized differences
in the make-up of the DSVs across the three types of words
lead to different degrees of similarity to their nearest semantic
neighbours. Again, going back to the lay-out of monosemes,
polysemes, and homonyms in semantic space, we hypothesize
that the various neighbours of a target word in semantic space
may occur closer to or further from the target depending on
the variety of their shared semantic dimensions.

In all cases, to compare these different types of contexts to
our targets, we aggregate the DSVs of the content words in
each instance of a context to form a single DSV (cf. Schütze,
1998), and compare that to the target DSV. Our key experimen-
tal measure is the average cosine distance between the DSV
of the target word, and the DSVs of each of its contexts of a
certain type.

Experimental Set-up
Target words
We selected target words with the aim of maximizing the abil-
ity to detect ambiguity effects while simultaneously ruling out
effects from other potentially confounding properties. Addi-
tionally, selection was constrained to facilitate the re-use of
these items in future coordinated psycholinguistic experiments.
We started by collecting the intersection of words common to
the following sources: the SUBTL word frequency database
(derived from movie/television subtitles, Brysbaert & New,
2009), the CMU pronouncing dictionary (Weide, 1998), the
Yarkoni et al. (2008) measures of orthographic neighbour-
hood, and the Wordsmyth dictionary (Parks et al., 1998).

The Wordsmyth dictionary includes separate entries for un-
related meanings, with related senses grouped under a single
entry. Manual inspection of the definitions suggests that in a
small number of cases these definitions may not cover some
meanings of a word, and some choices of senses as related (or
not) may not be accurate. However, overall the meaning/sense
counts have been found to correlate significantly with ambigu-
ity effects in several prior behavioural experiments (e.g., Rodd

Table 1: Features used in matching and as covariates

Property monosemes polysemes homonyms

# Unrelated Meanings 1 (0) 1 (0) 2.2 (0.02)
# Related Senses 1 (0) 5.72 (0.1) 7.48 (0.21)
# Noun Interp. 0.59 (0.02) 3.03 (0.07) 3.76 (0.11)
# Verb Interp. 0.14 (0.02) 2.21 (0.11) 3.06 (0.14)
# Adjective Interp. 0.16 (0.02) 0.42 (0.05) 0.58 (0.06)
# Letters 5.4 (0.07) 5.4 (0.07) 4.63 (0.06)
# Phonemes 4.5 (0.06) 4.5 (0.06) 3.86 (0.05)
# Syllables 1.6 (0.03) 1.6 (0.03) 1.3 (0.02)
ln(Word Freq. + 1) 0.89 (0.02) 0.94 (0.02) 0.95 (0.02)
Case of first letter 0.84 (0.02) 0.93 (0.01) 0.91 (0.01)
Coltheart’s N. Orth. 3.45 (0.21) 3.71 (0.22) 6.85 (0.29)
OLD20 1.9 (0.02) 1.8 (0.02) 1.56 (0.02)
Coltheart’s N. Phon. 7.14 (0.38) 7.19 (0.39) 12.12 (0.46)
PLD20 1.7 (0.03) 1.7 (0.03) 1.39 (0.02)
Pos. Letter Freq. 1183 (28) 1123 (28) 901 (26)
Pos. Bigram Freq. 155 (7) 145 (7) 115 (6)
# Interp. = Interpretations associated with a part of speech. Case of
first letter = Does the word most frequently appear with the first letter
in uppercase (0)? Coltheart’s N = Number of neighbours based on
letter (Orth.) or phoneme (Phon.) substitution. OLD20/PLD20 = Or-
thographic/Phonological Levenshtein distance. Pos. Letter/Bigram =
Freq. of a letter/bigram in a given position in a word. Per ambiguity
type, mean and (variance) are reported

et al., 2002). Thus, this source should be suitable for delineat-
ing between monosemes which are (relatively) unambiguous
and which have only a single meaning/sense, polysemes which
have multiple related senses, and homonyms which have mul-
tiple unrelated meanings (and possibly related senses within
those, given the rarity of homonyms with only one sense
per meaning). The eDom norms (Armstrong, Tokowicz, &
Plaut, 2012) were also used to further filter the Wordsmyth
homonyms in particular, because this resource includes a large
set of pre-screened homonyms suitable for psycholinguistic ex-
perimentation, as well as norms on additional psycholinguistic
properties of interest for later studies.

After combining these databases and removing words with
less than two phonemes, we obtained 429 homonyms, 4672
polysemes, and 1229 monosemes. We then selected 429 poly-
semes and monosemes that were matched to the homonyms
to the greatest extent possible at the item level on a number
of psycholinguistic covariates (including, for polysemes, the
number of senses), using the SOS stimulus optimization soft-
ware (Armstrong, Watson, & Plaut, 2012). The covariates,
along with their descriptive statistics, are presented in Table
1. Overall, the optimization created groups of monosemes,
polysemes, and homonyms that are very similar—but not
identical—in these statistics. Possible effects of the remaining
imperfections in the matching were addressed in the analysis
(see Statistical Methods).

Vector spaces

To evaluate the robustness of our findings and determine
whether there are major differences across different imple-
mentations of word co-occurrence models and corpora, we
replicated our computational experiments on three sets of pre-



trained vectors:1 LSA (Landauer & Dumais, 1997), trained
on the TASA corpus (Günther et al., 2015), and GloVe (Pen-
nington et al., 2014) and Word2vec (Continuous Skipgram;
Mikolov et al., 2013), both trained on English Wikipedia and
Gigaword (Fares et al., 2017). The LSA vectors used here are
a standard set that has been the subject of extensive research
over 20 years. The GloVe and Word2vec sets represent two
contemporary and very popular models trained on identical
natural language corpora. All vectors have 300 dimensions.

Experiments
The distance from the target word to its set of contexts was
defined as the mean of the cosine distances between the target
DSV and each of its context DSVs. We ran 3 experiments,
each using different context types:

Experiment 1: Each definition context DSV is formed
from a single WordSmyth definition by averaging the DSVs
of all gloss words (omitting stopwords; Bird et al. (2009)).

Experiment 2: Linguistic usages are lines of dialog con-
taining the target word, extracted from the Subtlex corpus
(Brysbaert & New, 2009). Each usage context DSV is formed
by averaging the DSVs of all words in the corpus line (exclud-
ing stopwords and the target word itself).

Experiment 3: Neighbour contexts were the 20 DSVs with
the lowest cosine distance from the target in the vector space.

Statistical methods
We used a stepwise multiple linear regression procedure to test
for differences between ambiguity types in each experiment.
First, we regressed out the effects of the psycholinguistic
covariates in Table 1 (omitting Colheart’s N Orth and N Phon
to avoid collinearity with OLD and PLD). Then we tested
for significant differences between the ambiguity types on
the residual differences; these are the results reported below.
In these analyses, the baseline level of ambiguity type was
rotated to run all pairwise comparisons between types. The
Type-I error rates in each experiment were held constant at
p < .05 (2-tailed) using the Bonferroni-Holm procedure.

Results
To reiterate our hypotheses underlying the motivation for our
experiments, we analyzed our experimental data to determine
whether monosemes were closer to their contexts than poly-
semes, and whether polysemes were closer to their contexts
than homonyms (cf. Figure 1) .

Experiment 1: Distance to dictionary definitions
The mean residual distances between the target DSVs and
their definition DSVs for each of our ambiguity types (M =
monoseme, P = polyseme; H = homonym), are presented in
Figure 2a, with statistically significant comparisons noted.

In line with our predictions, Glove and Word2Vec showed a
significant 3-way distinction wherein the distance of the target

1Gathered from http://vectors.nlpl.eu/repository/ and
http://www.lingexp.uni-tuebingen.de/z2/LSAspaces/
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(b) Experiment 2: Linguistic usage contexts
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(c) Experiment 3: Semantic neighbourhoods

Figure 2: Ave. residual distance by ambiguity type for the
different vector sets in each experiment. Error bars plot the
standard error. Black lines denote significant differences be-
tween ambiguity types; p < .001 in all cases except Expt. 2,
Word2vec M–P p < .01.

DSV to the definition DSVs was smallest for the monosemes
and largest for the homonyms, with the polysemes falling
in between. LSA also showed the 3-way trend numerically,
but P vs. H was only trending (p = .06). The sample words
from this experiment used to generate Figure 1 underscore
this point: the definitions of the monoseme are most tightly
clustered around the target word, followed by the polyseme,
and with the homonym displaying the most dispersed set of
definition words in vector space. This indicates that when a
DSV is trained on samples of natural language text, probing it
with dictionary definition “contexts” can reveal traces of the
diversity of contexts in which the word was encountered. The
similar patterns obtained across all three vector space models
suggest that the overall co-occurrence structure in language
drives these effects, given the differences in implementation
and training corpora across our three vector sets.

Experiment 2: Distance to linguistic usage contexts

Figure 2b presents the mean residual distances between the
target DSVs and their linguistic usage DSVs for each of our
ambiguity types. It shows that for Word2vec, the contexts



for both types of ambiguous words were significantly more
distant from the target word than those of monosemes, but
there was no difference as a function of the relatedness of
an ambiguous word’s interpretations. Given that homonym
meanings are completely unrelated to one another, the fact that
polysemes group with homonyms suggests that despite having
related senses, each sense is, on average, encountered in just as
distinct a context as an unrelated meaning. Thus, discussions
of COOKING versus RAISING chickens may be as distinct
as discussions of FINANCIAL versus RIVER banks.

Neither LSA nor GloVe showed significant effects across
ambiguity types. Because LSA was trained on a different
corpus than GloVe and Word2vec, we cannot infer whether its
training corpus does not contain the same diversity of contexts
needed to observe differences between ambiguity types, or
whether this failure is due to how that algorithm creates DSVs.

However, GloVe was trained on the same corpus as
Word2vec, so the differences between these two algorithms
are attributable to how each model creates DSVs. A possible
source of these differences is that in creating DSVs, GloVe
optimizes over the entire word co-occurrence matrix at once,
where Word2vec does iterative sentence-by-sentence training.
Fleshing out the impact of these types of algorithmic differ-
ences is an active area of research (e.g., Rubin et al., 2014).

Experiment 3: Distance to semantic neighbourhood
Figure 2c presents the mean residual distances between the
target DSVs and their neighbourhood DSVs for each of our
ambiguity types. For Word2vec and GloVe, we observe a simi-
lar two-way split as for Word2vec in Experiment 2: homonyms
and polysemes are not statistically different from one another,
but both show larger distances than the monosemes. In other
words, these results indicate that words with multiple inter-
pretations have nearest neighbours that are more distant than
those of monosemes, but the distance is not impacted by the
relatedness of an ambiguous word’s meanings. No significant
effects were observed when analyzing the LSA vectors.

Supplemental Analysis: Extreme Polysemes
Our initial set of polysemes had slightly fewer senses than the
homonyms did when matching for our broad set of psycholin-
guistic covariates. If the number of senses rather than their
nature drives some of our results, we would expect polysemes
with more senses to have a greater average distance to their
contexts in the various experiments than both homonyms and
polysemes. To evaluate this possibility, we repeated our ex-
periments on an additional set of “extreme polysemes” that
were matched on all covariates except the number of senses,
and so had 38% more senses than the homonyms (10.4 vs.
7.5). No evidence for a confounding effect of number of
senses was observed in Experiments 1 and 2, where numeri-
cally the extreme polysemes ranked somewhere in between the
homonyms and polysemes. In Experiment 3 we did find the
extreme polysemes had either the numerically largest (GloVe
and Word2vec) or the smallest (LSA) distance to their se-
mantic neighbourhood, suggesting that here the number of

senses does affect the neighbourhood density differently in the
case of different algorithms and/or corpora. Future studies are
planned to better understand these phenomena.

General Discussion
Our 3 experiments tested for differences in the word vectors
between the different ambiguity types in several types of “con-
texts”: dictionary definitions that highlighted the defining or
prototypical semantic dimensions of the words (Experiment 1),
linguistic usage contexts that emphasized the co-occurrence re-
lations of a word (Experiment 2), and neighbours in the vector
space that measure the direct relation that a word has to related
words (Experiment 3). Our key findings were as follows: In
Experiment 1, all models generated a three-way distinction
in which monosemes were further from their contexts than
polysemes, and polysemes were further from their contexts
than homonyms. In contrast, in Experiment 2 (Word2vec)
and Experiment 3 (Word2vec & GloVe), we only observed a
two-way split wherein ambiguous words were further from
their contexts relative to monosemes. These findings support
our highest-level intuition that (at least some types of) am-
biguous words are encountered in more diverse contexts than
monosemes. The contrast between natural contexts and the
semantically more distinct contexts of dictionary definitions
have interesting implications for theories and studies of am-
biguous word representation, learning, and processing that
transcend multiple disciplines of cognitive science.

The discrepancies across our experiments pose a paradox
for theories of word learning. Whereas dictionary definitions
allowed us to distinguish homonyms from polysemes, our two
experiments based on naturally-occurring language did not –
there, polysemes and homonyms are equally distant from their
contexts. How is it that vectors that (as one test shows) are sen-
sitive to meaning relatedness can be learned from contexts that
(on average) do not reflect this factor? One potential answer is
that the observed difference in Experiment 1 is not due to the
target word vectors themselves, but to the definition words and
how their vectors are spread out in vector space. This would
resolve the paradox by denying that the homonym-polyseme
distinction is ‘contained’ in the word vectors. Another possi-
bility is that the natural language contexts and the semantic
neighbourhoods are insufficiently strong probes into this dif-
ference; this would resolve the paradox by assuming that the
homonym-polyseme distinction is captured in the word vec-
tors, but that one needs very strong probes to reveal it. If the
answer turns out to be that the distributional contexts do not
encode the homonymy-polysemy distinction, this would raise
a second question of how human language learners arrive at
these distinct kinds of representations. In particular, such a
result would suggest that, despite the success of word vectors
based on linguistic context alone, they cannot capture all of the
knowledge people have of word meaning and its organization.

Another factor that may have contributed to our discrepant
results is how we divided words into three ambiguity types.
The substantial amount of variance within each of the types



may reflect systematic variation better explained through an
“ambiguity continuum” – in which the relatedness of senses
varies continuously (e.g., Klepousniotou et al., 2008). Already,
the adoption of such a graded view of ambiguity has been
shown to modulate behavioural semantic ambiguity effects,
such that polysemes assumed to have lower representational
overlap across senses (e.g., metaphorical polysemes such as
FILM vs. CELESTIAL star) produce ambiguity effects more
similar to homonyms than polysemes assumed to have higher
representational overlap across senses (e.g., metonymic poly-
semes such as chicken; Klepousniotou et al. 2008). Similarly,
the inconsistency in finding two-way (Hino et al., 2006) or
three-way (Armstrong & Plaut, 2016) distinctions may relate
to how researchers divide their items into ambiguity types.
Our computational approach makes it possible to evaluate
whether and how other ways of measuring the number and
relatedness of a word’s meanings align with our measures here.
It potentially reconciles these effects based on where words
sit on the ambiguity continuum.

In conclusion, the alignment of the particular inconsisten-
cies across our experiments with other discrepancies in the lit-
erature provides general support for our initial hypotheses and
hints at a unifying account of these findings based on an am-
biguity continuum. Thus, our simple approach of using three
ambiguity types is clearly only a starting point, whereas future
work should consider graded transitions in representational
overlap, among many other factors (e.g., possible interactions
with grammatical class and meaning frequency; Armstrong,
Tokowicz, & Plaut 2012), as well as other ways of measuring
the dispersion of vectors in semantic space. Our selection
of a large set of stimuli that are suitable for psycholinguistic
experimentation allows us to drill in on these possibilities in
future analyses, as well as to evaluate how our computational
results align with coordinated experiments using the same
items. Thus, our interdisciplinary approach provides targeted
directions for advancing the study of ambiguity by asking the
question: can we know a word’s ambiguity by the company
that it keeps?
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