Modelling the acquisition of lexical meaning from caregiver-child interaction Getting the semantics straight

Barend Beekhuizen¹, Afsaneh Fazly², Aida Nematzadeh² & Suzanne Stevenston²

¹Leiden University ²University of Toronto

18 January 2013

Topic

Cognitive models of acquiring word-meaning mappings

Goal #1

Discuss sources of semantic data for models and present a new one

Goal #2

Show how this data can be used to re-evaluate old claims

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Data? Data! The block game corpus

Data?

- Cross-situational models of acquiring word meanings¹
- Source of meaning: situational context.
- Your average CHILDES corpus does not contain that.

¹Siskind 1996, Xu & Tenenbaum 2000, Roy & Pentland 2002, Yu & Ballard 2003, Fazly, Alishahi & Stevenson 2010

Beekhuizen, Fazly, Nematzadeh & Stevenson Modeling the acquisition of lexical meaning

Data? Data! The block game corpus

Data?

- Cross-situational models of acquiring word meanings¹
- Source of meaning: situational context.
- Your average CHILDES corpus does not contain that.
- So: method of synthesizing semantics.
 - Every word is a semantic symbol (Fazly, Alishahi & Stevenson 2010)
 - Obtain lexical semantics from WordNet (id., 2008)
- Allows you to make large quantities of data.

¹Siskind 1996, Xu & Tenenbaum 2000, Roy & Pentland 2002, Yu & Ballard 2003, Fazly, Alishahi & Stevenson 2010

Beekhuizen, Fazly, Nematzadeh & Stevenson Modeling the acquisition of lexical meaning

Data? Data! The block game corpus

Data?

- Cross-situational models of acquiring word meanings¹
- Source of meaning: situational context.
- Your average CHILDES corpus does not contain that.
- So: method of synthesizing semantics.
 - Every word is a semantic symbol (Fazly, Alishahi & Stevenson 2010)
 - Obtain lexical semantics from WordNet (id., 2008)
- Allows you to make large quantities of data.
- But: quality of data?
 - Cognitive availability of meaning?
 - Situational availability? (noise, referential uncertainty)

¹Siskind 1996, Xu & Tenenbaum 2000, Roy & Pentland 2002, Yu & Ballard 2003, Fazly, Alishahi & Stevenson 2010

Data? Data! The block game corpus

Data?

- Cross-situational models of acquiring word meanings¹
- Source of meaning: situational context.
- Your average CHILDES corpus does not contain that.
- So: method of synthesizing semantics.
 - Every word is a semantic symbol (Fazly, Alishahi & Stevenson 2010)
 - Obtain lexical semantics from WordNet (id., 2008)
- Allows you to make large quantities of data.
- But: quality of data?
 - Cognitive availability of meaning?
 - Situational availability? (noise, referential uncertainty)
- Recent method: annotating video material (Yu, Roy, Frank)
- But: either limited to basic-level objects or in the pragmatic realism (explicit labeling task).

¹Siskind 1996, Xu & Tenenbaum 2000, Roy & Pentland 2002, Yu & Ballard 2003, Fazly, Alishahi & Stevenson 2010

Data? Data! The block game corpus

Data!

Goal #1

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.

/⊒ > < ∃ >

Data? Data! The block game corpus

Data!

Goal #1

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.

- Some desiderata:
 - Children should be young enough not to know too much already.
 - Coded descriptions should be cognitively available.
 - Coded descriptions should stay close to what's observable; the coders should not have to infer too much

・ 一 ・ ・ ・ ・ ・ ・

Data? Data! The block game corpus

Data!

Goal #1

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.

- Some desiderata:
 - Children should be young enough not to know too much already.
 - Coded descriptions should be cognitively available.
 - Coded descriptions should stay close to what's observable; the coders should not have to infer too much
- Realizations:
 - High-quality data can only complement high-quantity data, not replace it.
 - Little earlier work: the specifics may contain serious methodological flaws (more than happy to find out!)

Data? Data! The block game corpus

The block game corpus

- \pm 120 90-min videos of mother-daughter (16mo) interaction, gathered by Child Studies in Leiden
- Every dyad played a game of putting differently-shaped blocks in a bucket through corresponding holes
- 32 dyads (\pm 5 min. each) were situationally coded by two coders using ELAN and transcribed by first author

・ 一 ・ ・ ・ ・ ・ ・

The block game corpus

- $\bullet~\pm$ 120 90-min videos of mother-daughter (16mo) interaction, gathered by Child Studies in Leiden
- Every dyad played a game of putting differently-shaped blocks in a bucket through corresponding holes
- 32 dyads (\pm 5 min. each) were situationally coded by two coders using ELAN and transcribed by first author
- 175 minutes of material, 7842 word tokens, 2492 utterances.
- Situational coding. For every interval of 3 seconds, code:
 - simple behavior (grab, move, position, letgo),
 - changes in spatial relations (in, on, out, off, match),
 - objects (block, bucket, mother, table)
 - properties (triangular, square, red, blue)
- Structured: grab(mother,(red,square,block))
- High intra- & interannotator agreement (almost all $\kappa > 0.8$)

Data? Data! The block game corpus

Example

Table: A sample of the dataset. The dash-separated abbreviations denote blocks and holes and their properties (colors & shapes)

time type	coding/transcription
0m0s situation	
language	een. nou jij een.
translation	"One. Now you try one."
0m3s situation	position(mother, toy, on(toy, floor)) grab(child, b-ye- tr) move(child, b-ye-tr, on(b-ye-tr, floor), near(b-ye-tr,
	ho-ro)), mismatch(b-ye-tr, ho-ro)
language	nee daar.
translation	"No, there."
Om6s situation	point(mother, ho-tr, child) position(child, b-ye-tr,
	near(b-ye-tr, ho-ro))
language	nee lieverd hier past ie niet.
translation	"No sweetie, it won't fit in here."

Acquiring lexical meaning

- How to learn the meaning of a word?
 - Cross-situationally observing objects, relations, events, properties.
 - Seems insufficient (esp. for relational terms; verbs, prepositions)
 - Number of possibilities is vast (Gentner 1978)
 - Many actions and relations do not take place at the moment of utterance (Gleitman 1990)

- 4 同 ト 4 ヨ ト 4 ヨ

• Bootstrapping by using linguistic structure (Gleitman 1990), intentionality (Tomasello 2003), ...

Acquiring lexical meaning

- How to learn the meaning of a word?
 - Cross-situationally observing objects, relations, events, properties.
 - Seems insufficient (esp. for relational terms; verbs, prepositions)
 - Number of possibilities is vast (Gentner 1978)
 - Many actions and relations do not take place at the moment of utterance (Gleitman 1990)

• □ ▶ • □ ▶ • □ ▶ •

• Bootstrapping by using linguistic structure (Gleitman 1990), intentionality (Tomasello 2003), ...

Goal #2

Using this data set to re-evaluate the claim that relational terms are more difficult than non-relational terms.

The FAS10-model Expanding the scope

The model

Fazly, Alishahi & Stevenson (2010) incremental model of aligning words in utterance U = {w₁,..., w_n} with features in situation S = {f₁,..., f_n}.

/□ ▶ < 글 ▶ < 글

Data? New light on old questions Final remarks

The model

- Fazly, Alishahi & Stevenson (2010) incremental model of aligning words in utterance U = {w₁,..., w_n} with features in situation S = {f₁,..., f_n}.
- Calculating alignment on the basis of conditional probabilities:

$$a(w|f, U^{(t)}, S^{(t)}) = \frac{p^{(t-1)}(f|w)}{\sum\limits_{w' \in U^{(t)}} p^{(t-1)}(f|w')}$$
(1)

/□ ▶ < 글 ▶ < 글

Data? New light on old questions Final remarks

The FAS10-model Expanding the scope

The model

- Fazly, Alishahi & Stevenson (2010) incremental model of aligning words in utterance $U = \{w_1, \ldots, w_n\}$ with features in situation $S = \{f_1, \ldots, f_n\}$.
- Calculating alignment on the basis of conditional probabilities:

$$a(w|f, U^{(t)}, S^{(t)}) = \frac{p^{(t-1)}(f|w)}{\sum\limits_{w' \in U^{(t)}} p^{(t-1)}(f|w')}$$
(1)

伺 ト イ ヨ ト イ ヨ

• Updating the association score (initialized at 0):

$$assoc^{(t)}(w, f) = assoc^{(t-1)}(w, f) + a(w|f, U^{(t)}, S^{(t)})$$
 (2)

Data? New light on old questions Final remarks

The model

- Fazly, Alishahi & Stevenson (2010) incremental model of aligning words in utterance $U = \{w_1, \ldots, w_n\}$ with features in situation $S = \{f_1, \ldots, f_n\}$.
- Calculating alignment on the basis of conditional probabilities:

$$a(w|f, U^{(t)}, S^{(t)}) = \frac{p^{(t-1)}(f|w)}{\sum\limits_{w' \in U^{(t)}} p^{(t-1)}(f|w')}$$
(1)

• Updating the association score (initialized at 0):

$$assoc^{(t)}(w, f) = assoc^{(t-1)}(w, f) + a(w|f, U^{(t)}, S^{(t)})$$
 (2)

• Recalculating the conditional probabilities on the basis of the association scores:

$$p^{(t)}(f|w) = \frac{\operatorname{assoc}^{(t)}(w, f) + \lambda}{\sum\limits_{f' \in F} \operatorname{assoc}^{(t)}(w, f') + \beta \times \lambda}$$
(3)

Data preparation

- Representations are structured, so flatten them: grab(mother,(red,square,block)) → {grab,mother,red,square,block}
- Take the set of all flattened representations of the situation taking place in the interval in which the utterance was beginning to be produced.
- We used lemma representations for the words

Evaluation

- No golden lexicon, so hand-built one for 'meaningful' words (*n* = 41):
 - Object labels: *blok* meaning block
 - Properties: rood meaning red
 - Spatial relations: op meaning on
 - Actions: *passen* meaning match, *stoppen* meaning {move,in}

Evaluation

- No golden lexicon, so hand-built one for 'meaningful' words (n = 41):
 - Object labels: *blok* meaning block
 - Properties: rood meaning red
 - Spatial relations: op meaning on
 - Actions: *passen* meaning match, *stoppen* meaning {move,in}
- Two (partially complementary) measures:
 - Summed Conditional Probability (*SCP*): how much probability mass is assigned to the true meanings given a word?

▲ 同 ▶ ▲ 国 ▶ ▲ 国

• Average Precision (*AP*): how are the true meanings ranked (on conditional probability) w.r.t. the other meanings.

Table: Results of experiment 1. Given are mean SCP and AP values per class

	property	object	spatial	action	total
SCP	0.10	0.05	0.09	0.07	0.08
AP	0.81	0.25	0.19	0.15	0.31

- Conditional probability distributions do not get very peaky in general
- Ranking is good for properties (colors, shapes), but rather bad for other classes.

・ 戸 ト ・ ヨ ト ・ ヨ

The FAS10-model Expanding the scope

Model dependence?

- Compared with one other model: Jon Stevens (2011)' hypothesis testing model.
- Same direction of results: properties > objects > spatial relations > actions

		property	object	spatial	action	total
FAS10	SCP	0.10	0.05	0.09	0.07	0.08
	AP	0.81	0.25	0.19	0.15	0.31
S11	SCP	0.09	0.06	0.06	0.02	0.05
	AP	0.28	0.20	0.13	0.09	0.17

Table: Results of experiment 1

I ≡ ▶ < </p>

A D

Interpretation

	property	object	spatial	action	total
SCP	0.10	0.05	0.09	0.07	0.08
AP	0.81	0.25	0.19	0.15	0.31

- Re-evaluation corroborates Gleitman's finding:
 Properties > object labels > spatial relations and actions
- Why are the latter three harder to learn?
 - True meaning is absent from S
 - Poil features are structurally present in S
 - True meaning is also present in many other Ss
- Combination of these! For properties, 2) and 3) hold as well.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Focussing on absent true meanings
- Perhaps the temporal scope is too narrow?
- Learners may focus on situations slightly temporally displaced
- Pragmatically defined window: S = all coded material in intervals between the previous utterance, $U^{(t-1)}$, and the next one, $U^{(t+1)}$.
- Variable: sometimes a large window of situations, sometimes just the time of the utterance itself.

Data? New light on old questions Final remarks	The FAS10-model Expanding the scope
Final remarks	Expanding the scope

W		prop.	object	spatial	action	total
0:0	SCP	0.10	0.05	0.09	0.07	0.08
	AP	0.81	0.25	0.19	0.15	0.31
(t-1), (t+1)	SCP	0.08	0.05	0.10	0.08	0.07
00.	AP	0.79	0.41	0.22	0.20	0.39

• Slight increase for three less-learned categories:

- wider context is informative, more true meanings found
- while not producing more referential uncertainty (as expected).
- Pragmatics: people talk about what should happen, or what has happened.

- Difficulty of getting good data; perhaps more tedious than developing a realistic model.
- Manual coding of situational contexts can be done
 - to complement synthesization methods (how much noise and uncertainty is realistic for which meaning category?)
 - to perform small-scale evaluations experiments
- However, ideally: wider situational contexts

- Difficulty of getting good data; perhaps more tedious than developing a realistic model.
- Manual coding of situational contexts can be done
 - to complement synthesization methods (how much noise and uncertainty is realistic for which meaning category?)
 - to perform small-scale evaluations experiments
- However, ideally: wider situational contexts
- Verbs and Prepositions are harder to learn than Nouns, which are harder than Color & Shape terms
- A wider scope helps a bit
- Structured learning? (Bootstrapping on syntax, using structure of semantics)

- Difficulty of getting good data; perhaps more tedious than developing a realistic model.
- Manual coding of situational contexts can be done
 - to complement synthesization methods (how much noise and uncertainty is realistic for which meaning category?)
 - to perform small-scale evaluations experiments
- However, ideally: wider situational contexts
- Verbs and Prepositions are harder to learn than Nouns, which are harder than Color & Shape terms
- A wider scope helps a bit
- Structured learning? (Bootstrapping on syntax, using structure of semantics)
- Realistic data is important!